26相似三角形(13大考点,精选60题)【2025中考数学真题分类汇编】(原卷版+解析版)

文档属性

名称 26相似三角形(13大考点,精选60题)【2025中考数学真题分类汇编】(原卷版+解析版)
格式 zip
文件大小 26.1MB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2025-11-12 13:37:22

文档简介

/ 让教学更有效 精品试卷 | 数学学科
专题26相似三角形(13大考点,精选60题)
考点概览 考点1比例的性质 考点2相似图形 考点3平行线分线段成比例 考点4相似三角形的判定 考点5相似三角形的性质 考点6相似三角形的应用 考点7位似与位似图形 考点8相似三角形的新定义问题 考点9相似三角形的性质与判定综合问题 考点10相似三角形与圆综合问题 考点11相似三角形与动点、函数关系式问题 考点12相似三角形与一次函数、反比例函数 考点13相似三角形在二次函数压轴题中的应用
专题26图形的相似
考点1比例的性质
1.(2025·四川南充·中考真题)已知,则的值是( )
A.2 B.3 C.4 D.6
2.(2025·四川成都·中考真题)若,则的值为 .
考点2相似图形
3.(2025·河北·中考真题)“这么近,那么美,周末到河北”.嘉嘉周末到弘济桥游览,发现青石桥面上有三叶虫化石,他想了解其长度,在化石旁放了一支笔拍下照片(如图).回家后量出照片上笔和化石的长度分别为和,笔的实际长度为,则该化石的实际长度为( )
A. B. C. D.
4.(2025·甘肃平凉·中考真题)“儿童散学归来早,忙趁东风放纸鸢”风筝古称纸鸢,起源于春秋战国时期,风筝制作技艺已被列入国家非物质文化遗产名录为丰富校园生活,某校开展风筝制作活动,小言和哥哥制作了一大一小两个形状相同的风筝,风筝的形状如图所示,其中对角线.已知大、小风筝的对应边之比为,如果小风筝两条对角线的长分别为和,那么大风筝两条对角线长的和为 .
考点3平行线分线段成比例
5.(2025·吉林长春·中考真题)将直角三角形纸片()按如图方式折叠两次再展开,下列结论错误的是(  )
A. B.
C. D.
6.(2025·河南·中考真题)如图所示的网格中,每个小正方形的边长均为,的三个顶点均在网格线的交点上,点D、E分别是边、与网格线的交点,连接,则的长为( )

A. B.1 C. D.
7.(2025·四川宜宾·中考真题)如图,是坐标原点,反比例函数与直线交于点,点在的图象上,直线与轴交于点.连结.若,则的长为(  )
A. B. C. D.
考点4相似三角形的判定
8.(2025·河北·中考真题)如图,在五边形中,,延长,,分别交直线于点,.若添加下列一个条件后,仍无法判定,则这个条件是( )
A. B. C. D.
考点5相似三角形的性质
9.(2025·黑龙江绥化·中考真题)两个相似三角形的最长边分别是和,并且它们的周长之和为,那么较小三角形的周长是( )
A. B. C. D.
10.(2025·贵州·中考真题)如图,已知,若,则的长为( )
A.1 B.2 C.4 D.8
11.(2025·四川眉山·中考真题)如图,在平面直角坐标系中,用12个以点O为公共顶点的相似三角形组成形如海螺的图案,若,,则点G的坐标为
考点6相似三角形的应用
12.(2025·四川内江·中考真题)阿基米德曾说过:“给我一个支点,我能撬动整个地球.”这句话生动体现了杠杆原理:通过调整支点位置和力臂长度,用较小的力就能撬动重物.这一原理在生活中随处可见.如图甲,这是用杠杆撬石头的示意图,当用力压杠杆时,另一端就会撬动石头.如图乙所示,动力臂,阻力臂,,则的长度是( )
A. B. C. D.
13.(2025·江苏连云港·中考真题)如图,港口位于岛的北偏西方向,灯塔在岛的正东方向,,一艘海轮在岛的正北方向,且、、三点在一条直线上,.
(1)求岛与港口之间的距离;
(2)求.
(参考数据:,,)
14.(2025·吉林·中考真题)综合与实践:确定建筑物的打印模型的高度项目提出:图是某城市规划展览馆.树人中学的打印社团为展示城市文化,准备制作该城市规划展览馆的打印模型,需要测量并计算展览馆高度,为制作打印模型提供数据.
项目报告表 时间:2025年5月29日
项目分析 活动目标 测量该城市规划展览馆的实际高度并换算其打印模型的高度
测量工具 测角仪、皮尺
项目实施 任务一测量数据 以下是测得的相关数据,并画出了如图所示的测量草图. 1.测出测角仪的高. 2.利用测角仪测出展览馆顶端A的仰角. 3.测出测角仪底端D处到展览馆底端B处之间的距离.
任务二计算实际高度 根据上述测得的数据,计算该城市规划展览馆的高度.(结果精确到1m)(参考数据:,,)
任务三换算模型高度 将该城市规划展览馆的高度按等比例缩小,得到其打印模型的高度约为________.(结果精确到)
项目结果 为社团制作城市规划展览馆的打印模型提供数据
请结合上表中的测量草图和相关数据,帮助该社团完成任务二和任务三.
15.(2025·河南·中考真题)焦裕禄纪念园是全国重点革命烈士纪念建筑物保护单位,革命烈士纪念碑位于纪念园南部的中心.某综合与实践小组开展测量纪念碑高度的活动,记录如下.
活动主题 测量纪念碑的高度
实物图和测量示意图
测量说明 如图,纪念碑位于有台阶的平台上,太阳光下,其顶端的影子落在点处,同一时刻,竖直放置的标杆顶端的影子落在点处,位于点处的观测者眼睛所在位置为点,点在一条直线上,纪念碑底部点在观测者的水平视线上.
测量数据
备注 点在同一水平线上.
根据以上信息,解决下列问题.
(1)由标杆的影子的长和标杆的长相等,可得,请说明理由.
(2)求纪念碑的高度.
(3)小红通过间接测量得到的长,进而求出纪念碑的高度约为.查阅资料得知,纪念碑的实际高度为.请判断小红的结果和(2)中的结果哪个误差较大?并分析误差较大的可能原因(写出一条即可).
16.(2025·江苏连云港·中考真题)一块直角三角形木板,它的一条直角边长,面积为.
(1)甲、乙两人分别按图1、图2用它设计一个正方形桌面,请说明哪个正方形面积较大;
(2)丙、丁两人分别按图3、图4用它设计一个长方形桌面.请分别求出图3、图4中长方形的面积与的长之间的函数表达式,并分别求出面积的最大值.
考点7位似与位似图形
17.(2025·甘肃兰州·中考真题)如图,在平面直角坐标系中,与位似,位似中心是原点O,已知,则的对应点的坐标是( )
A. B. C. D.
18.(2025·浙江·中考真题)如图,五边形是以坐标原点O为位似中心的位似图形,已知点的坐标分别为.若的长为3,则的长为( )
A. B.4 C. D.5
19.(2025·内蒙古·中考真题)如图,在平面直角坐标系中,的顶点坐标分别是,,,以原点为位似中心,在第三象限画与位似,若与的相似比为,则点的对应点的坐标为( )
A. B. C. D.
20.(2025·四川眉山·中考真题)如图,在的方形网格中,每个小正方形的边长均为1,将以点O为位似中心放大后得到,则与的周长之比是( )
A. B. C. D.
21.(2025·山东烟台·中考真题)如图,在平面直角坐标系中,点的坐标为,的顶点的坐标为.以点为位似中心作与位似,相似比为2,且与位于点同侧;以点为位似中心作与位似,相似比为2,且与位于点同侧……按照以上规律作图,点的坐标为 .
22.(2025·广东·中考真题)如图,把放大后得到,则与的相似比是 .
23.(2025·黑龙江绥化·中考真题)在平面直角坐标系中,把以原点为位似中心放大,得到.若点和它的对应点的坐标分别为,,则与的相似比为 .
24.(2025·安徽·中考真题)如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系,的顶点和均为格点(网格线的交点).已知点A和的坐标分别为和.
(1)在所给的网格图中描出边的中点D,并写出点D的坐标;
(2)以点O为位似中心,将放大得到,使得点A的对应点为,请在所给的网格图中画出.
考点8相似三角形的新定义问题
25.(2025·甘肃兰州·中考真题)如图,黄金矩形中,以宽为边在其内部作正方形,得到四边形是黄金矩形,依此作法,四边形,四边形也是黄金矩形.依次以点E,G,L为圆心作,,,曲线叫做“黄金螺线”.若,则“黄金螺线”的长为 .(结果用表示)
26.(2025·广东·中考真题)定义:把某线段一分为二的点,当整体线段比大线段等于大线段比小线段时,则称此线段被分为中外比,这个点称为中外比点.
(1)如图,点是线段的中外比点,,,求的长.
(2)如图,用无刻度的直尺和圆规求作一点把线段分为中外比.(保留作图痕迹,不写作法)
(3)如图,动点在第一象限内,反比例函数的图象分别与矩形的边,相交于点,,与对角线相交于点.当是等腰直角三角形时,探究点,,是否分别为,,的中外比点,并证明.
考点9相似三角形的性质与判定综合问题
27.(2025·辽宁·中考真题)(1)如图1,在与中,与相交于点,,求证:;
(2)如图2,将图1中的绕点逆时针旋转得到,当点的对应点在线段的延长线上时,与相交于点:若,求的长;
(3)如图3,在(2)的条件下,连接并延长,与的延长线相交于点,连接,求的面积.
28.(2025·广东深圳·中考真题)综合与探究
【探索发现】如图1,小军用两个大小不同的等腰直角三角板拼接成一个四边形.
【抽象定义】以等腰三角形为边向外作等腰三角形,使该边所对的角等于原等腰三角形的顶角,此时该四边形称为“双等四边形”,原等腰三角形称为四边形的“伴随三角形”.如图2,在中,,,.此时,四边形是“双等四边形”,是“伴随三角形”.
【问题解决】如图3,在四边形中,,,.求:
①与的位置关系为:__________:
②_____.(填“>”,“”或“”)
【方法应用】①如图4,若,将绕点逆时针旋转至,点恰好落在边上,求证:四边形是双等四边形.
②如图5,在等腰三角形中,,,,在平面内找一点,使四边形是以为伴随三角形的双等四边形,若存在,请求出的长,若不存在,请说明理由.
29.(2025·重庆·中考真题)在中,,点D是边上一点(不与端点重合),连接.将线段绕点A逆时针旋转得到线段,连接.
(1)如图1,,,求的度数;
(2)如图2,,,过点作,交的延长线于,连接.点是的中点,点是的中点,连接,.用等式表示线段与的数量关系并证明:
(3)如图3,,,,连接,.点从点移动到点过程中,将绕点逆时针旋转得线段,连接,作交的延长线于点.当取最小值时,在直线上取一点,连接,将沿所在直线翻折到所在的平面内,得,连接,,,当取最大值时,请直接写出的面积.
30.(2025·河南·中考真题)在中,点是的平分线上一点,过点作,垂足为点,过点作,垂足为点,直线交于点,过点作,垂足为点.
(1)观察猜想
如图1,当为锐角时,用等式表示线段的数量关系:__________.
(2)类比探究
如图2,当为钝角时,请依据题意补全图形(无需尺规作图),并判断(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出正确结论,并证明.
(3)拓展应用
当,且时,若,请直接写出的值.
31.(2025·湖南·中考真题)【问题背景】
如图1,在平行四边形纸片中,过点作直线于点,沿直线将纸片剪开,得到和四边形,如图2所示.
【动手操作】
现将三角形纸片和四边形纸片进行如下操作(以下操作均能实现)
①将三角形纸片置于四边形纸片内部,使得点与点重合,点在线段上,延长交线段于点,如图3所示;
②连接,过点作直线交射线于点,如图4所示;
③在边上取一点,分别连接,,,如图5所示.
【问题解决】
请解决下列问题:
(1)如图3,填空:______;
(2)如图4,求证:;
(3)如图5.若,,求证:.
32.(2025·贵州·中考真题)如图,在菱形中,,点为线段上一动点,点为射线上的一点(点与点不重合).
【问题解决】
(1)如图①,若点与线段的中点重合,则 度,线段与线段的位置关系是 ;
【问题探究】
(2)如图②,在点运动过程中,点在线段上,且,探究线段与线段的数量关系,并说明理由;
【拓展延伸】
(3)在点运动过程中,将线段绕点逆时针旋转得到,射线交射线于点,若,求的长.
33.(2025·上海·中考真题)在平行四边形中,,分别为边,上两点.
(1)当是边中点时,
①如图(1),联结,如果,求证:;
②如图(2),如果,联结,交边于点,求的值;
(2)如图(3)所示,联结,,如果,,,.求的长.
34.(2025·四川成都·中考真题)如图,在中,点在边上,点关于直线的对称点落在内,射线交射线于点,交射线于点,射线交边于点.
【特例感知】
(1)如图1,当时,点在延长线上,求证:;
【问题探究】
(2)在(1)的条件下,若,,求的长;
【拓展延伸】
(3)如图2,当时,点在边上,若,求的值.(用含的代数式表示)
35.(2025·安徽·中考真题)已知点在正方形内,点E在边上,是线段的垂直平分线,连接,.
(1)如图1,若的延长线经过点D,,求的长;
(2)如图2,点F是的延长线与的交点,连接.
①求证:;
②如图3,设,相交于点G,连接,,.若,判断的形状,并说明理由.
36.(2025·江苏扬州·中考真题)问题:如图1,点为正方形内一个动点,过点作,,矩形的面积是矩形面积的2倍,探索的度数随点运动的变化情况.
【从特例开始】
(1)小玲利用正方形网格画出了一个符合条件的特殊图形(如图2),请你仅用无刻度的直尺连接一条线段,由此可得此图形中______;
(2)小亮也画出了一个符合条件的特殊图形(如图3),其中,,,求此图形中的度数;
【一般化探索】
(3)利用图1,探索上述问题中的度数随点运动的变化情况,并说明理由.
37.(2025·江西·中考真题)综合与实践
从特殊到一般是研究数学问题的一般思路,综合实践小组以特殊四边形为背景就三角形的旋转放缩问题展开探究.
特例研究
在正方形中,相交于点O.
(1)如图1,可以看成是绕点A逆时针旋转并放大k倍得到,此时旋转角的度数为________,k的值为________;
(2)如图2,将绕点A逆时针旋转,旋转角为α,并放大得到(点O,B的对应点分别为点E,F),使得点E落在上,点F落在上,求的值
类比探究
(3)如图3,在菱形中,,O是的垂直平分线与的交点,将绕点A逆时针旋转,旋转角为α,并放缩得到(点O,B的对应点分别为点E,F),使得点E落在上,点F落在上.猜想的值是否与α有关,并说明理由;
(4)若(3)中,其余条件不变,探究之间的数量关系(用含β的式子表示).
38.(2025·山西·中考真题)综合与探究
问题情境:如图,在纸片中,,点D在边上,.沿过点D的直线折叠该纸片,使的对应线段与平行,且折痕与边交于点E,得到,然后展平.
猜想证明:(1)判断四边的形状,并说明理由
拓展延伸:(2)如图,继续沿过点D的直线折叠该纸片,使点A的对应点落在射线上,且折痕与边交于点F,然后展平.连接交边于点G,连接.
①若,判断与的位置关系,并说明理由;
②若,,,当是以为腰的等腰三角形时,请直接写出的长
39.(2025·内蒙古·中考真题)如图,是一个平行四边形纸片,是一条对角线,,.

(1)如图1,将平行四边形纸片沿折叠,点的对应点落在点处,交于点.
①试猜想与的数量关系,并说明理由;
②求的面积;
(2)如图2,点,分别在平行四边形纸片的,边上,连接,且,将平行四边形纸片沿折叠,使点的对应点落在边上,求的长.
40.(2025·黑龙江齐齐哈尔·中考真题)综合与实践
在探索几何图形变化的过程中,通过直观猜想、逻辑推理、归纳总结可以获得典型的几何模型,运用几何模型能够轻松解决很多问题,让我们共同体会几何模型的“数学之美”.
(1)【几何直观】如图1,中,,,在内部取一点,连接,将线段绕点逆时针旋转得到线段,连接,,则与的数量关系是__________;与的数量关系是__________;
(2)【类比推理】如图2,在正方形内部取一点,使,将线段绕点逆时针旋转得到线段,连接,延长交的延长线于点,求证:四边形是正方形;
(3)【深度探究】如图3,矩形中,,,在其内部取一点,使,将线段绕点逆时针旋转得到线段,延长至点,使,连接,延长交的延长线于点,连接,若,则__________;
(4)【拓展延伸】在矩形中,点为边上的一点,连接,将线段绕点逆时针旋转得到线段,连接,若,,则的最小值为__________.
41.(2025·甘肃平凉·中考真题)四边形是正方形,点E是边上一动点(点D除外),是直角三角形,,点G在的延长线上.
(1)如图1,当点E与点A重合,且点F在边上时,写出和的数量关系,并说明理由;
(2)如图2,当点E与点A不重合,且点F在正方形内部时,的延长线与B的延长线交于点P,如果,写出和的数量关系,并说明理由;
(3)如图3,在(2)的条件下,连接,写出和的数量关系,并说明理由.
42.(2025·湖北·中考真题)在中,,将绕点旋转得到,点的对应点落在边上,连接.
(1)如图1,求证:;
(2)如图2,当时,求的长;
(3)如图3,过点作的平行线交的延长线于点,过点作的平行线交于点G,与交于点.
①求证:;
②当时,直接写出的值.
43.(2025·甘肃·中考真题)四边形是正方形,点E是边上一动点(点D除外),是直角三角形,,点G在的延长线上.
(1)如图1,当点E与点A重合,且点F在边上时,写出和的数量关系,并说明理由;
(2)如图2,当点E与点A不重合,且点F在正方形内部时,的延长线与的延长线交于点P,如果,写出和的数量关系,并说明理由;
(3)如图3,在(2)的条件下,连接,写出和的数量关系,并说明理由.
考点10相似三角形与圆综合问题
44.(2025·北京·中考真题)如图,过点P作的两条切线,切点分别为A,B,连接,,,取的中点C,连接并延长,交于点D,连接.
(1)求证:;
(2)延长交的延长线于点E.若,,求的长.
45.(2025·甘肃兰州·中考真题)如图,是的外接圆,是的直径,过点B的切线交的延长线于点D,连接并延长,交于点E,连接.
(1)求证:;
(2)若,,求的长.
46.(2024·黑龙江哈尔滨·中考真题)在中,弦,相交于点,,连接,.
(1)如图1,求证:;
(2)如图2,连接并延长交于点,求证:;
(3)如图3,在(2)的条件下,作于点,连接,点在上,连接,点在上,连接交于点,交于点,连接,若,,,,,求的长.
47.(2025·湖南长沙·中考真题)如图1,点O是以为直径的半圆的圆心,与均为该半圆的切线,C,D均为直径上方的动点,连接,且始终满足.
(1)求证:与该半圆相切;
(2)当半径时,令,,,,比较m与n的大小,并说明理由;
(3)在(1)的条件下,如图2,当半径时,若点E为与该半圆的切点,与交于点G,连接并延长交于点F,连接,,令,,求y关于x的函数解析式.(不考虑自变量x的取值范围)
48.(2025·云南·中考真题)如图,是五边形的外接圆,是的直径.连接,,,.
(1)若,且,求的度数;
(2)求证:直线是的切线;
(3)探究,发现与证明:已知平分,是否存在常数,使等式成立?若存在,请直接写出一个的值和一个的值,并证明你写出的的值和的值,使等式成立;若不存在,请说明理由.
考点11相似三角形与动点、函数关系式问题
49.(2025·新疆·中考真题)如图,在等腰直角三角形中,,,,点M是的中点,点D和点N分别是线段和上的动点.
(1)当点D和点N分别是和的中点时,求a的值;
(2)当时,以点C,D,N为顶点的三角形与相似,求的值;
(3)当时,求的最小值.
50.(2025·四川南充·中考真题)矩形中,,点E是线段上异于点B的一个动点,连接,把沿直线折叠,使点B落在点P处.
【初步感知】(1)如图1,当E为的中点时,延长交于点F,求证:.
【深入探究】(2)如图2,点M在线段上,.点E在移动过程中,求的最小值.
【拓展运用】(3)如图2,点N在线段上,.点E在移动过程中,点P在矩形内部,当是以为斜边的直角三角形时,求的长.

51.(2025·吉林·中考真题)如图,在中,,,.动点P从点A出发,沿边以每秒1个单位长度的速度向终点C匀速运动.当点P出发后,以为边作正方形,使点D和点B始终在边同侧.设点P的运动时间为,正方形与重叠部分图形的面积为y(平方单位).
(1)的长为_______.
(2)求y关于x的函数解析式,并写出自变量x的取值范围.
(3)当正方形的对称中心与点B重合时,直接写出x的值.
52.(2025·黑龙江绥化·中考真题)综合与实践
如图,在边长为8的正方形中,作射线,点是射线上的一个动点,连接,以为边作正方形,连接交射线于点,连接.(提示:依题意补全图形,并解答)
【用数学的眼光观察】
(1)请判断与的位置关系,并利用图(1)说明你的理由.
【用数学的思维思考】
(2)若,请你用含的代数式直接写出的正切值________.
【用数学的语言表达】
(3)设,正方形的面积为.请求出与的函数解析式.(不要求写出自变量的取值范围)
考点12相似三角形与一次函数、反比例函数
53.(2025·四川宜宾·中考真题)如图,过原点的直线与反比例函数的图象交于、两点,一次函数的图象过点A与反比例函数交于另一点,与轴交于点,其中,.
(1)求一次函数的表达式,并求的面积.
(2)连接,在直线上是否存在点,使以、、为顶点的三角形与相似,若存在,求出点坐标;若不存在,请说明理由.
54.(2025·四川眉山·中考真题)如图,一次函数与反比例函数的图象相交于、两点,与x轴交于点C,点D与点A关于点O对称,连接.
(1)求一次函数和反比例函数的解析式:
(2)点P在x轴的负半轴上,且与相似,求点P的坐标.
考点13相似三角形在二次函数压轴题中的应用
55.(2025·辽宁·中考真题)如图,在平面直角坐标系中,二次函数的图象与轴的正半轴相交于点,二次函数的图象经过点,且与二次函数的图象的另一个交点为,点的横坐标为.
(1)求点的坐标及的值.
(2)直线与二次函数的图象分别相交于点,与直线相交于点,当时,
①求证:;
②当四边形的一组对边平行时,请直接写出的值.
(3)二次函数与二次函数组成新函数,当时,函数的最小值为,最大值为,求的取值范围.
56.(2025·江苏苏州·中考真题)如图,二次函数的图像与x轴交于两点(点A在点B的左侧),与y轴交于点C,作直线为二次函数图像上两点.
(1)求直线对应函数的表达式;
(2)试判断是否存在实数m使得.若存在,求出m的值;若不存在,请说明理由.
(3)已知P是二次函数图像上一点(不与点重合),且点P的横坐标为,作.若直线与线段分别交于点,且与的面积的比为,请直接写出所有满足条件的m的值.
57.(2025·山东威海·中考真题)已知抛物线交x轴于点,点B,交y轴于点C.点C向右平移2个单位长度,得到点D,点D在抛物线上.点E为抛物线的顶点.
(1)求抛物线的表达式及顶点E的坐标;
(2)连接,点M是线段上一动点,连接,作射线.
①在射线上取一点F,使,连接.当的值最小时,求点M的坐标;
②点N是射线上一动点,且满足.作射线,在射线上取一点G,使.连接,.求的最小值;
(3)点P在抛物线的对称轴上,若,则点P的坐标为___________.
58.(2025·四川宜宾·中考真题)如图,是坐标原点,已知抛物线与轴交于、两点,与轴交于点,其中.
(1)求b、c的值;
(2)点为抛物线上第一象限内一点,连结,与直线交于点,若,求点D的坐标;
(3)若为抛物线的顶点,平移抛物线使得新顶点为,若又在原抛物线上,新抛物线与直线交于点,连结.探新抛物线与轴是否存在两个不同的交点.若存在,求出这两个交点之间的距离;若不存在,请说明理由.
59.(2025·四川自贡·中考真题)如图,在中,分别是的中点,连接,交于点.

(1)若,,,则四边形的面积为___________;
(2)若,的最大面积为.设,求与之间的函数关系式,并求的最大值;
(3)若(2)问中取任意实数,将函数的图象依次向右、向上平移1个单位长度,得到函数的图象.直线交该图象于点,(点在点左边),过点的直线交该图象于另一点,过点的直线与直线交于点.若,试问直线是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.
60.(2024·黑龙江哈尔滨·中考真题)在平面直角坐标系中,点为坐标原点,抛物线经过点,与轴正半轴交于点,点的坐标为.
(1)求、的值;
(2)如图1,点为第二象限内抛物线上一点,连接,,设点的横坐标为,的面积为,求与的函数解析式(不要求写出自变量的取值范围);
(3)如图2,在(2)的条件下,,点在上,,交于点,,点在第二象限,连接,,连接,过点作的垂线,交过点且平行的直线于点,连接交于点,过点作轴的垂线,交的延长线于点,交的延长线于点,,连接并延长交抛物线于点,,点在内,连接,,,,交的长线于点,,求直线的解析式.
21世纪教育网(www.21cnjy.com)/ 让教学更有效 精品试卷 | 数学学科
专题26相似三角形(13大考点,精选60题)
考点概览 考点1比例的性质 考点2相似图形 考点3平行线分线段成比例 考点4相似三角形的判定 考点5相似三角形的性质 考点6相似三角形的应用 考点7位似与位似图形 考点8相似三角形的新定义问题 考点9相似三角形的性质与判定综合问题 考点10相似三角形与圆综合问题 考点11相似三角形与动点、函数关系式问题 考点12相似三角形与一次函数、反比例函数 考点13相似三角形在二次函数压轴题中的应用
考点1比例的性质
1.(2025·四川南充·中考真题)已知,则的值是( )
A.2 B.3 C.4 D.6
【答案】D
【分析】本题主要考查了比例的性质,分式的化简.根据,可得,从而得到,然后代入化简即可.
【详解】解:∵,
∴,
∴,
∴.
故选:D
2.(2025·四川成都·中考真题)若,则的值为 .
【答案】4
【分析】本题主要查了比例的性质.根据比例的性质解答即可.
【详解】解:∵,
∴.
故答案为:4
考点2相似图形
3.(2025·河北·中考真题)“这么近,那么美,周末到河北”.嘉嘉周末到弘济桥游览,发现青石桥面上有三叶虫化石,他想了解其长度,在化石旁放了一支笔拍下照片(如图).回家后量出照片上笔和化石的长度分别为和,笔的实际长度为,则该化石的实际长度为( )
A. B. C. D.
【答案】C
【分析】本题考查了相似图形的性质,设该化石的实际长度为,根据题意得出,即可求解.
【详解】设该化石的实际长度为,依题意,

解得:
故选:C.
4.(2025·甘肃平凉·中考真题)“儿童散学归来早,忙趁东风放纸鸢”风筝古称纸鸢,起源于春秋战国时期,风筝制作技艺已被列入国家非物质文化遗产名录为丰富校园生活,某校开展风筝制作活动,小言和哥哥制作了一大一小两个形状相同的风筝,风筝的形状如图所示,其中对角线.已知大、小风筝的对应边之比为,如果小风筝两条对角线的长分别为和,那么大风筝两条对角线长的和为 .
【答案】195
【分析】本题考查了相似多边形的应用,证明大风筝和小风筝相似,相似比为,即可解决问题.熟练掌握相似多边形的判定与性质是解题的关键.
【详解】解:小言和哥哥制作了一大一小两个形状相同的风筝,大、小风筝的对应边之比为,
大风筝和小风筝相似,相似比为,
大风筝两条对角线长小风筝两条对角线长,
大风筝两条对角线的长分别为和,
大风筝两条对角线长的和为,
故答案为:195.
考点3平行线分线段成比例
5.(2025·吉林长春·中考真题)将直角三角形纸片()按如图方式折叠两次再展开,下列结论错误的是(  )
A. B.
C. D.
【答案】D
【分析】本题考查了折叠的性质,相似三角形的判定与性质,平行线分线段成比例定理,熟练掌握各知识点并灵活运用是解题的关键.
由折叠可得:,,则,那么,继而根据相似三角形的性质以及平行线分线段成比例定理逐一判断即可.
【详解】解:由折叠可得:,,
∴,故A正确,不符合题意;
∴,
∴,,
∴,,
∴,
∴,故B正确,不符合题意;
∵,
∴,,
∴,,
∴,故C正确,不符合题意;
∵,
∴,,,
∴,故D错误,符合题意,
故选:D.
6.(2025·河南·中考真题)如图所示的网格中,每个小正方形的边长均为,的三个顶点均在网格线的交点上,点D、E分别是边、与网格线的交点,连接,则的长为( )

A. B.1 C. D.
【答案】B
【分析】本题考查了平行线分线段成比例定理,三角形中位线定理,证明出是的中位线是解题关键.取格点、,由网格的性质可知,,得到,,进而证明是的中位线,即可求解.
【详解】解:如图,取格点、,

由网格的性质可知,,
,,
、分别是、的中点,
是的中位线,

故选:B.
7.(2025·四川宜宾·中考真题)如图,是坐标原点,反比例函数与直线交于点,点在的图象上,直线与轴交于点.连结.若,则的长为(  )
A. B. C. D.
【答案】D
【分析】如图所示,过点A作轴交于点D,过点B作轴交于点E,首先联立得到,求出,然后由得到,求出,然后代入求出,然后利用勾股定理求解即可.
【详解】如图所示,过点A作轴交于点D,过点B作轴交于点E,
∵反比例函数与直线交于点,
∴联立得,,
解得或,
∴,
∵,,
∴,
∴,
∵,
∴,即,
∴,
∴将代入,
∴,
∴.
故选:D.
【点睛】此题考查了反比例函数和一次函数交点问题,勾股定理,平行线分线段成比例等知识,解题的关键是掌握以上知识点.
考点4相似三角形的判定
8.(2025·河北·中考真题)如图,在五边形中,,延长,,分别交直线于点,.若添加下列一个条件后,仍无法判定,则这个条件是( )
A. B. C. D.
【答案】D
【分析】本题主要考查了相似三角形的判定,平行线的性质与判定,当时,可证明,由平行线的性质得到,,则可证明,据此可判断A、B;由平行线的性质可得,则,同理可判断C;D中条件结合已给条件不能证明.
【详解】解:A、∵,
∴,
∴,
∵,
∴,
∴,故A不符合题意;
B、∵,
∴,
∵,
∴,
∴,故B不符合题意;
C、∵,
∴,
∵,
∴,
∴,
∴,
∵,
∴,
∴,故C不符合题意;
D、根据结合已知条件不能证明,故D符合题意;
故选:D.
考点5相似三角形的性质
9.(2025·黑龙江绥化·中考真题)两个相似三角形的最长边分别是和,并且它们的周长之和为,那么较小三角形的周长是( )
A. B. C. D.
【答案】B
【分析】本题考查相似三角形的性质,根据最长边分别为和确定相似比,相似三角形的周长比等于相似比,再根据周长之和为即可求解.
【详解】解:两个相似三角形的最长边分别为和,
相似比为,
较大三角形与较小三角形的周长比为:,
它们的周长之和为,
较小三角形的周长为:,
故选:B.
10.(2025·贵州·中考真题)如图,已知,若,则的长为( )
A.1 B.2 C.4 D.8
【答案】C
【分析】本题考查相似三角形的性质,根据相似三角形的性质,进行求解即可.
【详解】解:∵,
∴,
∵,
∴;
故选C.
11.(2025·四川眉山·中考真题)如图,在平面直角坐标系中,用12个以点O为公共顶点的相似三角形组成形如海螺的图案,若,,则点G的坐标为
【答案】
【分析】本题考查了相似三角形的性质、解直角三角形和点的坐标规律探求;先求得,然后解直角三角形分别求出,,,得到规律,再根据规律计算即可.
【详解】解:∵图案是用12个以点O为公共顶点的相似三角形组成形如海螺的图案,
∴,
∵,,
∴,
∵,
∴,
同理:,
依次类推:;
则点G的坐标为;
故答案为:.
考点6相似三角形的应用
12.(2025·四川内江·中考真题)阿基米德曾说过:“给我一个支点,我能撬动整个地球.”这句话生动体现了杠杆原理:通过调整支点位置和力臂长度,用较小的力就能撬动重物.这一原理在生活中随处可见.如图甲,这是用杠杆撬石头的示意图,当用力压杠杆时,另一端就会撬动石头.如图乙所示,动力臂,阻力臂,,则的长度是( )
A. B. C. D.
【答案】B
【分析】本题考查相似三角形的应用,根据题意构造出相似三角形,然后根据相似三角形的对应边成比例求得的长度.解题的关键是正确判定相似三角形并运用相似三角形的性质列出比例式.
【详解】解:,,



∵动力臂,阻力臂,


的长为.
故选:B.
13.(2025·江苏连云港·中考真题)如图,港口位于岛的北偏西方向,灯塔在岛的正东方向,,一艘海轮在岛的正北方向,且、、三点在一条直线上,.
(1)求岛与港口之间的距离;
(2)求.
(参考数据:,,)
【答案】(1)
(2)
【分析】本题考查解直角三角形的应用,相似三角形的判定与性质,比例的性质,能根据作辅助线构造相似三角形是解题的关键.
(1)过点作,垂足为,证明,得出,结合,,求出,再在中利用三角函数即可求解;
(2)在中,利用三角函数求出,利用,得出,则可求出,再在中利用三角函数即可求解.
【详解】(1)解:如图,过点作,垂足为,
∵,
∴,
∴,
∴,
∵,,
∴,
得:,
在中,由,
得.
答:岛与港口之间的距离为;
(2)解:在中,,
∵,
∴,
∴,
在中,.
14.(2025·吉林·中考真题)综合与实践:确定建筑物的打印模型的高度项目提出:图是某城市规划展览馆.树人中学的打印社团为展示城市文化,准备制作该城市规划展览馆的打印模型,需要测量并计算展览馆高度,为制作打印模型提供数据.
项目报告表 时间:2025年5月29日
项目分析 活动目标 测量该城市规划展览馆的实际高度并换算其打印模型的高度
测量工具 测角仪、皮尺
项目实施 任务一测量数据 以下是测得的相关数据,并画出了如图所示的测量草图. 1.测出测角仪的高. 2.利用测角仪测出展览馆顶端A的仰角. 3.测出测角仪底端D处到展览馆底端B处之间的距离.
任务二计算实际高度 根据上述测得的数据,计算该城市规划展览馆的高度.(结果精确到1m)(参考数据:,,)
任务三换算模型高度 将该城市规划展览馆的高度按等比例缩小,得到其打印模型的高度约为________.(结果精确到)
项目结果 为社团制作城市规划展览馆的打印模型提供数据
请结合上表中的测量草图和相关数据,帮助该社团完成任务二和任务三.
【答案】该城市规划展览馆的高度为;打印模型的高度约为
【分析】本题考查了解直角三角形的实际应用,比例的基本性质,正确理解题意是解题的关键.
任务二:先由矩形得到,,然后解即可;
任务三:由比例尺等于图上距离比上实际距离求解即可.
【详解】解:任务二:由题意得为矩形,
∴,,
∵在中,
∴,
∴,
答:该城市规划展览馆的高度为;
任务三:设打印模型的高度约为,
则由题意得:,
解得:,
答:打印模型的高度约为.
15.(2025·河南·中考真题)焦裕禄纪念园是全国重点革命烈士纪念建筑物保护单位,革命烈士纪念碑位于纪念园南部的中心.某综合与实践小组开展测量纪念碑高度的活动,记录如下.
活动主题 测量纪念碑的高度
实物图和测量示意图
测量说明 如图,纪念碑位于有台阶的平台上,太阳光下,其顶端的影子落在点处,同一时刻,竖直放置的标杆顶端的影子落在点处,位于点处的观测者眼睛所在位置为点,点在一条直线上,纪念碑底部点在观测者的水平视线上.
测量数据
备注 点在同一水平线上.
根据以上信息,解决下列问题.
(1)由标杆的影子的长和标杆的长相等,可得,请说明理由.
(2)求纪念碑的高度.
(3)小红通过间接测量得到的长,进而求出纪念碑的高度约为.查阅资料得知,纪念碑的实际高度为.请判断小红的结果和(2)中的结果哪个误差较大?并分析误差较大的可能原因(写出一条即可).
【答案】(1)见解析;
(2)纪念碑的高度为.
(3)小红的结果误差较大,理由见解析
【分析】本题考查了平行投影,矩形的判定和性质,相似三角形的判定和性质,掌握相似三角形的判定和性质是解题关键.
(1)根据平行投影的性质可得,即可证明结论;
(2)令与的交点为,则四边形和是矩形,设,证明,得到,求出的值即可;
(3)比较纪念碑的实际高度与小红和(2)中的结果,得到误差较大的一方,再分析可能的原因即可.
【详解】(1)解:太阳光下,其顶端的影子落在点处,同一时刻,竖直放置的标杆顶端的影子落在点处,

标杆的影子的长和标杆的长相等,即,

(2)解:如图,令与的交点为,
则四边形和是矩形,
,,,

设,则,






解得:,
答:纪念碑的高度为.
(3)解:纪念碑的实际高度为,小红求出纪念碑的高度约为,(2)中纪念碑的高度为,
则小红的结果误差较大,
理由是:纪念碑位于有台阶的平台上,点的位置无法正确定位,使得的长存在误差,影响计算结果.
16.(2025·江苏连云港·中考真题)一块直角三角形木板,它的一条直角边长,面积为.
(1)甲、乙两人分别按图1、图2用它设计一个正方形桌面,请说明哪个正方形面积较大;
(2)丙、丁两人分别按图3、图4用它设计一个长方形桌面.请分别求出图3、图4中长方形的面积与的长之间的函数表达式,并分别求出面积的最大值.
【答案】(1)图1的正方形面积较大
(2)在图3中,,当时,长方形的面积有最大值为;在图4中,,当时,长方形的面积有最大值为
【分析】本题考查了相似三角形的判定与性质,勾股定理,正方形的性质,二次函数的应用,正确掌握相关性质内容是解题的关键.
(1)先运用勾股定理算出,再运用正方形的性质分别证明,,,然后代入数值化简得,进行计算得,然后进行比较,即可作答.
(2)与(1)同理证明,则长方形的面积,结合二次函数的图象性质得当时,长方形的面积有最大值为.,然后证明,,再把数值代入长方形的面积,化简得,结合二次函数的图象性质进行作答即可.
【详解】(1)解:∵,面积为,
∴,
∴.
设正方形的边长为,
∵四边形是正方形
∴,,


得,
即,
解得.
∵四边形是正方形
∴,

∴,
得,
即,
∴.


∴,
得,
即,
解得.
∵,
∴图1的正方形面积较大.
(2)解:∵四边形是长方形
∴,,

∴;
得,
则,,
∴长方形的面积,

∴开口向下,
当时,长方形的面积有最大值为.
在图4中,同理得,
得,
∴,,
同理得,
得,
则,
∴长方形的面积,

∴开口向下,
∴当时,长方形的面积有最大值为.
考点7位似与位似图形
17.(2025·甘肃兰州·中考真题)如图,在平面直角坐标系中,与位似,位似中心是原点O,已知,则的对应点的坐标是( )
A. B. C. D.
【答案】B
【分析】本题考查的是位似变换的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为,那么位似图形对应点的坐标的比等于或.根据位似变换的性质解答即可.
【详解】解:∵与位似,位似中心是原点O,
∴位似比为,
∵,
∴,即,
故选:B.
18.(2025·浙江·中考真题)如图,五边形是以坐标原点O为位似中心的位似图形,已知点的坐标分别为.若的长为3,则的长为( )
A. B.4 C. D.5
【答案】C
【分析】本题考查了位似图形的性质,相似三角形的判定与性质,熟练掌握位似图形的性质,相似三角形的判定与性质是解题的关键.
根据位似图形的性质得到,证明,即可求解.
【详解】解:∵五边形是以坐标原点O为位似中心的位似图形,点的坐标分别为
∴,
∵,
∴,
∴,
∵,
∴,
故选:C.
19.(2025·内蒙古·中考真题)如图,在平面直角坐标系中,的顶点坐标分别是,,,以原点为位似中心,在第三象限画与位似,若与的相似比为,则点的对应点的坐标为( )
A. B. C. D.
【答案】B
【分析】本题主要考查了位似变换,正确掌握位似图形的性质得出对应点的位置是解题的关键.利用相似比为,,直接利用相似比可得出坐标.
【详解】解:∵与位似,相似比为,
∴,
∵,位似中心为原点,
∴,
故选:B.
20.(2025·四川眉山·中考真题)如图,在的方形网格中,每个小正方形的边长均为1,将以点O为位似中心放大后得到,则与的周长之比是( )
A. B. C. D.
【答案】B
【分析】本题考查了位似图形的性质,正确得到以点O为位似中心放大2倍后得到是解题的关键;
根据题意可得以点O为位似中心放大2倍后得到,再根据位似图形的性质求解即可.
【详解】解:根据题意可得:以点O为位似中心放大2倍后得到,
∵,
∴与的周长之比是;
故选:B.
21.(2025·山东烟台·中考真题)如图,在平面直角坐标系中,点的坐标为,的顶点的坐标为.以点为位似中心作与位似,相似比为2,且与位于点同侧;以点为位似中心作与位似,相似比为2,且与位于点同侧……按照以上规律作图,点的坐标为 .
【答案】/
【分析】本题考查了位似的性质,根据位似比等于变换后与变换前的图形的对应线段的比,根据两点距离得出进而得出,求得直线的解析式,根据,即可求解.
【详解】解:依题意,,
∴,
设直线的解析式为,代入,

解得:



解得:(舍去)

故答案为:.
22.(2025·广东·中考真题)如图,把放大后得到,则与的相似比是 .
【答案】/
【分析】本题考查求两个位似图形的相似比,根据题意,把放大后得到,则与位似,从而得到与的相似比等于对应点到位似中心线段的比,即,从而得到答案,掌握相似三角形的相似比与位似图形之间线段的比例关系是解决问题的关键.
【详解】解:把放大后得到,则与位似,
与的相似比为,
故答案为:.
23.(2025·黑龙江绥化·中考真题)在平面直角坐标系中,把以原点为位似中心放大,得到.若点和它的对应点的坐标分别为,,则与的相似比为 .
【答案】/
【分析】本题考查的是位似变换,熟知在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或是解答此题的关键.
根据坐标与图形的性质进行解答即可.
【详解】解:把以原点为位似中心缩小得到,点和它的对应点的坐标分别为,,
则与的相似比为,
故答案为:.
24.(2025·安徽·中考真题)如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系,的顶点和均为格点(网格线的交点).已知点A和的坐标分别为和.
(1)在所给的网格图中描出边的中点D,并写出点D的坐标;
(2)以点O为位似中心,将放大得到,使得点A的对应点为,请在所给的网格图中画出.
【答案】(1)图见解析;
(2)图见解析
【分析】本题主要考查了中点坐标公式,坐标系中画位似图形,熟知中点坐标公式,位似图形的性质是解题的关键.
(1)根据两点中点坐标公式可确定点D的坐标,进而描出点D即可;
(2)根据点A和点的坐标可知,把B、C的横纵坐标都乘以即可得到的坐标,描出,并顺次连接即可.
【详解】(1)解:如图所示,点D即为边的中点,
∵,
∴点D的坐标为.
(2)解:如图所示,即为所求作的三角形.
考点8相似三角形的新定义问题
25.(2025·甘肃兰州·中考真题)如图,黄金矩形中,以宽为边在其内部作正方形,得到四边形是黄金矩形,依此作法,四边形,四边形也是黄金矩形.依次以点E,G,L为圆心作,,,曲线叫做“黄金螺线”.若,则“黄金螺线”的长为 .(结果用表示)
【答案】
【分析】本题主要考查了黄金矩形的定义,及弧长公式.先根据黄金矩形中,且,求出,进而求出,,再根据弧长公式即可求出“黄金螺线”的长.根据黄金矩形的定义求出的长,以及熟练掌握弧长的公式是解题的关键.
【详解】解: ∵黄金矩形中,且,
∴,
∵四边形是正方形,


∵四边形是正方形,



∵四边形是正方形,

∴“黄金螺线”的长为,

故答案为:.
26.(2025·广东·中考真题)定义:把某线段一分为二的点,当整体线段比大线段等于大线段比小线段时,则称此线段被分为中外比,这个点称为中外比点.
(1)如图,点是线段的中外比点,,,求的长.
(2)如图,用无刻度的直尺和圆规求作一点把线段分为中外比.(保留作图痕迹,不写作法)
(3)如图,动点在第一象限内,反比例函数的图象分别与矩形的边,相交于点,,与对角线相交于点.当是等腰直角三角形时,探究点,,是否分别为,,的中外比点,并证明.
【答案】(1)
(2)见解析
(3)当是等腰直角三角形时,点,,分别为,,的中外比点,证明过程见解析
【分析】(1)设,根据题意,得,解分式方程,即可求解;
(2)①作线段的垂直平分线,交于点;②过点作,且;③连接;④以点为圆心,为半径,画弧,交于点;⑤以点为圆心,为半径,画弧,交于点,点即为线段的中外比点.
设,根据勾股定理求得,继而求得,,分别代入、,即可求证点为线段的中外比点;
(3)当是等腰三角形时,点、、分别为,,的中外比点,分三种情况讨论:①当时,证得,设点,则,根据点、在反比例函数的图象上,可构建方程,解得,分别求得、、、、、的值,即可求证.设直线的函数解析式为,利用待定系数法求得直线的函数解析式为,联立方程组,求得点的坐标,即可求证;②当,同理可证点,,分别为,,的中外比点;③当,则点、分别位于轴、轴上,与反比例函数不符.
【详解】(1)解:设,则,
根据题意,得:,即,
整理,得:,解得:,,

舍去,

(2)解:如图所示,点为所求.
设,
根据题意,得:,,

,,
,,

点为线段的中外比点.
(3)解:当是等腰三角形时,点、、分别为,,的中外比点,理由如下:
第一种情况:当,则,

四边形是矩形,




设点,
,,则,
点、在反比例函数的图象上,
得:,
由①得:,将其代入②,得:,
整理,得:,
解得:,
,(舍去),
,,,
,,,
,,,
,,
,,
,,
点、为、的中外比点.
点在反比例函数的图象上,,

反比例函数为,

设直线的函数解析式为,
将点,代入,得:,
直线的函数解析式为,
联立方程组,解得:,


点为的中外比点.
第二种情况:当,则,

四边形是矩形,




设点,
,,则,
点、在反比例函数的图象上,
得:,
由①得:,将其代入②,得:,
整理,得:,
解得:,
,(舍去),
,,,
,,,
,,,
,,
点、为、的中外比点.
点在反比例函数的图象上,,

反比例函数为,

设直线的函数解析式为,
将点,代入,得:,
直线的函数解析式为,
联立方程组,解得:,


点为的中外比点.
第三种情况:当,则点、分别位于轴、轴上,与反比例函数不符,因此这种情况不存在.
综上所述,当是等腰直角三角形时,点,,分别为,,的中外比点.
【点睛】本题主要考查了解一元二次方程,中外比点即黄金分割点的尺规作图,矩形的性质,全等三角形的判定与性质,反比例函数的图象与性质,二次根式的混合运算,用待定系数法求一次函数和反比例函数的解析式,一次函数与反比例函数的交点坐标,两点坐标的距离公式,熟练掌握相关知识点是解题关键.
考点9相似三角形的性质与判定综合问题
27.(2025·辽宁·中考真题)(1)如图1,在与中,与相交于点,,求证:;
(2)如图2,将图1中的绕点逆时针旋转得到,当点的对应点在线段的延长线上时,与相交于点:若,求的长;
(3)如图3,在(2)的条件下,连接并延长,与的延长线相交于点,连接,求的面积.
【答案】(1)见解析;(2);(3).
【分析】(1)利用等边对等角求得,再利用证明即可;
(2)由题意得,得到,,,作于点,利用直角三角形的性质结合勾股定理求得,,证明,推出,利用相似三角形的性质列式计算即可求解;
(3)设,由旋转的性质得,则,利用三角形内角和定理以及平角的性质求得,,推出,求得,作于点,求得,再求得,据此求解即可.
【详解】解:(1)∵,
∴,即,
∵,,
∴;
(2)∵,即,
∴,,,
作于点,
∵,
∴,
∴,,
∴,
∴,
∴,
∵,
∴,
∴,
∴,即,
∴,
∴;
(3)设,
由旋转的性质得,则,
∵,,,
∴,,
∴,
∵,
∴,
∴,
作于点,
∵,
∴,
∵,
∴,
∴,
∴,
∵,,即,
∴.
28.(2025·广东深圳·中考真题)综合与探究
【探索发现】如图1,小军用两个大小不同的等腰直角三角板拼接成一个四边形.
【抽象定义】以等腰三角形为边向外作等腰三角形,使该边所对的角等于原等腰三角形的顶角,此时该四边形称为“双等四边形”,原等腰三角形称为四边形的“伴随三角形”.如图2,在中,,,.此时,四边形是“双等四边形”,是“伴随三角形”.
【问题解决】如图3,在四边形中,,,.求:
①与的位置关系为:__________:
②_____.(填“>”,“”或“”)
【方法应用】①如图4,若,将绕点逆时针旋转至,点恰好落在边上,求证:四边形是双等四边形.
②如图5,在等腰三角形中,,,,在平面内找一点,使四边形是以为伴随三角形的双等四边形,若存在,请求出的长,若不存在,请说明理由.
【答案】问题解决:①互相平行;②=;【方法应用】①见解析;②或或
【分析】本题主要考查等腰三角形的性质,旋转的性质以及相似三角形的判定与性质,熟练掌握相关知识是解答本题的关键.
问题解决:①根据等腰三角形的性质得出,从而可得;
②证明得出,即,由可得结论;
方法应用:①根据双等四边形的定义进行证明;②分,或,或,三种情况讨论求解即可.
【详解】解:[问题解决]①∵,
∴,
∴,
∴;
②∵,,
∴,




故答案为:①平行;②=;
方法应用:①为旋转得到,

令,则,,

由旋转得,,
又,
∴,



四边形为双等四边形;
②作于点,
,,
,,
设,则: ,
在中,,即,
解得:,
,,
若,时,,
若,时,

作于点,
∴,


若,时,如图,





综上所述:满足条件时,或或.
29.(2025·重庆·中考真题)在中,,点D是边上一点(不与端点重合),连接.将线段绕点A逆时针旋转得到线段,连接.
(1)如图1,,,求的度数;
(2)如图2,,,过点作,交的延长线于,连接.点是的中点,点是的中点,连接,.用等式表示线段与的数量关系并证明:
(3)如图3,,,,连接,.点从点移动到点过程中,将绕点逆时针旋转得线段,连接,作交的延长线于点.当取最小值时,在直线上取一点,连接,将沿所在直线翻折到所在的平面内,得,连接,,,当取最大值时,请直接写出的面积.
【答案】(1)
(2),理由见解析.
(3)
【分析】(1)利用,,得出是等边三角形,得出.由旋转得,则可求出,再利用外角即可求解;
(2)连接,,利用,,得,证明,得,,得出,再证明,得出,可得,,再通过点是的中点,和点是的中点,证明,,通过证明是等腰直角三角形,即可得出;
(3)取中点,中点,连接,,,通过证明,得出,由点为固定点,,得点在过点且垂直于的直线上运动,由点到直线的最短距离可得,当取最小值时,即垂直于点运动轨迹的直线,即点和点重合时,最小, 此时,由翻折可知,则点的轨迹为以点为圆心,为半径的圆,由点到圆上一点的最大距离可知当、、依次共线时,取最大值,此时,连接,过点作于点,过点作于点,证明,得出,,通过证明,得出,,再计算出,,即可求出,则,通过,求出, 可求出,则利用即可求出.
【详解】(1)解:∵,,
∴是等边三角形,
∴.
由旋转得,
∴,
∴;
(2)解:,理由如下:
如图,连接,,
∵,,
∴,
由旋转知,,
∴,
即,
∴,
∴,
∴,,
∴,
∵,
∴,
∵,
∴,
∴,
∴,
∴,,
∵点是的中点,,
∴,
∴,
∴,
∴,
即,
∵点是的中点,,
∴,
∴,
∴是等腰直角三角形,
∴,
即;
(3)解:取中点,中点,连接,,,
∵,,
∴,,,
∴,
∵是中点,
∴,
∴,
由旋转知,,
∴是等边三角形,,
∴,
∴,
∴,
由点为固定点,,得点在过点且垂直于的直线上运动,
由点到直线的最短距离可得,当取最小值时,即垂直于点运动轨迹的直线,
即点和点重合时,最小,
此时如图,
由翻折可知,
∴点的轨迹为以点为圆心,为半径的圆,
由点到圆上一点的最大距离可知当、、依次共线时,取最大值,
此时如图,连接,过点作于点,过点作于点,
由旋转知,,
∴是等边三角形,
∴,,
∵是等边三角形,
∴,,
∴,
∴,
∴,
∴,,
∵,,,
∴,,
∴,
∴,,
∴,
∵为中点,
∴,
∴,
∴,
∴,
∴,,
∵,
∴,
∴,,
∴,
∴,
∵,,
∴,
又∵,
∴,
∴,
即,
解得:,
∴,
∵,,
∴.
【点睛】本题考查全等三角形的判定与性质,相似三角形的判定与性质,等腰三角形的判定与性质,等边三角形的判定与性质,直角三角形斜边中线的性质,勾股定理,含角的直角三角形的性质,三角形内角和定理和外角性质,熟练掌握这些性质与判定是解题的关键.
30.(2025·河南·中考真题)在中,点是的平分线上一点,过点作,垂足为点,过点作,垂足为点,直线交于点,过点作,垂足为点.
(1)观察猜想
如图1,当为锐角时,用等式表示线段的数量关系:__________.
(2)类比探究
如图2,当为钝角时,请依据题意补全图形(无需尺规作图),并判断(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出正确结论,并证明.
(3)拓展应用
当,且时,若,请直接写出的值.
【答案】(1)
(2)图见解析;不成立,,证明见解析
(3) 或.
【分析】本题主要考查了角平分线的性质定理、全等三角形的判定与性质、相似三角形的判定与性质、矩形的判定与性质等知识点,灵活运用相关知识成为解题的关键.
(1)如图,过点C作于点P,由角平分线的性质定理可得,再证明可得,然后说明四边形是矩形可得,最后根据线段的和差以及等量代换即可解答;
(2)如图,过点C作于点Q,由角平分线的性质定理可得,再证明可得,然后说明四边形是矩形可得,最后根据线段的和差以及等量代换即可解答;
(3)分和分别利用(1)(2)的相关结论以及相似三角形的判定与性质、勾股定理解答即可.
【详解】(1)解:如图,过点C作于点P,
∵平分,,,
∴,
在和中,
∵,,
∴,
∴,
∵,,,
∴,
∴四边形是矩形,
∴,
∴.
故答案为:.
(2)解:不成立,,证明如下:
如图,过点C作于点Q,
∵平分,,,
∴,
在和中,
∵,,
∴,
∴,
∵,,,
∴,
∴四边形是矩形,
∴,
∴.
(3)解:①如图:当时,
∵,
∴,
∴,
∴,即,
∴,
∴,
∵,
∴,
∴,
∴;
②如图:当时,
∵,
∴,
∴,
∴,即,
∴,
∴,
∵,
∴,
∴,
∴.
综上,的值为 或.
31.(2025·湖南·中考真题)【问题背景】
如图1,在平行四边形纸片中,过点作直线于点,沿直线将纸片剪开,得到和四边形,如图2所示.
【动手操作】
现将三角形纸片和四边形纸片进行如下操作(以下操作均能实现)
①将三角形纸片置于四边形纸片内部,使得点与点重合,点在线段上,延长交线段于点,如图3所示;
②连接,过点作直线交射线于点,如图4所示;
③在边上取一点,分别连接,,,如图5所示.
【问题解决】
请解决下列问题:
(1)如图3,填空:______;
(2)如图4,求证:;
(3)如图5.若,,求证:.
【答案】(1)
(2)证明过程见详解
(3)证明过程见详解
【分析】(1)根据平行四边形的性质得到,根据题意得到,,,由此即可求解;
(2)根据题意得到,,是等腰直角三角形,则,,,再证明,则,且,由此即可求解;
(3)根据题意,设,则,在中,,,,如图所示,过点作于点,过点作于点,可得,,,,,,可证,得到,即可求解.
【详解】(1)解:∵四边形是平行四边形,
∴,
∵直线,
∴,
∴,
∵将三角形纸片置于四边形纸片内部,使得点与点重合,点在线段上,延长交线段于点,
∴,
∴,
故答案为:;
(2)证明:根据题意,,
∴,
∵将三角形纸片置于四边形纸片内部,使得点与点重合,点在线段上,延长交线段于点,
∴,
∴,
∴是等腰直角三角形,
∴,
∴,
∵直线,即,
∴,
∴,
∴,
∵,点在线段上,
∴,
∵,
∴,
∴,且,
∴;
(3)解:∵,
∴,
∵,
∴设,则,
在中,,,
∴,
如图所示,过点作于点,过点作于点,
∴,,即,
解得,,
∵,
∴,
∴,即,
解得,,
∵,
∴,即,
解得,,,
∵,
∴,
∴,
∴,
∴,即,且,
∴,
∴,
∴.
【点睛】本题主要考查平行四边形的性质,全等三角形的判定和性质,等腰三角形的判定和性质,等边三角形的判定和性质,含角的直角三角形的性质,勾股定理,解直角三角形的计算,相似三角形的判定和性质,掌握平行四边形的性质,解直角三角形的计算,相似三角形的判定和性质,数形结合分析是关键.
32.(2025·贵州·中考真题)如图,在菱形中,,点为线段上一动点,点为射线上的一点(点与点不重合).
【问题解决】
(1)如图①,若点与线段的中点重合,则 度,线段与线段的位置关系是 ;
【问题探究】
(2)如图②,在点运动过程中,点在线段上,且,探究线段与线段的数量关系,并说明理由;
【拓展延伸】
(3)在点运动过程中,将线段绕点逆时针旋转得到,射线交射线于点,若,求的长.
【答案】(1),;(2),理由见解析;(3)的长为或.
【分析】(1)根据菱形的性质证明为等边三角形,再结合等边三角形的性质可得答案;
(2)如图,把绕顺时针旋转得到,证明为等边三角形,可得,,求解,,,可得,进一步可得结论;
(3)如图,当在线段上,记与交于点,证明,可得,设,则,可得,证明,再进一步解答即可;如图,当在线段上时,延长交于,同理可得: ,设,而,则,可得,证明,再进一步可得答案.
【详解】解:(1)∵在菱形中,
∴,
∵,
∴为等边三角形,
∵点与线段的中点重合,
∴,;
(2)如图,把绕顺时针旋转得到,
∴,,,
∴为等边三角形,
∴,,
∵点在线段上,且,
∴,,
∴,,
∴,
∴,
∴;
(3)如图,当在线段上,记与交于点,
∵,
∴,
∵,
∴,
∴,
∴,
设,则,
∴,
∴,
∴,
∵,
∴,
∴,
∴,
∵为等边三角形,
∴,
∴,
如图,当在线段上时,延长交于,
同理可得:,,
∴,
设,而,则,
∴,
∴,
同理:,
∴,
∴,
综上:的长为或.
【点睛】本题考查的是等边三角形的判定与性质,菱形的性质,旋转的性质,相似三角形的判定与性质,含30角的直角三角形的性质,本题的难度大,作出合适的辅助线是解本题的关键.
33.(2025·上海·中考真题)在平行四边形中,,分别为边,上两点.
(1)当是边中点时,
①如图(1),联结,如果,求证:;
②如图(2),如果,联结,交边于点,求的值;
(2)如图(3)所示,联结,,如果,,,.求的长.
【答案】(1)①见解析;②
(2)
【分析】(1)①延长交于H,可证明,得到,则可证明,得到,则;
②如图所示,延长交于M,由平行四边形的性质得到,,证明,,得到,,则;设,则,,进而可得,即可得到;可证明,,设,则,则,据此可得答案;
(2)延长交于M,由平行四边形的性质可得,,证明,,再证明,得到,求出,设,则由相似三角形的性质可得,,进而可得;再由,得到,则,解方程即可得到答案.
【详解】(1)解:①如图所示,延长交于H,
∵四边形是平行四边形,
∴,
∴,
∵是边中点,
∴,
∴,
∴,
∵,
∴,
∴,
∴;
②如图所示,延长交于M,
∵四边形是平行四边形,
∴,,
∴,,
∴,,
∴,
∵是边中点,
∴,
设,则,
∴,
∴,
∵,
∴;
∴,,
设,则,
∴,
∴;
(2)解;如图所示,延长交于M,
∵四边形是平行四边形,
∴,,
∴,
∵,
∴,
又∵,
∴;
∵,,
∴,
∴,
∵,
∴,
∴,
∵,
∴,
设,
∵,
∴,即
∴,
∵,即,
∴,
∴;
∵,
∴,即,
∴,解得或(舍去),
∴.
【点睛】本题主要考查了平行四边形的性质,全等三角形的性质与判定,相似三角形的性质与判定,等腰三角形的性质与判定,正确作出辅助线构造全等三角形和相似三角形是解题的关键.
34.(2025·四川成都·中考真题)如图,在中,点在边上,点关于直线的对称点落在内,射线交射线于点,交射线于点,射线交边于点.
【特例感知】
(1)如图1,当时,点在延长线上,求证:;
【问题探究】
(2)在(1)的条件下,若,,求的长;
【拓展延伸】
(3)如图2,当时,点在边上,若,求的值.(用含的代数式表示)
【答案】(1)见解析;(2)4;(3)
【分析】(1)由折叠的性质得:,再结合平行四边形的性质可得,然后根据三角形内角和定理可得,即可求证;
(2)根据全等三角形的性质可得,从而得到,可证明,从而得到,再由折叠的性质得:,再根据,可得,即可求解;
(3)延长交于点,设,,证明得出,证明得出,证明得出,进而求得,根据得出,根据相似三角形的性质,即可求解.
【详解】解:(1)由折叠的性质得:,
∵四边形是平行四边形,
∴,
∴,
∴,
∵,
∴,
∵,
∴,
∵,
∴,
又∵,
∴;
(2)∵,
∴,
∵,
∴,
∵,,
∴,
∴,
由折叠的性质得:,
∵四边形是平行四边形,
∴,,
∴,
∴,
∴,解得:,
∴,
∴;
(3)解:如图,延长交于点,
设,
∵,
∴,,
∴,
∵折叠,

∵,即

∴即

∵四边形是平行四边形,

又∵折叠,









又∵

∴即





解得:

又∵

∴.
【点睛】本题考查了平行四边形的性质,全等三角形的性质与判定,相似三角形的性质与判定,折叠的性质,熟练掌握以上知识是解题的关键.
35.(2025·安徽·中考真题)已知点在正方形内,点E在边上,是线段的垂直平分线,连接,.
(1)如图1,若的延长线经过点D,,求的长;
(2)如图2,点F是的延长线与的交点,连接.
①求证:;
②如图3,设,相交于点G,连接,,.若,判断的形状,并说明理由.
【答案】(1)
(2)详见解析; 为等腰直角三角形,理由见解析
【分析】(1)根据线段的垂直平分线的性质得出,,证明,得出,结合正方形的性质可判断是等腰直角三角形,求出,然后根据勾股定理求出,即可求解;
(2)①由正方形的性质和线段的垂直平分线的性质得出,根据等边对等角以及三角形内角和定理可求出,即可求解;
②(方法一)作交于点M,交于点N.根据三线合一的性质得出M为的中点.可证,根据平行线分线段成比例判断出N是的中点,根据三角形中位线定理得出.根据证明,得出,则E为的中点.结合,根据三角形中位线定理和平行线的性质得出.同理可证,得出,即可得出结论;
(方法二)设,则.根据等边对等角得出,根据三角形内角和定理求出,由(1)中,得出,则.根据等边对等角得出.根据三角形内角和定理求出,由角的和差关系求出,,根据证明,得出,.结合①中求出,则,即可得出结论.
【详解】(1)解:∵四边形是正方形,的延长线经过点D,
∴,,,
由垂直平分线的性质知,,,
又,
∴,
∴.
又,
∴是等腰直角三角形,
∴,
∴,
∴.
(2)解:①证明:由题意知,,
∴,.


∴.
②解:是等腰直角三角形.
理由如下:
(方法一)作交于点M,交于点N.
∵,
∴M为的中点.
又,
∴,
∴,
∴N是的中点,
∴是的中位线,.
∵,,且,
∴,
∴,
即E为的中点.
又,
∴,
∴.
同理可证,
∴.
∴是等腰直角三角形.
(方法二)设,则.
∵,
∴,
∴,
又∵,
∴,
∴.
∵,
∴.
∴,
∴.
∴.
∴,
又,,
∴.
∴,.
由①知,
∴.
又,
∴为等腰直角三角形.
【点睛】本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的判定与性质,平行线分线段成比例,勾股定理,三角形的中位线定理等知识,掌握相关性质定理进行推理论证是解题的关键.
36.(2025·江苏扬州·中考真题)问题:如图1,点为正方形内一个动点,过点作,,矩形的面积是矩形面积的2倍,探索的度数随点运动的变化情况.
【从特例开始】
(1)小玲利用正方形网格画出了一个符合条件的特殊图形(如图2),请你仅用无刻度的直尺连接一条线段,由此可得此图形中______;
(2)小亮也画出了一个符合条件的特殊图形(如图3),其中,,,求此图形中的度数;
【一般化探索】
(3)利用图1,探索上述问题中的度数随点运动的变化情况,并说明理由.
【答案】(1)作图见解析,45;(2);(3)随点的运动,的度数不变,且为
【分析】(1)连接与格线的交点记为,先确定点为格点,然后由勾股定理以及逆定理证明为等腰直角三角形,即可求解的度数;
(2)延长至点,使得,连接,先证明,则,,那么,可得四边形是矩形,四边形为矩形,求出,由勾股定理得,则,那么,则,即可求解;
(3)延长至点,使得,连接,同理,同(2)可得四边形是矩形,四边形为矩形,设正方形的边长为,,则,,由,得到,在中,由勾股定理得,求出,则,再同(2)即可.
【详解】解:(1)如图,即为所求:
连接与格线的交点记为,
由网格可得,,
∴,
∴,
∵,
∴,
∴为格点,同理为格点,
∵,,,
∴,,
∴,
∴为等腰直角三角形,
∴;
故答案为:45;
(2)延长至点,使得,连接,
∵四边形是正方形,
∴,,
∴,
∴,,
∴,
∵,,
∴四边形是平行四边形,
∵,
∴四边形是矩形,
同理可得四边形为矩形,
∴,,
∴,,
∴,
∴在和中,

∴,
∴,
∵,
∴,
∴,即;
(3)随点的运动,的度数不变,且为,理由如下:
延长至点,使得,连接,
∵四边形是正方形,
∴,,
∴,
∴,,,
∴,
同(2)可得四边形是矩形,四边形为矩形,
设正方形的边长为,,
∴,,
∴,
∴,
∵,
∴,
整理得,
∵在中,,


∴(舍负),
∴,
∴在和中,

∴,
∴,
∵,
∴,
∴,即.
【点睛】本题考查了相似三角形的判定与性质,勾股定理及其逆定理,等腰三角形的定义,正方形的性质,全等三角形的判定与性质等知识点,熟练掌握各知识点并灵活运用是解题的关键.
37.(2025·江西·中考真题)综合与实践
从特殊到一般是研究数学问题的一般思路,综合实践小组以特殊四边形为背景就三角形的旋转放缩问题展开探究.
特例研究
在正方形中,相交于点O.
(1)如图1,可以看成是绕点A逆时针旋转并放大k倍得到,此时旋转角的度数为________,k的值为________;
(2)如图2,将绕点A逆时针旋转,旋转角为α,并放大得到(点O,B的对应点分别为点E,F),使得点E落在上,点F落在上,求的值
类比探究
(3)如图3,在菱形中,,O是的垂直平分线与的交点,将绕点A逆时针旋转,旋转角为α,并放缩得到(点O,B的对应点分别为点E,F),使得点E落在上,点F落在上.猜想的值是否与α有关,并说明理由;
(4)若(3)中,其余条件不变,探究之间的数量关系(用含β的式子表示).
【答案】(1);;(2);(3)的值与α无关,理由见解析;(4).
【分析】(1)利用正方形的性质结合旋转的性质求解即可;
(2)由题意得,推出,,再得到,推出,根据正方形的性质求解即可;
(3)同理可证,得到,根据线段垂直平分线的性质求得,再根据余弦函数的定义求解即可;
(4)同理可证,,,根据,求解即可.
【详解】解:(1)∵正方形,
∴,,
∴旋转角为,,
故答案为:;;
(2)如图,
根据题意得,
∴,,
∴,,
∴,
∴,
∵,,
∴,
∴;
(3)的值与α无关,理由如下,
如图,
同理可证,
∴,
∵菱形中,,
∴,
∵O是的垂直平分线与的交点,
∴,
∴,
过点作于点,
∴,,
∴,
∴,
∴的值与α无关;
(3)同理可证,,,
∴,,
∵,


即.
【点睛】本题考查了旋转的性质,相似三角形的判定和性质,解直角三角形,线段垂直平分线的性质,正方形和菱形的性质.解题的关键是灵活运用所学知识解决问题.
38.(2025·山西·中考真题)综合与探究
问题情境:如图,在纸片中,,点D在边上,.沿过点D的直线折叠该纸片,使的对应线段与平行,且折痕与边交于点E,得到,然后展平.
猜想证明:(1)判断四边的形状,并说明理由
拓展延伸:(2)如图,继续沿过点D的直线折叠该纸片,使点A的对应点落在射线上,且折痕与边交于点F,然后展平.连接交边于点G,连接.
①若,判断与的位置关系,并说明理由;
②若,,,当是以为腰的等腰三角形时,请直接写出的长
【答案】(1)四边形是菱形,理由见解析;(2)①.理由见解析;②5或
【分析】(1)由折叠的性质可得,,再根据平行线的性质可得,进而得到,由等角对等边推出,从而证明,即可四边形是菱形;
(2)①由(1)推出,由折叠的性质得到,结合已知可得,进而推出,得到,再根据三角形内角和定理即可求出,即可得到与的位置关系;②分是以为腰为底的等腰三角形和是以为腰为底的等腰三角形两种情况讨论,如图,延长交于点H,设交点为,利用三角形相似的性质建立方程求解即可.
【详解】(1)解:四边形是菱形,理由如下:
由折叠的性质可得,,
∵,
∴,
∴,
∴,
∴,
∴四边形是菱形;
(2)证明:①,理由如下:
由(1)知四边形是菱形,
∴,
由折叠的性质得到,
∵,
∴,
∴,
∴,
∵,
∴,
∴;
解:②∵,,,
∴,
当是以为腰为底的等腰三角形时,如图,延长交于点H,设交点为,则,
∵,,
∴,
∴,
由折叠的性质得,,,
∴,
∴;
∵,
∴;
∵,
∴,
∴,
∴,
∵,
∴,
∴,
设,
∴,
∵,
∴,
∴,即,
∴,
∴,
∴,
∵,
∴,
∴,
∵,
∴,
∴,
∴,
解得:,
∴;
当是以为腰为底的等腰三角形时,如图,则,
同理得,,
设,
∴,
∵,
∴,
∴,即,
∴,
∴,
∴,
∵是以为腰为底的等腰三角形,,
∴,
∴,
∴,
∵,
∴,
∴,
∴,
解得:,
∴;
综上,的长为或.
【点睛】本题考查折叠的性质,三角形全等的判定与性质,相似三角形的判定与性质,菱形的判定与性质,三角形内角和定理,等腰三角形的性质,合理作出辅助线,构造三角形全等,结合分类讨论的思想是解题的关键.
39.(2025·内蒙古·中考真题)如图,是一个平行四边形纸片,是一条对角线,,.

(1)如图1,将平行四边形纸片沿折叠,点的对应点落在点处,交于点.
①试猜想与的数量关系,并说明理由;
②求的面积;
(2)如图2,点,分别在平行四边形纸片的,边上,连接,且,将平行四边形纸片沿折叠,使点的对应点落在边上,求的长.
【答案】(1)①,理由略;②
(2)
【分析】本题考查平行四边形的性质,全等三角形的判定与性质,等腰三角形的性质,三角函数,相似三角形的判定与性质,勾股定理。熟练掌握相关性质是解题的关键.
(1)①由翻折得,,利用四边形是平行四边形,可证明,,再证明,即可求证;
②由,得,过点作于点,过点作于点,利用等腰三角形性质得,求出,可得,利用勾股定理求出,即可求解;
(2)过点作于点,连接交于点,过点作于点,由翻折的性质得,同(2)可得,利用,求出,可得,证明,得出,求出,证明,利用相似三角形的性质即可求解.
【详解】(1)解:①由翻折得,,
∵四边形是平行四边形,
∴,,
∴,,
又∵,
∴,
∴;
②由,
∴,
如图,过点作于点,过点作于点,

∴,
∵,,
∴,
∴,
∴,
∴,
∴;
(2)解:过点作于点,连接交于点,过点作于点,

由翻折的性质得,
同(2)可得,
∴,
∴,
即,
得,
∴,
∵平行四边形中,,,
∴,
又∵,
∴,
∴,
∴,
∵,,
∴,
∴,
∴,
即,
解得:.
40.(2025·黑龙江齐齐哈尔·中考真题)综合与实践
在探索几何图形变化的过程中,通过直观猜想、逻辑推理、归纳总结可以获得典型的几何模型,运用几何模型能够轻松解决很多问题,让我们共同体会几何模型的“数学之美”.
(1)【几何直观】如图1,中,,,在内部取一点,连接,将线段绕点逆时针旋转得到线段,连接,,则与的数量关系是__________;与的数量关系是__________;
(2)【类比推理】如图2,在正方形内部取一点,使,将线段绕点逆时针旋转得到线段,连接,延长交的延长线于点,求证:四边形是正方形;
(3)【深度探究】如图3,矩形中,,,在其内部取一点,使,将线段绕点逆时针旋转得到线段,延长至点,使,连接,延长交的延长线于点,连接,若,则__________;
(4)【拓展延伸】在矩形中,点为边上的一点,连接,将线段绕点逆时针旋转得到线段,连接,若,,则的最小值为__________.
【答案】(1)相等(或);相等(或)
(2)见解析
(3)
(4)
【分析】(1)根据旋转的性质可得,,进而证明,即可证明,根据全等三角形的性质,即可求解;
(2)根据正方形的性质,旋转的性质,同(1)证明,得出,结合,即可得证;
(3)同(2)的方法证明,得出四边形是矩形,连接交于点,连接,根据直角三角形中斜边上的中线等于斜边的一半,得出共圆,勾股定理求得,,进而解,求得,再证明,根据正弦的定义,得出,即可求解.
(4)连接交于点,证明得出,当时,取得最小值,根据含30度角的直角三角形的性质,即可求解.
【详解】(1);
∵将线段绕点逆时针旋转得到线段,
∴,
∵,
∴,即
又∵,

∴;
故答案为:相等(或);相等(或).
(2)证明:∵四边形是正方形
∴,
∵绕点逆时针旋转得到线段,

∵,
∴即

∴,



∴四边形是矩形
又∵
∴四边形是正方形;
(3)解:∵绕点逆时针旋转得到线段,

∵,

∵四边形是矩形,,,
∴,


∵,
∴即





∴四边形是矩形,
如图,连接交于点,连接
∵是的中点,
在中,

∴共圆,
∴,


∴,
在中,

∵,
在中,
∴,




∴,即




故答案为:.
(4)解:如图,连接交于点,
∵四边形是矩形,
∴,
∵,,


∴是等边三角形,则
∵线段绕点逆时针旋转得到线段,
∴,

∴,即

∴,

∴在上运动,且
∴当时,取得最小值,


又∵

∴当时,
故答案为:.
【点睛】本题考查了正方形的性质,矩形的性质,旋转的性质,全等三角形的性质与判定,勾股定理,相似三角形的性质以及直角三角形中斜边上的中线等于斜边的一半,同弧所对的圆周角相等,解直角三角形,熟练掌握以上知识是解题的关键.
41.(2025·甘肃平凉·中考真题)四边形是正方形,点E是边上一动点(点D除外),是直角三角形,,点G在的延长线上.
(1)如图1,当点E与点A重合,且点F在边上时,写出和的数量关系,并说明理由;
(2)如图2,当点E与点A不重合,且点F在正方形内部时,的延长线与B的延长线交于点P,如果,写出和的数量关系,并说明理由;
(3)如图3,在(2)的条件下,连接,写出和的数量关系,并说明理由.
【答案】(1),理由见解析
(2),理由见解析
(3),理由见解析
【分析】(1)根据正方形的性质,证明,即可得出结论;
(2)根据正方形的性质,证明,即可得出结论;
(3)作,得到,平行线分线段成比例得到,进而得到为的中位线,得到,根据,得到,进而得到,勾股定理得到,再根据,即可得出结论.
【详解】(1)解:,理由如下:
∵正方形,
∴,
∵是直角三角形,,
∴,
当点E与点A重合时,则:,
∴,
又∵,
∴,
∴;
(2)∵正方形,
∴,
∵点G在的延长线上,的延长线与的延长线交于点P,
∴,
∴,
∵,
∴,
∵,,
∴,
在和中,

∴,
∴;
(3),理由如下:
由(2)可知:,
∴,,
作于点,则:,
∴,
∴,
∴,
∵,
∴为的中位线,
∴,
∵,,
∴,
又∵,
∴,
在中,由勾股定理,得:,
∵,
∴.
【点睛】本题考查正方形的性质,全等三角形的判定和性质,平行线分线段成比例,三角形的中位线定理,勾股定理等知识点,熟练掌握相关知识点,证明三角形全等,添加辅助线构造特殊图形,是解题的关键.
42.(2025·湖北·中考真题)在中,,将绕点旋转得到,点的对应点落在边上,连接.
(1)如图1,求证:;
(2)如图2,当时,求的长;
(3)如图3,过点作的平行线交的延长线于点,过点作的平行线交于点G,与交于点.
①求证:;
②当时,直接写出的值.
【答案】(1)见解析
(2)
(3)①见解析;②
【分析】(1)根据旋转可得,则,即可证明.
(2)根据,,可得,即可得出,过作,则,即,在中勾股定理求出,则,在中勾股定理求出,根据,得出,即可求出.
(3)①设旋转角为,则,根据等腰三角形的性质和三角形内角和定理即可得出,,根据,得出,,即可得,根据,得出,即可得,证明,得出,结合,得出;
②根据,设,证明四边形是平行四边形,得出,由①得,在中,勾股定理得出,则,则,根据,得出,根据,得出,证明,,则,求出,由①可得,得出,证出点四点共圆,根据圆周角定理得出,证明,得出,设,则,根据旋转可得,则,联立求出,再根据即可求解.
【详解】(1)证明:∵将绕点旋转得到,点的对应点落在边上,
∴,
∴,
∴.
(2)解:∵,,
∴,
∴,
过作,
∴,
∴,
在中,
即,
解得:,(舍去),
∴,
在中,
∴,
∵,
∴,
即,
∴.
(3)①证明:设旋转角为,
则,
∴,,
∵,
∴,
∴,
∴,
∵,
∴,
∴,
∴,
∵,
∴,
∴,
∵,
∴;
②解:∵,
∴设,
∵,
∴四边形是平行四边形,
∴,
由①得,
在中,,
∴,
∴,
∴,
∵,
∴,
∵,
∴,
即,
即,
∴,
∴,
∴,
即,
∴,
由①可得,
∴,
∴点四点共圆,
∴,
∵,
∴,
∴,
设,
则,
根据旋转可得,
∴,
联立可得,
∴.
【点睛】该题考查了相似三角形的性质和判定,全等三角形的性质和判定,勾股定理,旋转的性质,圆周角定理,圆内接四边形,解直角三角形,平行四边形的性质和判定等知识点,解题的关键是掌握以上知识点,证明三角形相似.
43.(2025·甘肃·中考真题)四边形是正方形,点E是边上一动点(点D除外),是直角三角形,,点G在的延长线上.
(1)如图1,当点E与点A重合,且点F在边上时,写出和的数量关系,并说明理由;
(2)如图2,当点E与点A不重合,且点F在正方形内部时,的延长线与的延长线交于点P,如果,写出和的数量关系,并说明理由;
(3)如图3,在(2)的条件下,连接,写出和的数量关系,并说明理由.
【答案】(1),理由见解析
(2),理由见解析
(3),理由见解析
【分析】(1)根据正方形的性质,证明,即可得出结论;
(2)根据正方形的性质,证明,即可得出结论;
(3)作,得到,平行线分线段成比例得到,进而得到为的中位线,得到,根据,得到,进而得到,勾股定理得到,再根据,即可得出结论.
【详解】(1)解:,理由如下:
∵正方形,
∴,
∵是直角三角形,,
∴,
当点E与点A重合时,则:,
∴,
又∵,
∴,
∴;
(2)∵正方形,
∴,
∵点G在的延长线上,的延长线与的延长线交于点P,
∴,
∴,
∵,
∴,
∵,,
∴,
在和中,

∴,
∴;
(3),理由如下:
由(2)可知:,
∴,,
作于点,则:,
∴,
∴,
∴,
∵,
∴为的中位线,
∴,
∵,,
∴,
又∵,
∴,
在中,由勾股定理,得:,
∵,
∴.
【点睛】本题考查正方形的性质,全等三角形的判定和性质,平行线分线段成比例,三角形的中位线定理,勾股定理等知识点,熟练掌握相关知识点,证明三角形全等,添加辅助线构造特殊图形,是解题的关键.
考点10相似三角形与圆综合问题
44.(2025·北京·中考真题)如图,过点P作的两条切线,切点分别为A,B,连接,,,取的中点C,连接并延长,交于点D,连接.
(1)求证:;
(2)延长交的延长线于点E.若,,求的长.
【答案】(1)见解析;
(2)长为44.
【分析】(1)利用切线长定理得平分,利用圆周角定理得,等量代换即可证明;
(2)延长交于点F,连接,利用条件求出线段长,再利用角度转换证明三角形相似,最后根据相似求得长.
【详解】(1)证明: ,分别切于A点,B点,
平分,

又 ,


(2)延长交于点F,连接,则,
,分别切于A点,B点,
C为的中点,


又 ,,


,,


又,

,,
,,



【点睛】本题主要考查切线长定理,圆周角定理及推论,勾股定理,三角函数,相似三角形的判定与性质等知识点,熟记切线长定理,圆周角定理,并且能根据题意作出合适的辅助线是解题的关键.
45.(2025·甘肃兰州·中考真题)如图,是的外接圆,是的直径,过点B的切线交的延长线于点D,连接并延长,交于点E,连接.
(1)求证:;
(2)若,,求的长.
【答案】(1)见解析
(2).
【分析】(1)由切线的性质求得,由圆周角定理求得,利用同角的余角相等求得,再利用圆周角定理即可证明结论成立;
(2)由(1)得,求得,求得,利用勾股定理求得,证明,求得,据此求解即可.
【详解】(1)证明:∵是的切线,
∴,
∵是的直径,
∴,
∴,
∵,
∴,
∴;
(2)解:由(1)得,
∴,
∴,
∵,
∴,
∴,
∵,,
∴,
∴,即,
解得,
∴,
∵,
∴.
【点睛】本题考查了解直角三角形,相似三角形的判定和性质,勾股定理,圆周角定理,切线的性质.熟练掌握相关知识的联系与运用是解答的关键.
46.(2024·黑龙江哈尔滨·中考真题)在中,弦,相交于点,,连接,.
(1)如图1,求证:;
(2)如图2,连接并延长交于点,求证:;
(3)如图3,在(2)的条件下,作于点,连接,点在上,连接,点在上,连接交于点,交于点,连接,若,,,,,求的长.
【答案】(1)见解析
(2)见解析
(3)
【分析】(1)可得出,,从而,从而;
(2)连接,,可证得,从而得出;
(3)先证明是等边三角形,是等边三角形,在上取一点,使,连接.得出,设.则,,求出,设.则,证明,得出,过作于点,则,.列方程得出,根据勾股定理得出,在中,,设与的交点为.证明,,得出,过作于点.则.设,,根据,得出进而可得出答案.
【详解】(1)证明:,




.
(2)证明:.


连接,.
则.



(3)解:.



在中,




为等边三角形.
,.
,.
为等边三角形,

在上取一点,使,连接.
,.

,.
设.则,.
,,



设.则.



过作于点,则,.


或.
,,.

在中,
设与的交点为.








,,




过作于点.
则.

设,,



在中,.


【点睛】本题考查了圆周角定理,圆的弧、弦、圆周角之间的关系,确定圆的条件,解直角三角形,全等三角形的判定和性质,等腰三角形的判定和性质等知识,解决问题的关键是作辅助线,构造全等三角形.
47.(2025·湖南长沙·中考真题)如图1,点O是以为直径的半圆的圆心,与均为该半圆的切线,C,D均为直径上方的动点,连接,且始终满足.
(1)求证:与该半圆相切;
(2)当半径时,令,,,,比较m与n的大小,并说明理由;
(3)在(1)的条件下,如图2,当半径时,若点E为与该半圆的切点,与交于点G,连接并延长交于点F,连接,,令,,求y关于x的函数解析式.(不考虑自变量x的取值范围)
【答案】(1)见解析
(2),理由见解析
(3)
【分析】(1)如图3,连接,并延长交的延长线于点,过点作于点.
根据与均为该半圆的切线,得出,则,可得.证明,得出.根据,得出.则,可得,即平分.又,得出,即可证明与该半圆相切.
(2)如图4,过点作,交于点,在中,由勾股定理可得,根据,列等式得出,代入可得.
(3)如图5,根据均为该半圆的切线,则,证明,得出,从而得出,证明,得出,得出.得出,则,即可得.同理可得,得出,由(2)可知,得出,又在中,,得出,即可得,从而得出.
【详解】(1)解:如图3,连接,并延长交的延长线于点,过点作于点.
∵与均为该半圆的切线,



∵为的中点,

在与中,






,即平分.
又,

∴与该半圆相切.
(2)解:.理由如下:
如图4,过点作,交于点,
在中,由勾股定理可得,



代入可得.
(3)解:如图5,均为该半圆的切线,













同理可得,

由(2)可知,

又在中,




【点睛】该题考查了圆综合题,涉及圆切线的性质和判定,切线长定理,相似三角形的性质和判定,全等三角形的性质和判定,角平分线定理,勾股定理,函数解析式等知识点,解题的关键是掌握以上知识点.
48.(2025·云南·中考真题)如图,是五边形的外接圆,是的直径.连接,,,.
(1)若,且,求的度数;
(2)求证:直线是的切线;
(3)探究,发现与证明:已知平分,是否存在常数,使等式成立?若存在,请直接写出一个的值和一个的值,并证明你写出的的值和的值,使等式成立;若不存在,请说明理由.
【答案】(1);
(2)证明见解析;
(3)存在常数,,理由见解析.
【分析】本题考查了等边三角形的判定与性质,相似三角形的判定与性质,圆周角定理,切线的判定等知识,掌握知识点的应用是解题的关键.
()证明是等边三角形即可;
()延长交于点,连接,由圆周角定理可得,即,又,,所以,然后由切线的判定方法即可求证;
()设与交于点,由平分,可得,,通过圆周角定理可得,证明,,故有,,即有,,然后通过即可求解.
【详解】(1)解:∵,且,
∴是等边三角形,
∴;
(2)解:如图,延长交于点,连接,
∵是的直径,
∴,即,
∵,,
∴,
∴,
∴,
∵是的半径,
∴直线是的切线;
(3)解:存在常数,,使等式成立;
理由如下:
如图,设与交于点,
∵平分,
∴,
∵,,
∴,
∴,
∵,
∴,,
∴,,
∴,,
得:,
∵,
∴,
∴,.
考点11相似三角形与动点、函数关系式问题
49.(2025·新疆·中考真题)如图,在等腰直角三角形中,,,,点M是的中点,点D和点N分别是线段和上的动点.
(1)当点D和点N分别是和的中点时,求a的值;
(2)当时,以点C,D,N为顶点的三角形与相似,求的值;
(3)当时,求的最小值.
【答案】(1)
(2)
(3)
【分析】(1)勾股定理求出的长,中点求出的长,的长,根据,求出的值即可;
(2)设,得到,,进而得到,分和两种情况进行讨论,列出比例式进行求解即可;
(3)作于点,连接,易得为等腰直角三角形,得到,,进而得到四边形为平行四边形,得到,将绕点旋转90度得到,连接,证明,得到,进而得到,得到,勾股定理求出的长即可.
【详解】(1)解:∵等腰直角三角形中,,,,,
∴,
∵点D和点N分别是和的中点,
∴,,
∵,
∴;
(2)∵,,
∴,
设,则:,,
∵等腰直角三角形中,,,
∴,
∴,
∵是的中点,
∴,
∴,
当点C,D,N为顶点的三角形与相似时,分两种情况:
①当时,则:,
∴,
此方程无解,不符合题意;
②当时,则:,
∴,
解得:(不符合题意,舍去)或;
∴;
综上:;
(3)∵,,
∴,
作于点,连接,
则:,
∴为等腰直角三角形,
∴,,
∴,,
又,
∴四边形为平行四边形,
∴,
将绕点旋转90度得到,连接,则:,
∵,
∴,
又∵,
∴,
∴,
∴,
∴,
∴当点在线段上时,的值最小为的长,
在中,,
∴,
∴的最小值为.
【点睛】本题考查等腰直角三角形的判定和性质,相似三角形的判定和性质,平行四边形的判定和性质,勾股定理,求线段和的最小值,熟练掌握相关知识点,合理添加辅助线,构造特殊图形,是解题的关键.
50.(2025·四川南充·中考真题)矩形中,,点E是线段上异于点B的一个动点,连接,把沿直线折叠,使点B落在点P处.
【初步感知】(1)如图1,当E为的中点时,延长交于点F,求证:.
【深入探究】(2)如图2,点M在线段上,.点E在移动过程中,求的最小值.
【拓展运用】(3)如图2,点N在线段上,.点E在移动过程中,点P在矩形内部,当是以为斜边的直角三角形时,求的长.

【答案】()详见解析;();()
【分析】(1)连接,证明,即可求证;
(2)根据题意得点在以为圆心,10为半径的的弧上. 连接,当点在线段上时,有最小值.根据勾股定理求出,即可求解;
(3)过点作于,交于点,证明,可得,设,,根据勾股定理得到关于x的方程,可得到,.,,. 设,则,.在中,根据勾股定理求出,即可求解.
即的长为5.
【详解】(1)证明:连接,

由折叠可得,.
∵四边形为矩形,.
∵为的中点,,
∴.
在与中,
∵,,
∴,

(2)解:,点在移动过程中,不变.
∴点在以为圆心,10为半径的的弧上.
连接,

当点在线段上时,有最小值.
∵,,,
∴.
∴,
∴的最小值为.
(3)解:过点作于,交于点,

∵,
∴,
∴.
∴.
∵,
∴,
∴,
∴,
∵,,
∴.
设,,
∴,.
∵,
∴,
∵,
∴.
∴,
解得.
∴,.,,.
设,则,.
在中,,
∴.
解得,,
即的长为5.
【点睛】本题主要考查了矩形的性质,勾股定理,相似三角形的判定和性质,全等三角形的判定和性质,熟练掌握矩形的性质,勾股定理,相似三角形的判定和性质,全等三角形的判定和性质是解题的关键.
51.(2025·吉林·中考真题)如图,在中,,,.动点P从点A出发,沿边以每秒1个单位长度的速度向终点C匀速运动.当点P出发后,以为边作正方形,使点D和点B始终在边同侧.设点P的运动时间为,正方形与重叠部分图形的面积为y(平方单位).
(1)的长为_______.
(2)求y关于x的函数解析式,并写出自变量x的取值范围.
(3)当正方形的对称中心与点B重合时,直接写出x的值.
【答案】(1)7
(2)
(3)
【分析】本题考查了二次函数与几何图形问题,正方行的性质、三角形相似、勾股定理等知识,解题的关键是添加辅助线利用数形结合的思想进行求解;
(1)当重合时,通过勾股定理分别求出即可求解;
(2)将正方形与重叠部分图形的面积分割成一个三角形的面积和直角梯形的面积之和来求解即可;
(3)根据正方形的对称中心与点B重合时,得出,再利用勾股定理求解即可.
【详解】(1)解:当重合时,如下图:
,以为边作正方形,
是等腰直角三角形,

即,
解得:(负的舍去),



故答案为:7;
(2)解:当在线段上运动时,

当在线段的延长线上运动时,即点在线段上运动,如下图:






解得:,


(3)解:当正方形的对称中心与点B重合时,


即,
解得:,

52.(2025·黑龙江绥化·中考真题)综合与实践
如图,在边长为8的正方形中,作射线,点是射线上的一个动点,连接,以为边作正方形,连接交射线于点,连接.(提示:依题意补全图形,并解答)
【用数学的眼光观察】
(1)请判断与的位置关系,并利用图(1)说明你的理由.
【用数学的思维思考】
(2)若,请你用含的代数式直接写出的正切值________.
【用数学的语言表达】
(3)设,正方形的面积为.请求出与的函数解析式.(不要求写出自变量的取值范围)
【答案】(1),理由见解析;
(2);
(3)与的函数解析式为.
【分析】(1)由正方形的性质,得出线段之间的数量关系和角之间的数量关系,综合应用全等三角形的判定和性质即可确定与的位置关系;
(2)由正方形的性质,可得线段之间的位置关系,综合应用相似三角形的判定和性质,可得边之间的比例关系,化简整理即可;
(3)根据点的位置变化,进行分类讨论,应用勾股定理即可得出每种情况下正方形的面积,对各种情况所得结果进行整理即可.
【详解】(1)解:
理由:
∵四边形和四边形都是正方形,
∴,,,,
∵,,
∴,
在和中,

∴,
∴,
∴,
∴.
(2)解:连接交于点,
∵四边形是正方形,
∴,
∵,
∴,
∴,
∴,
∵正方形的边长,
∴,
∴,
设,则,
∵,
∴,
∴,
∵,
∴,
故答案为:.
(3)解:当点在对角线上时,如图,过点作于点,
∵,,
∴,,
∴在中,,
∴,
当点在上,点在上时,如图,过点作于点,
∵,,
∴,,
∴在中,,
∴,
当点在对角线的延长线上时,如图,过点作交的延长线于点,
∵,,
∴,,
∴在中,,
∴,
综上所述,,
答:与的函数解析式为.
【点睛】本题考查正方形的性质,锐角三角函数,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,正方形的面积,解题的关键是熟练掌握三角形全等和相似的判定定理,会用分类讨论的思想方法解决问题.
考点12相似三角形与一次函数、反比例函数
53.(2025·四川宜宾·中考真题)如图,过原点的直线与反比例函数的图象交于、两点,一次函数的图象过点A与反比例函数交于另一点,与轴交于点,其中,.
(1)求一次函数的表达式,并求的面积.
(2)连接,在直线上是否存在点,使以、、为顶点的三角形与相似,若存在,求出点坐标;若不存在,请说明理由.
【答案】(1);
(2)或
【分析】本题主要考查了反比例函数与一次函数综合,相似三角形的性质,两点距离计算公式,勾股定理的逆定理,利用分类讨论的思想求解是解题的关键.
(1)把点A坐标代入反比例函数解析式,求出反比例函数解析式,则可求出点C坐标,再把点A和点C坐标代入一次函数的解析式中求出一次函数的解析式,进而求出点M的坐标,再利用三角形面积计算公式求解即可;
(2)利用对称性可得点B坐标,利用两点距离计算公式和勾股定理的逆定理可证明,则只存在和这两种情况,当时,则,此时点D为的中点,利用中点坐标公式可得答案当时,则,可求出;设,则,解方程即可得到答案.
【详解】(1)解:把代入到中得:,解得,
∴反比例函数解析式为,
在中,当时,,
∴;
把,代入到中得:,解得,
∴一次函数的表达式为,
在中,当时,,
∴,
∴,
∴;
(2)解:∵直线经过原点,
∴由反比例函数的对称性可得点B的坐标为,,
∵,,
∴,,

∴,
∴,
∴,
∵,
∴与不垂直,
∵与相似,
∴只存在和这两种情况,
当时,则,,
∴,,
∴此时点D为的中点,
∴点D的坐标为;
当时,则,,
∴;
设,
∴,
解得,
∴,
∴点D的坐标为;
综上所述,点D的坐标为或.
54.(2025·四川眉山·中考真题)如图,一次函数与反比例函数的图象相交于、两点,与x轴交于点C,点D与点A关于点O对称,连接.
(1)求一次函数和反比例函数的解析式:
(2)点P在x轴的负半轴上,且与相似,求点P的坐标.
【答案】(1)一次函数解析式为:,反比例函数解析式为.
(2)点P的坐标为或
【分析】(1)利用系数待定法分别求出一次函数和反比例函数的解析式即可.
(2)先求出点C的坐标,再根据关于原点对称的点的坐标特点求出点D,设,再根据直角坐标系两点之间的距离公式分别求出,,,由对顶角相等得出,再根据相似三角形的性质分两种情况或代入求解即可.
【详解】(1)解:把代入反比例函数,则,
则反比例函数解析式为:,
把代入,
则,
∴,
再把,代入,
则,
解得:,
则一次函数的解析式为:.
(2)解:令时,则,
∴,
∵点D与点A关于点O对称,

设点,
∵,

又∵,,
∴,,,
∵与相似,,
∴分两种情况:或,
当时,
即,
解得:,
此时,点,
当,
即,
解得:,
此时,
综上:当点P在x轴的负半轴上,且与相似,点P的坐标为或
【点睛】本题主要考查了一次函数和反比例函数的综合问题,待定系数法求一次函数和反比例函数的解析式,一次函数与坐标轴的交点问题,关于原点对称的点的坐标特点,相似三角形的性质,直角坐标系中两点之间的距离等知识,掌握这些知识是解题的关键.
考点13相似三角形在二次函数压轴题中的应用
55.(2025·辽宁·中考真题)如图,在平面直角坐标系中,二次函数的图象与轴的正半轴相交于点,二次函数的图象经过点,且与二次函数的图象的另一个交点为,点的横坐标为.
(1)求点的坐标及的值.
(2)直线与二次函数的图象分别相交于点,与直线相交于点,当时,
①求证:;
②当四边形的一组对边平行时,请直接写出的值.
(3)二次函数与二次函数组成新函数,当时,函数的最小值为,最大值为,求的取值范围.
【答案】(1)点的坐标为,的值分别为
(2)①见解析②或
(3)
【分析】本题考查二次函数的图像综合问题,二元一次方程组,一元一次不等式组,一次函数,平行线的性质,相似三角形,正确作出辅助线是解题的关键.
(1)先求出,,再分别代入,列出二元一次方程组,即可解答.
(2)①设直线的解析式为,将,分别代入,得直线的解析式为,设点E的坐标为,求出,设,,则,,即可解答.
②当时,,当时,,再分类讨论,即可解答.
(3)易得,当时,取得最小值为,解出;当时,函数的最大值为,解得;当时,,解得,或(舍去),,即可解答.
【详解】(1)解:当时,,
解得,
∴,
将代入,得,
∴,
将,分别代入,得

解得.
答:点的坐标为,的值分别为.
(2)①证明:如图,
设直线的解析式为,将,分别代入,得
,解得,
∴直线的解析式为,
设点E的坐标为
∵,
∴,
将代入得,
将代入,得,
∴,


②如图
当时,,
∴,
∴,
即,解得.
当时,,
∴,
∴,
即,解得,
∴或.
(3)∵次函数与二次函数组成新函数,
∴,
∴当时,y随x的增大而增大;当时,y随x的增大而减小;
当时,y随x的增大而增大.且当时,取得最小值.
∵当时,函数的最小值为,最大值为,
∴当时,取得最小值为,即,
解得.
∵时,函数的最大值为,
∴当时,函数的最大值为,即,
解得;
当时,,
解得,或(舍去),
∴,
∵,
∴,
解得,.
56.(2025·江苏苏州·中考真题)如图,二次函数的图像与x轴交于两点(点A在点B的左侧),与y轴交于点C,作直线为二次函数图像上两点.
(1)求直线对应函数的表达式;
(2)试判断是否存在实数m使得.若存在,求出m的值;若不存在,请说明理由.
(3)已知P是二次函数图像上一点(不与点重合),且点P的横坐标为,作.若直线与线段分别交于点,且与的面积的比为,请直接写出所有满足条件的m的值.
【答案】(1)
(2)不存在,理由见解析
(3)或
【分析】本题考查二次函数与一次函数综合,涉及求直线表达式、函数值计算及三角形相似与面积比应用,解题关键是利用函数性质、坐标关系及相似三角形性质建立等式求解 .
(1)先通过二次函数与坐标轴交点的求法,确定、坐标,再用待定系数法,将两点坐标代入设好的一次函数表达式,求解出直线的函数表达式.
(2)先根据二次函数表达式,分别写出、两点的函数值、,进而得出的表达式,再通过配方或判别式判断是否存在实数使等式成立.
(3)通过作辅助线构造平行关系,利用二次函数求出点坐标,结合坐标关系得出角的度数,推出,进而得到三角形相似,根据面积比与相似比的关系建立等式,求解出的值.
【详解】(1)解:∵二次函数的图像与x轴交于两点,
∴令,则,
点C的坐标为.
令,则.
解得,或,
∴点B的坐标为.
设直线对应函数的表达式为,由题意,得
解得
直线对应函数的表达式为.
(2)不存在实数m使得,理由如下:
方法一:为二次函数图像上两点,



配方,得.
∴当时,有最大值为.

∴不存在实数m使得.
方法二:由方法一,得.
当时,,即.

∴方程没有实数根.
不存在实数m使得.
(3),或.解答如下:
如图,作轴,交x轴于点H,交于点,
作,垂足为Q,作轴,交于点,则.
当时,.
点P的坐标为.
点N的坐标为,
点Q的坐标为,点H的坐标为,
点的坐标为.





,即.

,即.
点M的坐标为,
点的坐标为.
,即.
解得或.
57.(2025·山东威海·中考真题)已知抛物线交x轴于点,点B,交y轴于点C.点C向右平移2个单位长度,得到点D,点D在抛物线上.点E为抛物线的顶点.
(1)求抛物线的表达式及顶点E的坐标;
(2)连接,点M是线段上一动点,连接,作射线.
①在射线上取一点F,使,连接.当的值最小时,求点M的坐标;
②点N是射线上一动点,且满足.作射线,在射线上取一点G,使.连接,.求的最小值;
(3)点P在抛物线的对称轴上,若,则点P的坐标为___________.
【答案】(1),
(2)①;②
(3)或
【分析】(1)令,则,得到,根据平移得到,进而根据抛物线过点,,运用待定系数法即可求出抛物线的解析式为.将解析式化为顶点式,即可得到顶点E的坐标;
(2)①当点O,M,F三点共线时,为最小值.对于抛物线,令,求出,进而可得直线的解析式为.由点F在射线CD上,,得到,从而可得直线的解析式为.解方程组即可解答;
②由,,得到是等腰直角三角形,从而.连接,,由两点间距离公式可得,,从而,即可得到是等腰直角三角形,因此,从而证得,得到,进而有.证明,根据勾股定理求出,即可解答.
(3)分两种情况:①当点P在x轴上方时,取点,连接,得到是等腰直角三角形,,即可推出.过点A作于点K,设对称轴与x轴的交点为Q,则,从而,得到.根据的面积求得,进而在中,,把相关数据代入,即可求得,从而.②当点P在x轴下方时,由对称性可得.即可解答.
【详解】(1)解:对于抛物线,令,则,
∴,
∵点C向右平移2个单位长度,得到点D,
∴,
∵抛物线过点,,
∴,解得,
∴抛物线的解析式为.
∵,
∴抛物线的顶点E的坐标为.
(2)解:①如图,当点O,M,F三点共线时,为最小值.
对于抛物线,令,则,
解得,,
∴,
设过点,的直线解析式为,
则,解得,
∴直线的解析式为,
∵,
∴,
∵点F在射线上,,,
∴,
∴由点,可得直线的解析式为,
解方程组得,
∴当的值最小时,点M的坐标为;
②∵,,
∴,
∴是等腰直角三角形,
∴.
连接,,
∵,,,
∴,,,
∴,,
∴是等腰直角三角形,
∴,
∴,
∵,,
∴,
∴,
∴.
∵,,
∴轴,即,
∴,
∴.
∵,,
∴在中,,
∴,
即的最小值为.
(3)解:①当点P在x轴上方时,
取点,连接,
∴,
∴是等腰直角三角形,
∴,即,
∵,
∴.
过点A作于点K,设对称轴与x轴的交点为Q,
∴,
∴,
∴.
∵,,,
∴,,
∵,
即,
∴,
∴在中,,
∵对称轴为直线,
∴,
∵,
∴,
∴,
∴.
②当点P在x轴下方时,由对称性可得.
综上所述,点P的坐标为或.
故答案为:或.
【点睛】本题考查待定系数法求解析式,二次函数的图象及性质,勾股定理及其逆定理,全等三角形的判定及性质,相似三角形的判定及性质,两点间的距离公式,两点之间线段最短等,综合运用相关知识是解题的关键.
58.(2025·四川宜宾·中考真题)如图,是坐标原点,已知抛物线与轴交于、两点,与轴交于点,其中.
(1)求b、c的值;
(2)点为抛物线上第一象限内一点,连结,与直线交于点,若,求点D的坐标;
(3)若为抛物线的顶点,平移抛物线使得新顶点为,若又在原抛物线上,新抛物线与直线交于点,连结.探新抛物线与轴是否存在两个不同的交点.若存在,求出这两个交点之间的距离;若不存在,请说明理由.
【答案】(1)
(2)或;
(3)存在,这两个交点之间的距离为
【分析】(1)理解题意,分别把代入,进行计算,即可作答.
(2)先得,再证明,运用,得,设点的纵坐标为,则点D的纵坐标为,再分别求出的解析式为,的解析式为,整理得点,因为点为抛物线上第一象限内一点,得,解得,即可作答.
(3)先求出,再整理得平移后的抛物线的解析式为,因为点在,则,即,故,所以是等腰三角形,再结合解直角三角函数得,代入数值计算得,再运用换元法进行整理得,解得,平移后的抛物线解析式为,求出,即可作答.
【详解】(1)解:依题意,分别把代入,
得,
解得.
(2)解:由(1)得,
则,
令,则,
∴,
故,
分别过点E、D作如图所示:

∴,
∵,
∴,
∴,
∵,
∴,
∴,
设点的纵坐标为,则点D的纵坐标为,
设的解析式为,
∵,,
∴,
解得,
∴的解析式为,
把代入,
得,
∴,
∴,
设的解析式为,
把,分别代入,
得,
解得,
∴的解析式为,
依题意,把代入,
得,
则,
即点,
∵点为抛物线上第一象限内一点,且,
∴,
整理得,
∴;
此时的,故是符合题意的;
当时,则,此时,
当时,则,此时,
综上:或;
(3)解:存在,过程如下:
由(2)得,
整理
∵为抛物线的顶点,
∴,
∵平移抛物线使得新顶点为,又在原抛物线上,新抛物线与直线交于点,连结.
如图所示:
∴平移后的抛物线的解析式为,
把代入,
得,
∵点在,
∴,
∴,
∴,
∴,
∵,,,
∴,
则,

∴是等腰三角形,
过点作,
∵,
∴,
则,
∴,
令,
∴,
即,
∵,
∴,
即,
∴,
∴,
∴或,
∴(舍去)或,
∴,
∴平移后的抛物线解析式为,
令则,
∴,
即,
∴,
则,
∴新抛物线与轴存在两个不同的交点,这两个交点之间的距离为.
【点睛】本题考查了二次函数的几何综合,待定系数法求解析式,相似三角形的判定与性质,平移的性质,勾股定理,等腰三角形的判定与性质,解直角三角形的相关运算,正确掌握相关性质内容是解题的关键.
59.(2025·四川自贡·中考真题)如图,在中,分别是的中点,连接,交于点.

(1)若,,,则四边形的面积为___________;
(2)若,的最大面积为.设,求与之间的函数关系式,并求的最大值;
(3)若(2)问中取任意实数,将函数的图象依次向右、向上平移1个单位长度,得到函数的图象.直线交该图象于点,(点在点左边),过点的直线交该图象于另一点,过点的直线与直线交于点.若,试问直线是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.
【答案】(1)
(2),最大为
(3)是,
【分析】(1)分割法得到四边形的面积,即可得出结果;
(2)三角形的中位线定理,证明,进而推出,进而得到当四边形的面积最大时,最大,过点作,过点作,则:,进而得到四边形的最大面积,列出函数关系式,再根据二次函数的性质求最值即可;
(3)根据平移规则,求出抛物线的解析式,设,根据三角形的中线平分面积,得到为的中点,进而得到点坐标,设,把的坐标代入,求出,根据直线过点,将解析式写为,得到,令,求出值,即可得出结果.
【详解】(1)解:∵,,,
∴四边形的面积

(2)∵在中,分别是的中点,
∴是的中位线,
∴,
∴,
∴,
∴,
∴,
∴,
∴当四边形的面积最大时,的面积最大,
过点作,过点作,则:,
∵四边形的面积
∴四边形的面积最大,
∵,,
∴,
∴,
∴当时,最大为;
(3)直线是过定点:
由(2)知:,
∴,
∴,
设,
∵,
∴为的中点,
∵过点的直线与直线交于点,
∴,
∴,
∴,
设,
∴,
解得:,
∴直线:,
即:,

∴当,即:时,,
∴直线过定点.
【点睛】本题考查三角形的中位线定理,相似三角形的判定和性质,二次函数的最值,二次函数图象的平移以及二次函数的综合应用,熟练掌握相关定理和性质,二次函数的图象和性质,以及平移规则,是解题的关键.
60.(2024·黑龙江哈尔滨·中考真题)在平面直角坐标系中,点为坐标原点,抛物线经过点,与轴正半轴交于点,点的坐标为.
(1)求、的值;
(2)如图1,点为第二象限内抛物线上一点,连接,,设点的横坐标为,的面积为,求与的函数解析式(不要求写出自变量的取值范围);
(3)如图2,在(2)的条件下,,点在上,,交于点,,点在第二象限,连接,,连接,过点作的垂线,交过点且平行的直线于点,连接交于点,过点作轴的垂线,交的延长线于点,交的延长线于点,,连接并延长交抛物线于点,,点在内,连接,,,,交的长线于点,,求直线的解析式.
【答案】(1),
(2)
(3)
【分析】(1)将,代入解析式计算即可得解;
(2)由(1)得抛物线的解析式为,设,过作轴于点,则,再由三角形面积公式计算即可得解;
(3)由题意可得,证明为等腰直角三角形,得出,证明四边形为正方形,连接,,证明点、、共线,得出,证明为等腰直角三角形,求出,过作于点,于点,延长至点,使,连接,则四边形为正方形得出,证明得出,过作于点,设,,证明得出,设,求出,,证明,得出,过作于点,则,求出代入抛物线得出,即可得出,在上取一点,使,连接,则为等腰直角三角形,设,则,,证明,求出,过作于点,则,求出,最后利用待定系数法求解即可.
【详解】(1)解:∵抛物线经过点,与轴正半轴交于点,点的坐标为,
∴,
解得:;
(2)解:由(1)得抛物线的解析式为,
∵点为第二象限内抛物线上一点,
∴设,
如图:过作轴于点,则,



(3)解:当时,,即,

∴,
∴为等腰直角三角形,
∴,
由题意可得,
∴四边形为矩形,为等腰直角三角形,
∴,
四边形为正方形,
如图:连接,
设,


连接,




点、、共线,即,



为等腰直角三角形,


过作于点,于点,延长至点,使,连接,
则,
∴四边形为矩形,为等腰直角三角形,
∴,
∴四边形为正方形,
∴,
∴,
∴,,
∵,
∴,即,
∴,
∴,
∴,

过作于点,

设,,




设,




同课章节目录