/ 让教学更有效 精品试卷 | 数学学科
专题11一次函数(12大考点,精选43题)
考点概览 考点1正比例函数 考点2一次函数的性质 考点3一次函数的平移 考点4一次函数与坐标轴 考点5一次函数的应用:行程问题 考点6一次函数的应用:销售问题 考点7一次函数的应用:方案设计问题 考点8一次函数的应用:跨学科问题 考点9一次函数的应用:生活应用问题 考点10一次函数与几何变化规律 考点11一次函数与几何综合问题 考点12一次函数与新定义问题
考点1正比例函数
1.(2025·上海·中考真题)下列函数中,为正比例函数的是( )
A. B. C. D.
2.(2025·吉林长春·中考真题)已知点、在同一正比例函数的图象上,则下列结论正确的是( )
A. B. C. D.
3.(2025·江西·中考真题)在趣味跳高比赛中,规定跳跃高度与自己身高的比值最大的同学为获胜者.甲、乙、丙、丁四位同学的跳跃高度与他们身高的关系示意图如图所示,则获胜的同学是( )
A.甲 B.乙 C.丙 D.丁
4.(2025·山西·中考真题)氢气是一种绿色清洁能源,可通过电解水获得.实践小组通过实验发现,在电解水的过程中,生成物氢气的质量与分解的水的质量满足我们学过的某种函数关系.下表是一组实验数据,根据表中数据,与之间的函数关系式为( )
水的质量
氢气的质量
A. B. C. D.
考点2一次函数的性质
5.(2025·广西·中考真题)已知一次函数的图象经过点,则( )
A.3 B.4 C.6 D.7
6.(2025·山东东营·中考真题)一次函数的函数值随的增大而减小,当时的值可以是( )
A.3 B.2 C.1 D.
7.(2025·江苏苏州·中考真题)过两点画一次函数的图像,已知点A的坐标为,则点B的坐标可以为 .(填一个符合要求的点的坐标即可)
8.(2025·安徽·中考真题)已知一次函数的图象经过点M,且y随x的增大而增大.若点N在该函数的图象上,则点N的坐标可以是( )
A. B. C. D.
9.(2025·四川广安·中考真题)已知一次函数,当时,y的值可以是 .(写出一个合理的值即可)
10.(2025·山东东营·中考真题)一次函数的函数值y随x的增大而减小,当时,y的值可以是( ).
A.3 B.2 C.1 D.
11.(2025·湖北·中考真题)已知一次函数随的增大而增大.写出一个符合条件的的值是 .
12.(2025·江苏扬州·中考真题)已知,则一次函数的图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
考点3一次函数的平移
13.(2025·陕西·中考真题)在平面直角坐标系中,过点,的直线向上平移3个单位长度,平移后的直线经过的点的坐标可以是( )
A. B. C. D.
14.(2025·天津·中考真题)将直线向上平移个单位长度,若平移后的直线经过第三、第二、第一象限,则的值可以是 (写出一个即可).
15.(2025·河北·中考真题)在平面直角坐标系中,横、纵坐标都是整数的点称为整点.如图,正方形与正方形的顶点均为整点.若只将正方形平移,使其内部(不含边界)有且只有,,三个整点,则平移后点的对应点坐标为( )
A. B. C. D.
16.(2025·四川泸州·中考真题)如图,一次函数的图象与反比例函数的图象的一个交点为.
(1)求一次函数与反比例函数的解析式;
(2)将一次函数的图象沿轴向下平移12个单位,与反比例函数的图象相交于点,求的值.
17.(2025·江西·中考真题)如图,直线与反比例函数的图象交于点.
(1)求一次函数和反比例函数解析式;
(2)将直线l向上平移,在x轴上方与反比例函数图象交于点C,连接,当时,求点C的坐标及直线l平移的距离.
18.(2025·甘肃平凉·中考真题)如图,一次函数的图象交x轴于点A,交反比例函数的图象于点,将一次函数的图象向下平移个单位长度,所得的图象交x轴于点C.
(1)求反比例函数的表达式;
(2)当的面积为3时,求m的值.
19.(2025·甘肃·中考真题)如图,一次函数的图象交x轴于点A,交反比例函数的图象于点.将一次函数的图象向下平移个单位长度,所得的图象交x轴于点C.
(1)求反比例函数的表达式;
(2)当的面积为3时,求m的值.
考点4一次函数与坐标轴
20.(2025·四川南充·中考真题)已知直线与直线的交点在轴上,则的值是 .
21.(2025·北京·中考真题)在平面直角坐标系中,函数的图象经过点和.
(1)求k,b的值;
(2)当时,对于x的每一个值,函数的值既小于函数的值,也小于函数的值,直接写出m的取值范围.
考点5一次函数的应用:行程问题
22.(2025·黑龙江绥化·中考真题)自主研发和创新让我国的科技快速发展,“中国智造”正引领世界潮流.某科技公司计划投入一笔资金用来购买、两种型号的芯片.已知购买颗型芯片和2颗型芯片共需要元,购买颗型芯片和颗型芯片共得要元.
(1)求购买颗型芯片和颗型芯片各需要多少元.
(2)若该公司计划购买、两种型号的芯片共频,其中购买型芯片的数量不少于型芯片数量的倍.当购买型芯片多少颗时,所需资金最少,最少资金是多少元.
(3)该公司用甲、乙两辆芯片运输车,先后从地出发,沿着同一条公路匀速行驶,前往目的地,两车到达地后均停止行驶.如图,、分别是甲、乙两车离地的距离与甲车行驶的时间之间的函数关系.请根据图象信息解答下列问题:
①甲车的速度是________.
②当甲、乙两车相距时,直接写出的值________.
23.(2025·天津·中考真题)已知小华的家、书店、公园依次在同一条直线上,书店离家,公园离家.小华从家出发,先匀速步行了到书店,在书店停留了,之后匀速步行了到公园,在公园停留后,再用匀速跑步返回家.下面图中表示时间,表示离家的距离.图象反映了这个过程中小华离家的距离与时间之间的对应关系.
请根据相关信息,回答下列问题:
(1)①填表:
小华离开家的时间 1 6 18 50
小华离家的距离
②填空:小华从公园返回家的速度为____________;
③当时,请直接写出小华离家的距离关于时间的函数解析式;
(2)若小华的妈妈与小华同时从家出发,小华的妈妈以的速度散步直接到公园.在从家到公园的过程中,对于同一个的值,小华离家的距离为,小华的妈妈离家的距离为,当时,求的取值范围(直接写出结果即可).
24.(2025·黑龙江·中考真题)一条公路上依次有A、B、C三地,一辆轿车从A地出发途经B地接人,停留一段时间后原速驶往C地;一辆货车从C地出发,送货到达B地后立即原路原速返回C地(卸货时间忽略不计).两车同时出发,轿车比货车晚到达终点,两车均按各自速度匀速行驶.如图是轿车和货车距各自出发地的距离y(单位:)与轿车的行驶时间x(单位:h)之间的函数图象,结合图象回答下列问题:
(1)图中a的值是_______,b的值是_______;
(2)在货车从B地返回C地的过程中,求货车距出发地的距离y(单位:)与行驶时间x(单位:h)之间的函数解析式;
(3)直接写出轿车出发多长时间与货车相距40.
25.(2025·黑龙江齐齐哈尔·中考真题)2025年春晚舞台上的机器人表演,充分演绎了科技与民族文化的完美融合.为满足学生的好奇心和求知欲,某校组织科技活动“机器人走进校园”,AI热情瞬间燃爆.校园里一条笔直的“勤学路”上依次设置了A,B,C三个互动区,机器人甲、乙分别从A,C两区同时出发开始表演,机器人甲沿“勤学路”以20米/分的速度匀速向B区行进,行至B区时停留4.5分钟(与师生热情互动)后,继续沿“勤学路”向C区匀速行进,机器人乙沿“勤学路”以10米/分的速度匀速向B区行进,行至B区时接到指令立即匀速返回,结果两机器人同时到达C区.机器人甲、乙距B区的距离y(米)与机器人乙行进的时间x(分)之间的函数关系如图所示,请结合图象信息解答下列问题:
(1)A,C两区相距__________米,__________;
(2)求线段所在直线的函数解析式;
(3)机器人乙行进的时间为多少分时,机器人甲、乙相距30米?(直接写出答案即可)
考点6一次函数的应用:销售问题
26.(2025·黑龙江·中考真题)2024年8月6日,第十二届世界运动会口号“运动无限,气象万千”在京发布,吉祥物“蜀宝”和“锦仔”亮相.第一中学为鼓励学生积极参加体育活动,准备购买“蜀宝”和“锦仔”奖励在活动中表现优秀的学生.已知购买3个“蜀宝”和1个“锦仔”共需花费332元,购买2个“蜀宝”和3个“锦仔”共需380元.
(1)购买一个“蜀宝”和一个“锦仔”分别需要多少元?
(2)若学校计划购买这两种吉祥物共30个,投入资金不少于2160元又不多于2200元,有哪几种购买方案?
(3)设学校投入资金W元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?
27.(2025·山东烟台·中考真题)2025年6月5日是第54个“世界环境日”,为打造绿色低碳社区,某社区决定购买甲、乙两种太阳能路灯安装在社区公共区域,升级改造现有照明系统.已知购买1盏甲种路灯和2盏乙种路灯共需220元,购买3盏甲种路灯比4盏乙种路灯的费用少140元.
(1)求甲、乙两种路灯的单价;
(2)该社区计划购买甲、乙两种路灯共40盏,且甲种路灯的数量不超过乙种路灯数量的,请通过计算设计一种购买方案,使所需费用最少.
28.(2025·四川眉山·中考真题)国家卫健委在全民健康调查中发现,近年来的肥胖人群快速增长,为加强对健康饮食的重视,特发布各地区四季健康饮食食谱.现有A、B两种食品,每份食品的质量为,其核心营养素如下:
食品类别 能量(单位:) 蛋白质(单位:) 脂肪(单位:) 碳水化合物(单位:)
A 240 12 7.5 29.8
B 280 13 9 27.6
(1)若要从这两种食品中摄入能量和蛋白质,应选用A、B两种食品各多少份?
(2)若每份午餐选用这两种食品共,从A、B两种食品中摄入的蛋白质总量不低于,且能量最低,应选用A、B两种食品各多少份?
29.(2025·四川广安·中考真题)某景区需要购买A,B两种型号的帐篷.已知用1800元购买A种帐篷的数量与用3000元购买B种帐篷的数量相等,且B种帐篷的单价比A种帐篷的单价多400元.
(1)求A,B两种帐篷的单价各多少元?
(2)若该景区需要购买A,B两种型号的帐篷共20顶(两种型号的帐篷均需购买),且购买B种型号帐篷的数量不少于A种型号帐篷数量的,则购买A,B两种型号的帐篷各多少顶时,总费用最低?最低总费用是多少元?
考点7一次函数的应用:方案设计问题
30.(2025·四川德阳·中考真题)中江挂面以“细如发丝、清如白玉、耐煮不糊、入口绵软”闻名遐迩,其独特的空心技艺传承千年,从揉面、开条、上筷到拉扯成型,需经十余道古法工序.数学兴趣小组走进某老字号挂面厂进行调研,已知购买2袋A型与2袋B型挂面共需费用100元,购买3袋A型与2袋B型挂面共需费用120元.
(1)A型、B型挂面的单价分别是多少元?
(2)为进一步推广此非遗美食,兴趣小组决定购买A、B两种型号挂面共40袋.在单价不变,总费用不超过950元,且B型挂面不少于10袋的条件下,共有几种购买方案?其中最低花费多少元?
31.(2025·江苏连云港·中考真题)如图,制作甲、乙两种无盖的长方体纸盒,需用正方形和长方形两种硬纸片,且长方形的宽与正方形的边长相等.
(1)现用200张正方形硬纸片和400张长方形硬纸片,恰好能制作甲、乙两种纸盒各多少个
(2)如果需要制作100个长方体纸盒,要求乙种纸盒数量不低于甲种纸盒数量的一半,那么至少需要多少张正方形硬纸片
32.(2025·广东深圳·中考真题)某学校采购体育用品,需要购买三种球类.已知某体育用品商店排球的单价为30元/个,篮球,足球的价格如下表:
①篮球、足球、排球各买一个的价格为140元
②购买2个足球的价格比购买一个篮球多花费40元
③购买5个篮球与购买6个足球花费相同
(1)请你从上述3个条件中任选2个作为条件,求出篮球和足球的单价;
(2)若该学校要购买篮球,足球共10个,且足球的个数不超过篮球个数的2倍,请问购买多少个篮球时,花费最少,最少费用是多少?
33.(2025·云南·中考真题)请你根据下列素材,完成有关任务.
背景 某校计划购买篮球和排球,供更多学生参加体育锻炼,增强身体素质.
素材一 购买个篮球与购买个排球需要的费用相等;
素材二 购买个篮球和个排球共需元;
素材三 该校计划购买篮球和排球共个,篮球和排球均需购买,且购买排球的个数不超过购买篮球个数的倍.
请完成下列任务:
任务一 每个篮球,每个排球的价格分别是多少元?
任务二 给出最节省费用的购买方案.
34.(2025·山东·中考真题)山东省在能源绿色低碳转型过程中,探索出一条“以储调绿”的能源转型路径.某地结合实际情况,建立了一座圆柱形蓄水池,通过蓄水发电实现低峰蓄能、高峰释能,助力能源转型.
已知本次注水前蓄水池的水位高度为5米,注水时水位高度每小时上升6米.
(1)请写出本次注水过程中,蓄水池的水位高度y(米)与注水时间x(小时)之间的关系式;
(2)已知蓄水池的底面积为万平方米,每立方米的水可供发电千瓦时,求注水多长时间可供发电万千瓦时?
考点8一次函数的应用:跨学科问题
35.(2025·陕西·中考真题)研究表明,一定质量的气体,在压强不变的条件下,气体体积与气体温度成一次函数关系.某实验室在压强不变的条件下,对一定质量的某种气体进行加热,测得的部分数据如下表:
气体温度 … 25 30 35 …
气体体积 … 596 606 616 …
(1)求与的函数关系式;
(2)为满足下一步的实验需求,本次实验要求气体体积达到时停止加热.求停止加热时的气体温度.
36.(2025·吉林·中考真题)【知识链接】实验目的:探究浮力的大小与哪些因素有关
实验过程:如图①,在两个完全相同的溢水杯中,分别盛满甲、乙两种不同密度的液体,将完全相同的两个质地均匀的圆柱体小铝块分别悬挂在弹簧测力计A,B的下方,从离桌面20cm的高度,分别缓慢浸入到甲、乙两种液体中,通过观察弹簧测力计示数的变化,探究浮力大小的变化.(溢水杯的杯底厚度忽略不计)
实验结论:物体在液体中所受浮力的大小,跟它浸在液体中的体积有关、跟液体的
密度有关.物体浸在液体中的体积越大、液体的密度越大,浮力就越大.
总结公式:当小铝块位于液面上方时,;
当小铝块浸入液面后,.
【建立模型】在实验探究的过程中,实验小组发现:弹簧测力计A,B各自的示数与小铝块各自下降的高度之间的关系如图②所示.
【解决问题】
(1)当小铝块下降10cm时,直接写出弹簧测力计A和弹簧测力计B的示数.
(2)当时,求弹簧测力计A的示数关于x的函数解析式.
(3)当弹簧测力计A悬挂的小铝块下降8cm时,甲液体中的小铝块受到的浮力为,若使乙液体中的小铝块所受的浮力也为,则乙液体中小铝块浸入的深度为,直接写出m,n的值.
考点9一次函数的应用:生活应用问题
37.(2025·吉林长春·中考真题)随着我国人工智能科技的快速发展,智能机器人已经走进我们的生活.某快递公司使用甲、乙两台不同型号的智能机器人进行快递分拣工作,它们工作时各自的速度均保持不变.已知某天它们同时开始工作,甲机器人工作一段时间后、停工保养.保养结束后又和乙机器人一起继续工作.甲、乙两台机器人分拣快递的总数量(件)与乙机器人工作时间(分钟)之间的函数关系如图所示.
(1)甲机器人停工保养的时间为 分钟, ;
(2)求所在直线对应的函数表达式;
(3)若该快递公司当天分拣快递的总数批为5450件,则乙机器人工作时间为 分钟.
38.(2025·吉林长春·中考真题)某校综合实践活动中,数学活动小组要研究九年级男生臂展(两臂左右平伸时两手中指指尖之间的距离)与身高的关系.小组成员在本校九年级男生中随机抽取20名男生,测量他们的臂展与身高,并对得到的数据进行了整理、描述和分析.下面给出了部分的信息:
a.20名男生的臂展与身高数据如下表:
编号 1 2 3 4 5 6 7 8 9 10
身高 166 169 169 171 172 173 173 173 174 174
臂展 161 162 164 166 164 165 167 169 169 170
编号 11 12 13 14 15 16 17 18 19 20
身高 175 176 177 177 178 179 180 180 181 183
臂展 169 167 173 172 173 170 177 174 176 185
b.20名男生臂展与身高数据的平均数、中位数、众数如下表:
平均数 中位数 众数
身高 175 m 173
臂展 170 169
c.20名男生臂展的频数分布直方图如图①:(将臂展数据分成5组:,)
d.20名男生臂展与身高的散点图如图②,活动小组发现图中大部分点落在一条直线附近的狭长带形区域内.他们利用计算机和简单统计软件得到了描述臂展与身高之间关联关系的直线.
根据以上信息,回答下列问题:
(1)写出表中、的值: , ;
(2)该校九年级有男生240人,估计其中臂展大于或等于的男生人数;
(3)图②中直线近似的函数关系式为,根据直线反映的趋势,估计身高为男生的臂展长度.
考点10一次函数与几何变化规律
39.(2025·黑龙江·中考真题)如图,在平面直角坐标系中,直线交轴于点,交y轴于点.四边形,,,,都是正方形,顶点,,,,都在轴上,顶点,,,,都在直线上,连接,,,,分别交,,,,于点,,,,.设,,,,…的面积分别为,,,,,则 .
40.(2025·四川德阳·中考真题)如图,在平面直角坐标系中,,,点在直线上,且,连接,,将绕点顺时针旋转到,点的对应点落在直线上,再将绕点顺时针旋转到,点的对应点也落在直线上.如此下去,…,则的纵坐标是 .
考点11一次函数与几何综合问题
41.(2025·辽宁·中考真题)如图,在平面直角坐标系中,直线与轴相交于点,与轴相交于点,点在线段上(不与点,重合),过点作的垂线,与直线相交于点,点关于直线的对称点为,连接.
(1)求证:;
(2)设点的坐标为,当时,线段与线段相交于点,求四边形面积的最大值.
考点12一次函数与新定义问题
42.(2025·湖南长沙·中考真题)我们约定:当满足,且时,称点与点为一对“对偶点”.若某函数图象上至少存在一对“对偶点”,就称该函数为“对偶函数”.请你根据该约定,解答下列问题:
(1)请你判断下列说法是否正确(在题后相应的括号中,正确的打“√”,错误的打“×”):
①函数(k是非零常数)的图象上存在无数对“对偶点”;( )
②函数一定不是“对偶函数”;( )
③函数的图象上至少存在两对“对偶点”.( )
(2)若关于x的一次函数与(都是常数,且)均是“对偶函数”,求这两个函数的图象分别与两坐标轴围成的平面图形的面积之和;
(3)若关于x的二次函数是“对偶函数”,求实数a的取值范围.
43.(2025·江西·中考真题)问题背景:对于一个函数,如果存在自变量时,其对应的函数值,那么我们称该函数为“不动点函数”,点为该函数图象上的一个不动点.例如:在函数中,当时,,则我们称函数为“不动点函数”,点为该函数图象上的一个不动点.某数学兴趣小组围绕该定义,对一次函数和二次函数进行了相关探究.
探究1
(1)对一次函数进行探究后,得出下列结论:
①是“不动点函数”,且只有一个不动点;
②是“不动点函数”,且不动点是;
③是“不动点函数”,且有无数个不动点.
以上结论中,你认为正确的是________(填写正确结论的序号).
(2)若一次函数是“不动点函数”,请直接写出k,b应满足的条件;
探究2:
(3)对二次函数进行探究后,该小组设计了以下问题,请你解答.若抛物线的顶点为该函数图象上的一个不动点,求b,c满足的关系式.
探究3:
(4)某种商品每件的进价为6元,在某段时间内,若以每件x元出售,可卖出件,获得利润y元.请写出y关于x的函数表达式,判断该函数是否是“不动点函数”,并说明理由;若该函数是“不动点函数”,请联系以上情境说明该函数不动点表达的实际意义.
21世纪教育网(www.21cnjy.com)/ 让教学更有效 精品试卷 | 数学学科
专题11一次函数(12大考点,精选43题)
考点概览 考点1正比例函数 考点2一次函数的性质 考点3一次函数的平移 考点4一次函数与坐标轴 考点5一次函数的应用:行程问题 考点6一次函数的应用:销售问题 考点7一次函数的应用:方案设计问题 考点8一次函数的应用:跨学科问题 考点9一次函数的应用:生活应用问题 考点10一次函数与几何变化规律 考点11一次函数与几何综合问题 考点12一次函数与新定义问题
考点1正比例函数
1.(2025·上海·中考真题)下列函数中,为正比例函数的是( )
A. B. C. D.
【答案】D
【分析】本题考查了正比例函数的定义,形如(为常数且)的函数是正比例函数;根据此定义逐一验证各选项是否符合该形式即可.
【详解】解:A:,该函数含常数项“”,不符合正比例函数的形式,不符合题意;
B:,该函数为二次函数(最高次数为2),而正比例函数为一次函数,不符合题意;
C:,该函数可写为,属于反比例函数,不符合一次函数的形式,不符合题意;
D:,该函数可化简为,符合()的形式,是正比例函数,符合题意;
故答案为:D.
2.(2025·吉林长春·中考真题)已知点、在同一正比例函数的图象上,则下列结论正确的是( )
A. B. C. D.
【答案】A
【分析】本题考查了反比例函数的图象和性质,根据反比例函数的图象和性质判断即可求解,掌握反比例函数的图象和性质是解题的关键.
【详解】解:∵点、在同一正比例函数的图象上,
∴,,
∴,
∵,
∴正比例函数的图象经过二、四象限,当时,当时,
∵,
∴,,
∴选项正确,选项错误,
故选:.
3.(2025·江西·中考真题)在趣味跳高比赛中,规定跳跃高度与自己身高的比值最大的同学为获胜者.甲、乙、丙、丁四位同学的跳跃高度与他们身高的关系示意图如图所示,则获胜的同学是( )
A.甲 B.乙 C.丙 D.丁
【答案】A
【分析】本题考查了正比例函数的性质.根据正比例函数的性质解答即可.
【详解】解:如图,
根据题意得,
∴,
根据正比例函数的意义,值越大,图象越陡,反之图象越陡,值越大,
∴观察图象,跳跃高度与自己身高的比值最大的同学为甲,
故选:A.
4.(2025·山西·中考真题)氢气是一种绿色清洁能源,可通过电解水获得.实践小组通过实验发现,在电解水的过程中,生成物氢气的质量与分解的水的质量满足我们学过的某种函数关系.下表是一组实验数据,根据表中数据,与之间的函数关系式为( )
水的质量
氢气的质量
A. B. C. D.
【答案】C
【分析】本题考查了求函数关系式,由表格数据可得是的正比例函数,进而即可求解,由表格数据判断出函数关系是解题的关键.
【详解】解:∵,
∴与成正比例,即是的正比例函数,
∴,
故选:.
考点2一次函数的性质
5.(2025·广西·中考真题)已知一次函数的图象经过点,则( )
A.3 B.4 C.6 D.7
【答案】D
【分析】本题主要考查了一次函数的图象上点的坐标特征.将点代入一次函数解析式,解方程即可求出b的值.
【详解】解:∵ 一次函数的图象经过点,
∴ 将,代入解析式,得:
,
解得:,
故选:D.
6.(2025·山东东营·中考真题)一次函数的函数值随的增大而减小,当时的值可以是( )
A.3 B.2 C.1 D.
【答案】A
【分析】本题考查一次函数的性质,不等式的性质,熟悉一次函数的性质是解题的关键.根据一次函数的增减性可得k的取值范围,再把代入函数,从而判断函数值y的取值范围,即可得出结果.
【详解】解:∵一次函数的函数值随的增大而减小,
∴,
∴当时,,
选项中只有3符合要求,
故选:A.
7.(2025·江苏苏州·中考真题)过两点画一次函数的图像,已知点A的坐标为,则点B的坐标可以为 .(填一个符合要求的点的坐标即可)
【答案】(答案不唯一)
【分析】本题考查一次函数图象上的点,根据一次函数上的点的横纵坐标满足函数解析式,可以令,求出函数值,进而得到点B的坐标即可.
【详解】解:∵,
∴当时,,
∴点B的坐标可以为;
故答案为:(答案不唯一)
8.(2025·安徽·中考真题)已知一次函数的图象经过点M,且y随x的增大而增大.若点N在该函数的图象上,则点N的坐标可以是( )
A. B. C. D.
【答案】D
【分析】根据一次函数过点得出与的关系,再结合随增大而增大得,然后将各选项坐标代入函数,判断是否符合条件 .本题主要考查了一次函数的性质与图象上点的坐标特征,熟练掌握一次函数中的意义及点坐标与函数解析式的关系是解题的关键.
【详解】∵一次函数过,
把代入得,即.
又随的增大而增大,
.
选项A:点,代入得,
把代入得,
化简得,解得,不满足,舍去.
选项B:点,代入得,
把代入得,
化简得,不满足,舍去.
选项C:点,代入得,
把代入得,
化简得,解得,不满足,舍去.
选项D:点,代入得,
把代入得,
化简得,解得,满足.
综上,只有选项D符合条件,
故选:.
9.(2025·四川广安·中考真题)已知一次函数,当时,y的值可以是 .(写出一个合理的值即可)
【答案】(答案不唯一)
【分析】本题考查了一次函数图象上点的坐标特征.取求得的值,即可求解.
【详解】解:当时,,
∴的值可以是,
故答案为:(答案不唯一).
10.(2025·山东东营·中考真题)一次函数的函数值y随x的增大而减小,当时,y的值可以是( ).
A.3 B.2 C.1 D.
【答案】A
【分析】本题考查一次函数的性质,不等式的性质,熟悉一次函数的性质是解题的关键.根据一次函数的增减性可得k的取值范围,再把代入函数,从而判断函数值y的取值范围,即可得出结果.
【详解】解:∵一次函数的函数值随的增大而减小,
∴,
∴当时,,
选项中只有3符合要求,
故选:A.
11.(2025·湖北·中考真题)已知一次函数随的增大而增大.写出一个符合条件的的值是 .
【答案】(答案不唯一)
【分析】本题考查了一次函数性质,熟练掌握函数的性质是解题的关键.根据函数的性质,当时,y随x的增大而增大解答即可.
【详解】解:∵一次函数中随的增大而增大,
∴,
故可取.
故答案为:(答案不唯一).
12.(2025·江苏扬州·中考真题)已知,则一次函数的图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【答案】D
【分析】本题主要考查了一次函数的图象,熟练掌握一次函数的图象特点是解题关键.先根据可得,从而可得,再可得,然后根据一次函数的图象特点即可得.
【详解】解:∵,
∴,
当时,,,与矛盾,
当时,, ,与矛盾,
当时,,,与矛盾,
当时,,,与矛盾,
∴,
∴,
∴一次函数的图象经过第一、二、三象限,不经过第四象限,
故选:D.
考点3一次函数的平移
13.(2025·陕西·中考真题)在平面直角坐标系中,过点,的直线向上平移3个单位长度,平移后的直线经过的点的坐标可以是( )
A. B. C. D.
【答案】B
【分析】本题考查了一次函数的平移性质,求一次函数的解析式,先根据点,,求出这条直线的解析式为,结合平移的性质,得平移后的直线解析式为,再将每个选项进行验证,即可作答.
【详解】解:设过点,的直线解析式为,
把点,分别代入,
得,
∴,
∴,
∵过点,的直线向上平移3个单位长度,
∴平移后的直线解析式为,
当时,则,
即在直线上,故B选项符合题意,故A选项不符合题意;
当时,则,
即在直线上,故D选项不符合题意;
当时,则,
即在直线上,故C选项不符合题意;
故选:B
14.(2025·天津·中考真题)将直线向上平移个单位长度,若平移后的直线经过第三、第二、第一象限,则的值可以是 (写出一个即可).
【答案】2(答案不唯一,满足即可)
【分析】本题考查一次函数图象的平移,根据直线经过的象限,求参数的范围,根据平移规则求出新的解析式,根据图象经过第三、第二、第一象限,得到,进行求解即可.
【详解】解:由题意,平移后的解析式为:,
∵平移后的直线经过第三、第二、第一象限,
∴,
∴;
∴的值可以是2;
故答案为:2(答案不唯一,满足即可)
15.(2025·河北·中考真题)在平面直角坐标系中,横、纵坐标都是整数的点称为整点.如图,正方形与正方形的顶点均为整点.若只将正方形平移,使其内部(不含边界)有且只有,,三个整点,则平移后点的对应点坐标为( )
A. B. C. D.
【答案】A
【分析】本题考查了坐标与图象,一次函数的平移,待定系数法求得直线的解析式为,根据选项判断平移方式,结合题意,即可求解.
【详解】解:设直线的解析式为,代入
∴
∴
∴直线的解析式为
∵,
A. 当为时,平移方式为向右平移个单位,向上平移个单位,
∴直线平移后的解析式为,此时经过原点,对应的经过整点,符合题意,
B. 当为时,平移方式为向右平移个单位,向上平移个单位,
∴直线平移后的解析式为,此时原点在下方,对应的在整点上方,不符合题意,
C. 当为时,平移方式为向右平移个单位,,
∴直线平移后的解析式为,此时点在正方形内部,不符合题意,
D. 当为时,平移方式为向右平移个单位,向上平移个单位,
∴直线平移后的解析式为,此时点和在正方形内部,不符合题意,
故选:A.
16.(2025·四川泸州·中考真题)如图,一次函数的图象与反比例函数的图象的一个交点为.
(1)求一次函数与反比例函数的解析式;
(2)将一次函数的图象沿轴向下平移12个单位,与反比例函数的图象相交于点,求的值.
【答案】(1);
(2)
【分析】本题主要考查了一次函数与反比例函数综合,一次函数图象的问题,熟知待定系数法求函数解析式是解题的关键.
(1)把点A坐标分别代入两个函数解析式中计算求解即可得到答案;
(2)根据“上加下减,左减右加”的平移规律可得直线解析式为,则可求出,过点A作轴交直线于T,则,再根据列式求解即可.
【详解】(1)解:∵一次函数的图象经过,
∴,
∴,
∴一次函数解析式为;
∵反比例函数的图象经过,
∴,
∴,
∴反比例函数解析式为;
(2)解:∵将一次函数的图象沿轴向下平移12个单位,与反比例函数的图象相交于点,
∴直线解析式为,
联立,解得或,
∴;
如图所示,过点A作轴交直线于T,
∵,
∴点T的横坐标为2,
在中,当时,,
∴,
∴,
∴
.
17.(2025·江西·中考真题)如图,直线与反比例函数的图象交于点.
(1)求一次函数和反比例函数解析式;
(2)将直线l向上平移,在x轴上方与反比例函数图象交于点C,连接,当时,求点C的坐标及直线l平移的距离.
【答案】(1)一次函数的解析式为,反比例函数和解析式为;
(2)点,直线l平移的距离为.
【分析】本题主要考查了一次函数和反比例函数的综合应用,求反比例函数解析式,全等三角形的判定和性质,直线的平移,解题的关键是熟练掌握待定系数法.
(1)利用待定系数法求解即可;
(2)先得到点和点关于直线对称,可求得,设直线l向上平移个单位经过点,再利用待定系数法求解即可.
【详解】(1)解:∵反比例函数的图象经过点,
∴,
∵直线经过点,
∴,
解得,
∴一次函数的解析式为,反比例函数和解析式为;
(2)解:作一三象限的角平分线,如图,
∵,∴,
根据双曲线的对称性,知点和点关于直线对称,
∴,
作轴于点,作轴于点,
∵,,,
∴,
∵,
∴,,
∴点,设直线l向上平移个单位经过点,
∴平移后的直线为,
∴,
解得,
∴直线l平移的距离为.
18.(2025·甘肃平凉·中考真题)如图,一次函数的图象交x轴于点A,交反比例函数的图象于点,将一次函数的图象向下平移个单位长度,所得的图象交x轴于点C.
(1)求反比例函数的表达式;
(2)当的面积为3时,求m的值.
【答案】(1)
(2)
【分析】本题考查了一次函数与反比例函数的交点问题,涉及了求反比例函数解析式、一次函数图象平移问题等知识点,熟记相关结论即可正确求解;
(1)由题意得:点在一次函数的图象上,可求出,即可求解;
(2)对于一次函数,令求出;一次函数的图象向下平移个单位长度后的解析式为:;求出,即可求解;
【详解】(1)解:由题意得:点在一次函数的图象上,
∴,
∴;
∵在反比例函数的图象上,
∴,
∴反比例函数的表达式为;
(2)解:对于一次函数,令,则;
∴;
一次函数的图象向下平移个单位长度后的解析式为:;
对于一次函数,令,则;
∴;
∴
∵,,
∴;
解得:.
19.(2025·甘肃·中考真题)如图,一次函数的图象交x轴于点A,交反比例函数的图象于点.将一次函数的图象向下平移个单位长度,所得的图象交x轴于点C.
(1)求反比例函数的表达式;
(2)当的面积为3时,求m的值.
【答案】(1)
(2)
【分析】本题考查了一次函数与反比例函数的交点问题,涉及了求反比例函数解析式、一次函数图象平移问题等知识点,熟记相关结论即可;
(1)由题意得:点在一次函数的图象上,可求出,即可求解;
(2)对于一次函数,令求出;一次函数的图象向下平移个单位长度后的解析式为:;求出,即可求解;
【详解】(1)解:由题意得:点在一次函数的图象上,
∴,
∴;
∵在反比例函数的图象上,
∴,
∴反比例函数的表达式为;
(2)解:对于一次函数,令,则;
∴;
一次函数的图象向下平移个单位长度后的解析式为:;
对于一次函数,令,则;
∴;
∴;
解得:
考点4一次函数与坐标轴
20.(2025·四川南充·中考真题)已知直线与直线的交点在轴上,则的值是 .
【答案】
【分析】本题考查一次函数的交点问题,由直线与直线的交点在轴上可知当时函数值相等,得到,然后代入化简即可.推导知时函数值相等是解题的关键.
【详解】解:当时,,,
∵直线与直线的交点在轴上,
∴,
∴.
21.(2025·北京·中考真题)在平面直角坐标系中,函数的图象经过点和.
(1)求k,b的值;
(2)当时,对于x的每一个值,函数的值既小于函数的值,也小于函数的值,直接写出m的取值范围.
【答案】(1)
(2)
【分析】本题主要考查了待定系数法求一次函数解析式,一次函数与不等式之间的关系,熟知一次函数的相关知识是解题的关键.
(1)直接利用待定系数法求解即可;
(2)由(1)可得函数的解析式为,函数的解析式为,当时,则,当时,则,根据当时,两个不等式都成立可得;当,时,和恒成立;当时,则且,再分当时,则,当时,则,两种情况分别解不等式即可得到答案.
【详解】(1)解:∵在平面直角坐标系中,函数的图象经过点和,
∴,
解得;
(2)解:由(1)可得函数的解析式为,函数的解析式为,
当时,则,
当时,则,
∵当时,对于x的每一个值,函数的值既小于函数的值,也小于函数的值,
∴,且,
∴,
当,时,和恒成立,故符合题意;
当时,则且,
当时,则,
解不等式得,解不等式,
∴;
当时,则,
解不等式得,解不等式得,此时不符合题意;
综上所述,.
考点5一次函数的应用:行程问题
22.(2025·黑龙江绥化·中考真题)自主研发和创新让我国的科技快速发展,“中国智造”正引领世界潮流.某科技公司计划投入一笔资金用来购买、两种型号的芯片.已知购买颗型芯片和2颗型芯片共需要元,购买颗型芯片和颗型芯片共得要元.
(1)求购买颗型芯片和颗型芯片各需要多少元.
(2)若该公司计划购买、两种型号的芯片共频,其中购买型芯片的数量不少于型芯片数量的倍.当购买型芯片多少颗时,所需资金最少,最少资金是多少元.
(3)该公司用甲、乙两辆芯片运输车,先后从地出发,沿着同一条公路匀速行驶,前往目的地,两车到达地后均停止行驶.如图,、分别是甲、乙两车离地的距离与甲车行驶的时间之间的函数关系.请根据图象信息解答下列问题:
①甲车的速度是________.
②当甲、乙两车相距时,直接写出的值________.
【答案】(1)购买颗型芯片和颗型芯片分别需要元和元
(2)当该公司购买型芯片颗,所需资金最少,最少资金是元
(3)①;②或或
【分析】本题考查了二元一次方程组的应用以及一次函数最优化问题:
(1)根据题意列方程组求解即可;
(2)结合不等式约束条件,将问题转化为求函数最小值即可;
(3)求出解析式代入计算即可;求出甲乙两车的函数解析式,分类讨论即可.
【详解】(1)设:购买颗型芯片和颗型芯片分别需要元和元
由题意得
解得
答:购买颗型芯片和颗型芯片分别需要元和元
(2)设购买型芯片颗,则购买型芯片颗,所需资金为元
由题意得:
随的增大而减小
购买型芯片的数量不少于型芯片数量的3倍,
解得
取正整数
当时,取最小值,(元)
此时
答:当该公司购买型芯片颗,所需资金最少,最少资金是元
(3)①设的解析式为
将点,代入
得
解得
所以,的解析式为,
当时,
所以,甲车的速度为
②的解析式为
将点代入
得,解得
所以的解析式为
当函数的图象在函数上方时
可列方程
解得
当函数的图象在函数下方时
可列方程
解得
当甲车到达地,乙离目的地时,
可列方程
解得
综上所述,的值为:或或.
23.(2025·天津·中考真题)已知小华的家、书店、公园依次在同一条直线上,书店离家,公园离家.小华从家出发,先匀速步行了到书店,在书店停留了,之后匀速步行了到公园,在公园停留后,再用匀速跑步返回家.下面图中表示时间,表示离家的距离.图象反映了这个过程中小华离家的距离与时间之间的对应关系.
请根据相关信息,回答下列问题:
(1)①填表:
小华离开家的时间 1 6 18 50
小华离家的距离
②填空:小华从公园返回家的速度为____________;
③当时,请直接写出小华离家的距离关于时间的函数解析式;
(2)若小华的妈妈与小华同时从家出发,小华的妈妈以的速度散步直接到公园.在从家到公园的过程中,对于同一个的值,小华离家的距离为,小华的妈妈离家的距离为,当时,求的取值范围(直接写出结果即可).
【答案】(1)①②③
(2)
【分析】本题主要考查了函数的图形,数形结合的数学思想,求分段函数的解析式,一次函数和不等式相结合等内容,解题的关键是准确从图形中获取信息.
(1)①理解题意,从图形中获取准确信息即可;
②理解题意,从图形中获取准确信息利用速度公式进行计算即可;
③理解题意,从图形中获取准确信息,并利用待定系数法进行分段求函数解析式即可;
(2)求出相关解析式,列出等式求解,并结合图形即可求出不等式的解集.
【详解】(1)解:①小华去书店的速度为,
1分钟时小华离家的距离为;
由图可知18分钟时,小华离家的距离为;
50分钟时,小华离家的距离为;
故答案为:;
②小华返回家的速度为
故答案为:;
③由①得小华去书店的速度为,
∴当时,;
由图可知,当时,;
当时,假设直线解析式为,
将代入解析式得,
解得
∴;
综上,;
(2)解:如图所示,为妈妈的图形,
根据题意可知,小华妈妈的速度为,
所以其直线解析式为,
当时,
令,
解得,经验证,符合题意;
令,
解得,经验证,符合题意;
结合图形,当时,.
24.(2025·黑龙江·中考真题)一条公路上依次有A、B、C三地,一辆轿车从A地出发途经B地接人,停留一段时间后原速驶往C地;一辆货车从C地出发,送货到达B地后立即原路原速返回C地(卸货时间忽略不计).两车同时出发,轿车比货车晚到达终点,两车均按各自速度匀速行驶.如图是轿车和货车距各自出发地的距离y(单位:)与轿车的行驶时间x(单位:h)之间的函数图象,结合图象回答下列问题:
(1)图中a的值是_______,b的值是_______;
(2)在货车从B地返回C地的过程中,求货车距出发地的距离y(单位:)与行驶时间x(单位:h)之间的函数解析式;
(3)直接写出轿车出发多长时间与货车相距40.
【答案】(1)300,2
(2)
(3)或或
【分析】本题考查一次函数的实际应用,从函数图象中有效的获取信息,正确的求出函数解析式,是解题的关键:
(1)根据货车的图象得到B、C两地的距离为,进而求出的值,求出轿车的速度,求出轿车从开往地所需的时间,进而求出的值;
(2)根据轿车比货车晚到达终点,求出点坐标,进而求出点坐标,待定系数法求出函数解析式即可;
(3)分轿车到达地之前,轿车到达地,货车离地,以及货车到达地时,三种情况进行讨论求解即可.
【详解】(1)解:由图象可知,B、C两地的距离为,A、B两地的距离为,
∴,
∵轿车的速度为:,
∴轿车从开往地所需的时间为:,
∴;
故答案为:300,2;
(2)∵轿车比货车晚到达终点,
∴货车到达地所用时间为:,
∴,
∵货车从C地出发,送货到达B地后立即原路原速返回C地,
∴,
设,
∴,解得:,
∴;
(3)由(2)可知,货车的速度为:,
∴当轿车到达地之前,,解得:;
当轿车到达地,货车离地时,,则:符合题意;
当货车到达地时,此时轿车离点的距离为:,恰好满足题意,此时;
综上:轿车出发或或时与货车相距40.
25.(2025·黑龙江齐齐哈尔·中考真题)2025年春晚舞台上的机器人表演,充分演绎了科技与民族文化的完美融合.为满足学生的好奇心和求知欲,某校组织科技活动“机器人走进校园”,AI热情瞬间燃爆.校园里一条笔直的“勤学路”上依次设置了A,B,C三个互动区,机器人甲、乙分别从A,C两区同时出发开始表演,机器人甲沿“勤学路”以20米/分的速度匀速向B区行进,行至B区时停留4.5分钟(与师生热情互动)后,继续沿“勤学路”向C区匀速行进,机器人乙沿“勤学路”以10米/分的速度匀速向B区行进,行至B区时接到指令立即匀速返回,结果两机器人同时到达C区.机器人甲、乙距B区的距离y(米)与机器人乙行进的时间x(分)之间的函数关系如图所示,请结合图象信息解答下列问题:
(1)A,C两区相距__________米,__________;
(2)求线段所在直线的函数解析式;
(3)机器人乙行进的时间为多少分时,机器人甲、乙相距30米?(直接写出答案即可)
【答案】(1)
(2)
(3)7分或11分或13分
【分析】本题主要考查一次函数的应用和从函数图象获取信息,熟练掌握一次函数的应用是解题的关键.
(1)根据图象可直接进行求解A、C两区之间的距离,然后再结合甲的行进情况可求解a;
(2)求出,由图象可得,设直线的解析式为,进而问题可求解;
(3)由题意可分三种情况分别进行求解即可.
【详解】(1)解:由题意可得,A,C两区相距为(米),
由题意可知,表示甲到达B区的时间,则,
故答案为:
(2)由题意可知,点E表示机器人乙沿“勤学路”以10米/分的速度匀速到达了B区,
∴点E的横坐标为,
∴,
设直线的解析式为,把,代入得到,
,解得:,
∴线段所在直线的函数解析式为:;
(3)机器人乙行进的时间为x分时,甲和乙都未到达B区,相距30米,
则,
解得,
即机器人乙行进的时间为分时,机器人甲、乙相距30米;
机器人乙行进的时间为t分时,从B点返回,且甲仍在B区停留期间,相距30米,
则,
解得,
即机器人乙行进的时间为分时,机器人甲、乙相距30米;
机器人乙行进的时间为n分时,从B点返回途中,且甲离开B区向C区前进时,相距30米,
当时,甲机器人距B区的距离y(米)与机器人乙行进的时间x(分)之间的函数关系为,把,代入得到,
,解得:,
∴线段所在直线的函数解析式为:;
则,
解得,
即机器人乙行进的时间为分时,机器人甲、乙相距30米;
综上可知,机器人乙行进的时间7分或11分或13分时,机器人甲、乙相距30米.
考点6一次函数的应用:销售问题
26.(2025·黑龙江·中考真题)2024年8月6日,第十二届世界运动会口号“运动无限,气象万千”在京发布,吉祥物“蜀宝”和“锦仔”亮相.第一中学为鼓励学生积极参加体育活动,准备购买“蜀宝”和“锦仔”奖励在活动中表现优秀的学生.已知购买3个“蜀宝”和1个“锦仔”共需花费332元,购买2个“蜀宝”和3个“锦仔”共需380元.
(1)购买一个“蜀宝”和一个“锦仔”分别需要多少元?
(2)若学校计划购买这两种吉祥物共30个,投入资金不少于2160元又不多于2200元,有哪几种购买方案?
(3)设学校投入资金W元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?
【答案】(1)购买一个“蜀宝”和一个“锦仔”分别需要元和元
(2)方案一:购买“蜀宝”个,购买“锦仔”个;方案二:购买“蜀宝”个,购买“锦仔”个;方案三:购买“蜀宝”个,购买“锦仔”个;
(3)方案一需要的资金最少,最少资金是2160元
【分析】本题考查二元一次方程组的实际应用,一元一次不等式组的实际应用,一次函数的实际应用,正确的列出方程组,不等式组和一次函数的解析式,是解题的关键:
(1)设购买一个“蜀宝”和一个“锦仔”分别需要元和元,根据购买3个“蜀宝”和1个“锦仔”共需花费332元,购买2个“蜀宝”和3个“锦仔”共需380元,列出方程组进行求解即可;
(2)设购买“蜀宝”个,根据投入资金不少于2160元又不多于2200元,列出不等式组,进行求解即可;
(3)根据投入资金等于两种吉祥物的费用之和,列出函数关系式,利用一次函数的性质,进行求解即可.
【详解】(1)解:设购买一个“蜀宝”和一个“锦仔”分别需要元和元,由题意,得:
,解得:;
答:购买一个“蜀宝”和一个“锦仔”分别需要元和元;
(2)解:设购买“蜀宝”个,则:购买“锦仔”个;
∴,
解得:,
∴,
;
∴共有3种方案:
方案一:购买“蜀宝”个,购买“锦仔”个;
方案二:购买“蜀宝”个,购买“锦仔”个;
方案三:购买“蜀宝”个,购买“锦仔”个;
(3)解:由题意,得:,
∴随着的增大而增大,
∴当时,即方案一需要的资金最少,最少资金是(元);
答:方案一需要的资金最少,最少资金是2160元.
27.(2025·山东烟台·中考真题)2025年6月5日是第54个“世界环境日”,为打造绿色低碳社区,某社区决定购买甲、乙两种太阳能路灯安装在社区公共区域,升级改造现有照明系统.已知购买1盏甲种路灯和2盏乙种路灯共需220元,购买3盏甲种路灯比4盏乙种路灯的费用少140元.
(1)求甲、乙两种路灯的单价;
(2)该社区计划购买甲、乙两种路灯共40盏,且甲种路灯的数量不超过乙种路灯数量的,请通过计算设计一种购买方案,使所需费用最少.
【答案】(1)甲、乙两种路灯的单价分别为元,元
(2)购买甲种路灯盏,购买乙种路灯盏,费用最少
【分析】本题考查了二元一次方程组以及一元一次不等式、一次函数的应用,根据题意列出方程组,不等式以及一次函数关系式是解题的关键;
(1)设甲、乙两种路灯的单价分别为元,根据题意列出方程组,即可求解;
(2)设购买甲种路灯盏,则购买乙种路灯盏,列出不等式,求得,设购买费用为元,得出,进而根据一次函数的性质,即可求解.
【详解】(1)解:设甲、乙两种路灯的单价分别为元,根据题意得,
解得:
答:甲、乙两种路灯的单价分别为,元
(2)解:设购买甲种路灯盏,则购买乙种路灯盏,根据题意得,
解得:
设购买费用为元,根据题意得,
∵
∴当取得最大值时,取得最小值,
∴时,(盏),
即购买甲种路灯盏,购买乙种路灯盏,费用最少,
答:购买甲种路灯盏,购买乙种路灯盏,费用最少.
28.(2025·四川眉山·中考真题)国家卫健委在全民健康调查中发现,近年来的肥胖人群快速增长,为加强对健康饮食的重视,特发布各地区四季健康饮食食谱.现有A、B两种食品,每份食品的质量为,其核心营养素如下:
食品类别 能量(单位:) 蛋白质(单位:) 脂肪(单位:) 碳水化合物(单位:)
A 240 12 7.5 29.8
B 280 13 9 27.6
(1)若要从这两种食品中摄入能量和蛋白质,应选用A、B两种食品各多少份?
(2)若每份午餐选用这两种食品共,从A、B两种食品中摄入的蛋白质总量不低于,且能量最低,应选用A、B两种食品各多少份?
【答案】(1)选用A、B两种食品分别为份和2份;
(2)应选用A、B两种食品分别为2份和份;
【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,正确掌握相关性质内容是解题的关键.
(1)先设选用A、B两种食品分别为份和份,结合选用A、B两种食品分别为份和份,列出方程组,进行计算,即可作答.
(2)结合每份食品的质量为,每份午餐选用这两种食品共,则选用B种食品份,再列出不等式,得,然后设能量为,则,运用一次函数的性质进行作答即可.
【详解】(1)解:设选用A、B两种食品分别为份和份,
∵这两种食品中摄入能量和蛋白质,
∴,
∴,
∴选用A、B两种食品分别为份和2份;
(2)解:设选用A种食品份,
依题意,,
即选用B种食品份,
则
,
解得,
设能量为,
则
∵,
∴随的增大而减小,
∴当时能量最低,
即,
∴应选用A、B两种食品分别为2份和份.
29.(2025·四川广安·中考真题)某景区需要购买A,B两种型号的帐篷.已知用1800元购买A种帐篷的数量与用3000元购买B种帐篷的数量相等,且B种帐篷的单价比A种帐篷的单价多400元.
(1)求A,B两种帐篷的单价各多少元?
(2)若该景区需要购买A,B两种型号的帐篷共20顶(两种型号的帐篷均需购买),且购买B种型号帐篷的数量不少于A种型号帐篷数量的,则购买A,B两种型号的帐篷各多少顶时,总费用最低?最低总费用是多少元?
【答案】(1)A种帐篷的单价为600元,B种帐篷的单价为1000元
(2)当购买A种帐篷15顶,B种帐篷5顶时,总费用最低,最低总费用为14000元
【分析】本题主要考查了分式方程的实际应用,一元一次不等式的实际应用,一次函数的实际应用,正确理解题意列出方程,不等式和函数关系式是解题的关键.
(1)设A种帐篷的单价为x元,则B种帐篷的单价为元,根据用1800元购买A种帐篷的数量与用3000元购买B种帐篷的数量相等建立方程求解即可;
(2)设购买A种帐篷m顶,则B种帐篷顶,总费用为W元,根据购买B种型号帐篷的数量不少于A种型号帐篷数量的列出不等式求出m的取值范围,再列出W关于m的一次函数关系式,利用一次函数的性质求解即可.
【详解】(1)解:设A种帐篷的单价为x元,则B种帐篷的单价为元.
由题意得:,
解得:
经检验:符合题意,
,
答:A种帐篷的单价为600元,B种帐篷的单价为1000元.
(2)解:设购买A种帐篷m顶,则B种帐篷顶,总费用为W元.
由题意得:,
解得:.
又两种型号的帐篷均需购买,
.
,
,
随m的增大而减小
当时,W取最小值,,
此时,
答:当购买A种帐篷15顶,B种帐篷5顶时,总费用最低,最低总费用为14000元.
考点7一次函数的应用:方案设计问题
30.(2025·四川德阳·中考真题)中江挂面以“细如发丝、清如白玉、耐煮不糊、入口绵软”闻名遐迩,其独特的空心技艺传承千年,从揉面、开条、上筷到拉扯成型,需经十余道古法工序.数学兴趣小组走进某老字号挂面厂进行调研,已知购买2袋A型与2袋B型挂面共需费用100元,购买3袋A型与2袋B型挂面共需费用120元.
(1)A型、B型挂面的单价分别是多少元?
(2)为进一步推广此非遗美食,兴趣小组决定购买A、B两种型号挂面共40袋.在单价不变,总费用不超过950元,且B型挂面不少于10袋的条件下,共有几种购买方案?其中最低花费多少元?
【答案】(1)A型挂面每袋20元,B型挂面每袋30元
(2)共有6种购买方案,最低费用为900元
【分析】本题考查了运用二元一次方程组解应用题,以及综合运用一次函数和一元一次不等式设计方案问题.根据题意列出方程组,不等式组以及一次函数的关系式是解题的关键.
(1)设A型挂面每袋x元,B型挂面每袋y元.根据题意列二元一次方程组求解即可;
(2)设A型挂面每袋x元,B型挂面每袋y元.先根据题意列不等式组求出a的范围为,再根据题意列出w与a的函数关系式为,根据一次函数的增减性可得时,w有最小值,据此求解即可.
【详解】(1)解:设A型挂面每袋x元,B型挂面每袋y元.
则,
得.
答:A型挂面每袋20元,B型挂面每袋30元.
(2)解:设购买B型挂面a袋,则购买A型挂面的数量为袋,总费用为w元.
则,
解得,
又a为正整数,
,11,12,13,14,15.
由题意得.
,
w随a的增大而增大,
时,w有最小值,最小值为(元).
答:共有6种购买方案,最低费用为900元.
31.(2025·江苏连云港·中考真题)如图,制作甲、乙两种无盖的长方体纸盒,需用正方形和长方形两种硬纸片,且长方形的宽与正方形的边长相等.
(1)现用200张正方形硬纸片和400张长方形硬纸片,恰好能制作甲、乙两种纸盒各多少个
(2)如果需要制作100个长方体纸盒,要求乙种纸盒数量不低于甲种纸盒数量的一半,那么至少需要多少张正方形硬纸片
【答案】(1)恰好能制作甲种纸盒40个,乙种纸盒80个
(2)至少需要134张正方形硬纸片
【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,正确掌握相关性质内容是解题的关键.
(1)先设恰好能制作甲种纸盒x个,乙种纸盒y个.结合题意列出方程组,再解得,即可作答.
(2)先设制作乙种纸盒m个,需要w张正方形硬纸片.根据题意列出,结合,得,其中最小整数解为34.运用一次函数的图象性质进行分析作答即可.
【详解】(1)解:制作甲、乙两种无盖的长方体纸盒,甲种需要1个正方形,4个长方形,乙种需要2个正方形,3个长方形,
设恰好能制作甲种纸盒x个,乙种纸盒y个.
根据题意,得,
得,
答:恰好能制作甲种纸盒40个,乙种纸盒80个.
(2)解:设制作乙种纸盒m个,需要w张正方形硬纸片.
则.
由,知w随m的增大而增大,
∴当m最小时,w有最小值.
根据题意,得,
解得,
其中最小整数解为34.
即当时,.
答:至少需要134张正方形硬纸片.
32.(2025·广东深圳·中考真题)某学校采购体育用品,需要购买三种球类.已知某体育用品商店排球的单价为30元/个,篮球,足球的价格如下表:
①篮球、足球、排球各买一个的价格为140元
②购买2个足球的价格比购买一个篮球多花费40元
③购买5个篮球与购买6个足球花费相同
(1)请你从上述3个条件中任选2个作为条件,求出篮球和足球的单价;
(2)若该学校要购买篮球,足球共10个,且足球的个数不超过篮球个数的2倍,请问购买多少个篮球时,花费最少,最少费用是多少?
【答案】(1)每个篮球60元,每个足球50元
(2)当购买篮球4个的时候,所花费用最少
【分析】本题考查二元一次方程组,一元一次不等式,一次函数的实际应用,正确的列出方程组,不等式和一次函数解析式,是解题的关键:
(1)设每个篮球元,每个足球元,根据表格信息,列出二元一次方程组进行求解即可;
(2)设蓝球有个,购买的总费用是元,根据题意,列出不等式求出的范围,列出一次函数解析式,根据一次函数的性质,求最值即可.
【详解】(1)解:设每个篮球元,每个足球元,由题意,得:
或或,(三个方程组任选一个即可)
解得:;
答:每个篮球60元,每个足球50元.
(2)设蓝球有个,则足球有个
,
解得:,
设购买的总费用是元,
,
,
随着的减小而减小;
∵且为整数,
当最小值为4时,最小值为540元;
答:当购买篮球4个的时候,所花费用最少.
33.(2025·云南·中考真题)请你根据下列素材,完成有关任务.
背景 某校计划购买篮球和排球,供更多学生参加体育锻炼,增强身体素质.
素材一 购买个篮球与购买个排球需要的费用相等;
素材二 购买个篮球和个排球共需元;
素材三 该校计划购买篮球和排球共个,篮球和排球均需购买,且购买排球的个数不超过购买篮球个数的倍.
请完成下列任务:
任务一 每个篮球,每个排球的价格分别是多少元?
任务二 给出最节省费用的购买方案.
【答案】任务一:每个篮球元,每个排球元;任务二:购买篮球个,排球个,最节省费用.
【分析】本题考查了二元一次方程组的应用,一元一次不等式组的应用,一次函数的应用,掌握知识点的应用是解题的关键.
任务一:设每个篮球元,每个排球元,根据题意得,然后解方程组即可;
任务二:设购买篮球个,则购买排球个,费用为元,根据题意得,求出的取值范围,由,可得随的增大而增大,则当时,有最小值,从而求解.
【详解】解:任务一:设每个篮球元,每个排球元,
根据题意得:,
解得:,
答:每个篮球元,每个排球元;
任务二:设购买篮球个,则购买排球个,总的费用为元,
根据题意得:,
∴且a为整数,
∴,
∵
∴随的增大而增大,
∴当时,有最小值,为元,此时,
答:购买篮球个,排球个,最节省费用.
34.(2025·山东·中考真题)山东省在能源绿色低碳转型过程中,探索出一条“以储调绿”的能源转型路径.某地结合实际情况,建立了一座圆柱形蓄水池,通过蓄水发电实现低峰蓄能、高峰释能,助力能源转型.
已知本次注水前蓄水池的水位高度为5米,注水时水位高度每小时上升6米.
(1)请写出本次注水过程中,蓄水池的水位高度y(米)与注水时间x(小时)之间的关系式;
(2)已知蓄水池的底面积为万平方米,每立方米的水可供发电千瓦时,求注水多长时间可供发电万千瓦时?
【答案】(1)
(2)注水5小时可供发电万千瓦时.
【分析】本题考查一次函数的应用、一元一次方程的应用等知识点,正确列出函数解析式和方程是解题的关键.
(1)根据蓄水池的水位高度等于注水时水位每小时升高的高度乘以注水时间与本次注水前蓄水池的水位高度的和,据此列出函数关系式即可;
(2)根据y与x的函数关系式以及已知条件列关于x的一元一次方程并求解即可.
【详解】(1)解:由题意可得:蓄水池的水位高度y(米)与注水时间x(小时)之间的关系式.
(2)解:根据题意,得,
解得.
答:注水5小时可供发电万千瓦时.
考点8一次函数的应用:跨学科问题
35.(2025·陕西·中考真题)研究表明,一定质量的气体,在压强不变的条件下,气体体积与气体温度成一次函数关系.某实验室在压强不变的条件下,对一定质量的某种气体进行加热,测得的部分数据如下表:
气体温度 … 25 30 35 …
气体体积 … 596 606 616 …
(1)求与的函数关系式;
(2)为满足下一步的实验需求,本次实验要求气体体积达到时停止加热.求停止加热时的气体温度.
【答案】(1)
(2)
【分析】该题考查了一次函数的应用,解题的关键是理解题意.
(1)根据待定系数法求解即可;
(2)令,求解即可.
【详解】(1)解:设与的函数关系式为,
则,解得,
故与的函数关系式为.
(2)解:令,
则,解得:,
答:停止加热时的气体温度为.
36.(2025·吉林·中考真题)【知识链接】实验目的:探究浮力的大小与哪些因素有关
实验过程:如图①,在两个完全相同的溢水杯中,分别盛满甲、乙两种不同密度的液体,将完全相同的两个质地均匀的圆柱体小铝块分别悬挂在弹簧测力计A,B的下方,从离桌面20cm的高度,分别缓慢浸入到甲、乙两种液体中,通过观察弹簧测力计示数的变化,探究浮力大小的变化.(溢水杯的杯底厚度忽略不计)
实验结论:物体在液体中所受浮力的大小,跟它浸在液体中的体积有关、跟液体的
密度有关.物体浸在液体中的体积越大、液体的密度越大,浮力就越大.
总结公式:当小铝块位于液面上方时,;
当小铝块浸入液面后,.
【建立模型】在实验探究的过程中,实验小组发现:弹簧测力计A,B各自的示数与小铝块各自下降的高度之间的关系如图②所示.
【解决问题】
(1)当小铝块下降10cm时,直接写出弹簧测力计A和弹簧测力计B的示数.
(2)当时,求弹簧测力计A的示数关于x的函数解析式.
(3)当弹簧测力计A悬挂的小铝块下降8cm时,甲液体中的小铝块受到的浮力为,若使乙液体中的小铝块所受的浮力也为,则乙液体中小铝块浸入的深度为,直接写出m,n的值.
【答案】(1)弹簧测力计A的示数为,弹簧测力计B的示数为;
(2);
(3),.
【分析】本题考查了一次函数的应用.
(1)直接根据图②作答即可;
(2)设当时,弹簧测力计A的示数关于x的函数解析式为,别将,代入计算即可;
(3)由题意可知小铝重为,将代入得,将变形即可求出,求出当时,弹簧测力计B的示数关于x的函数解析式为,将代入计算即可.
【详解】(1)解:由图②可知,当小铝块下降10cm时,弹簧测力计A的示数为,弹簧测力计B的示数为;
(2)解:设当时,弹簧测力计A的示数关于x的函数解析式为,
由图可知经过,
分别将,代入得:
,
解得:,
∴;
(3)解:由题意可知小铝重为,
将代入得,
则,即;
则使乙液体中的小铝块所受的浮力为,
∴,
设当时,弹簧测力计B的示数关于x的函数解析式为,
由图可知经过,
分别将,代入得:
,
解得:,
即,
将代入得:,
解得:,
∴深度为.
考点9一次函数的应用:生活应用问题
37.(2025·吉林长春·中考真题)随着我国人工智能科技的快速发展,智能机器人已经走进我们的生活.某快递公司使用甲、乙两台不同型号的智能机器人进行快递分拣工作,它们工作时各自的速度均保持不变.已知某天它们同时开始工作,甲机器人工作一段时间后、停工保养.保养结束后又和乙机器人一起继续工作.甲、乙两台机器人分拣快递的总数量(件)与乙机器人工作时间(分钟)之间的函数关系如图所示.
(1)甲机器人停工保养的时间为 分钟, ;
(2)求所在直线对应的函数表达式;
(3)若该快递公司当天分拣快递的总数批为5450件,则乙机器人工作时间为 分钟.
【答案】(1),
(2)
(3)该快递公司当天分拣快递的总数批为5450件,则乙机器人工作时间为分钟.
【分析】本题考查的是一次函数的实际应用;
(1)由图象可得:甲机器人停工保养的时间,再计算甲乙机器人的工作效率,再列式计算求解的值即可;
(2)由甲乙机器人的效率为每分钟件,可得所在直线对应的函数表达式为:,再化简即可;
(3)把代入,进一步即可得到答案.
【详解】(1)解:由图象可得:甲机器人停工保养的时间为分钟;
∵,
∴(件);
(2)解:∵甲乙机器人的效率为每分钟件,
∴所在直线对应的函数表达式为:;
(3)解:当时,
∴,
解得:,
∴该快递公司当天分拣快递的总数批为5450件,则乙机器人工作时间为分钟.
38.(2025·吉林长春·中考真题)某校综合实践活动中,数学活动小组要研究九年级男生臂展(两臂左右平伸时两手中指指尖之间的距离)与身高的关系.小组成员在本校九年级男生中随机抽取20名男生,测量他们的臂展与身高,并对得到的数据进行了整理、描述和分析.下面给出了部分的信息:
a.20名男生的臂展与身高数据如下表:
编号 1 2 3 4 5 6 7 8 9 10
身高 166 169 169 171 172 173 173 173 174 174
臂展 161 162 164 166 164 165 167 169 169 170
编号 11 12 13 14 15 16 17 18 19 20
身高 175 176 177 177 178 179 180 180 181 183
臂展 169 167 173 172 173 170 177 174 176 185
b.20名男生臂展与身高数据的平均数、中位数、众数如下表:
平均数 中位数 众数
身高 175 m 173
臂展 170 169
c.20名男生臂展的频数分布直方图如图①:(将臂展数据分成5组:,)
d.20名男生臂展与身高的散点图如图②,活动小组发现图中大部分点落在一条直线附近的狭长带形区域内.他们利用计算机和简单统计软件得到了描述臂展与身高之间关联关系的直线.
根据以上信息,回答下列问题:
(1)写出表中、的值: , ;
(2)该校九年级有男生240人,估计其中臂展大于或等于的男生人数;
(3)图②中直线近似的函数关系式为,根据直线反映的趋势,估计身高为男生的臂展长度.
【答案】(1);
(2)人
(3)身高为男生的臂展长度约为.
【分析】本题考查的是从统计图表,以及函数图象中获取信息,利用样本估计总体;
(1)根据中位数与众数的含义可得答案;
(2)由表格信息可得臂展大于或等于170cm的男生人数的占比为,再乘以总人数即可;
(3)把代入即可得到答案.
【详解】(1)解:由表格信息可得:;
;
(2)解:该校九年级有男生240人,估计臂展大于或等于170cm的男生人数为:
(人);
(3)解:∵,
当时,,
∴身高为男生的臂展长度约为.
考点10一次函数与几何变化规律
39.(2025·黑龙江·中考真题)如图,在平面直角坐标系中,直线交轴于点,交y轴于点.四边形,,,,都是正方形,顶点,,,,都在轴上,顶点,,,,都在直线上,连接,,,,分别交,,,,于点,,,,.设,,,,…的面积分别为,,,,,则 .
【答案】
【分析】根据一次函数的解析式可得点的坐标是,设点的坐标是,根据正方形的四条边都相等可得,从而求出正方形的边长为,根据正方形的对边相互平行,可知,根据相似三角形的性质求出,从而可得,利用三角形的面积公式可以求出,同理可以求出,根据两边对应成比例且夹角相等的两个三角形相似,可证,且相似比为,根据规律可得.
【详解】解:当时,,
点的坐标是,
点在直线上,
设点的坐标是,
则点的坐标是,点的坐标是,
四边形是正方形,
,,
,
解得:,
的坐标是,
正方形的边长为,
,
,
,
,
,
,
解得:,
,
;
设点的坐标为,
则点的坐标是,点的坐标是,
,
四边形是正方形,
,,
,
解得:,
,
的坐标是,
,
,
,
,
,
,
解得:,
,
,
的坐标是,的坐标是,
,
的坐标是,点的坐标是,
,
,,
,
又四边形和均为正方形,
轴,轴,
,
,
,且相似比为,
,
当时,,
同理可证,且相似比为,
则,
,
.
故答案为:.
【点睛】本题主要考查了一次函数的图象与性质、正方形的性质、相似三角形的判定与性质、图形的规律与探索,解决本题的关键是分别计算出和的面积,根据这两个三角形的形状与面积之间的关系找出规律,根据规律得出结果.
40.(2025·四川德阳·中考真题)如图,在平面直角坐标系中,,,点在直线上,且,连接,,将绕点顺时针旋转到,点的对应点落在直线上,再将绕点顺时针旋转到,点的对应点也落在直线上.如此下去,…,则的纵坐标是 .
【答案】
【分析】本题考查了解直角三角形,一次函数图象上点的坐标特征,旋转性质,勾股定理,设直线与轴交于点,分别过作轴,轴,垂足分别为点,求出点,由,,则,,则有,由勾股定理得,由旋转性质可知,,所以,故有,即的纵坐标为,同理的纵坐标为,由,可判断在直线上,所以的纵坐标为,从而求解,掌握知识点的应用是解题的关键.
【详解】解:如图,设直线与轴交于点,分别过作轴,轴,垂足分别为点,
由直线得,当时,,
∴点,
∴,
∵,,
∴,,由勾股定理得,
∴,,
∴,,
∴,
∴,
由旋转性质可知:,,
∴,
∴,即的纵坐标为,
同理的纵坐标为,
∵,
∴在直线上,
∴的纵坐标为,
故答案为:.
考点11一次函数与几何综合问题
41.(2025·辽宁·中考真题)如图,在平面直角坐标系中,直线与轴相交于点,与轴相交于点,点在线段上(不与点,重合),过点作的垂线,与直线相交于点,点关于直线的对称点为,连接.
(1)求证:;
(2)设点的坐标为,当时,线段与线段相交于点,求四边形面积的最大值.
【答案】(1)见解析
(2)四边形面积的最大值为.
【分析】(1)先求得,,得到,,利用等腰直角三角形的性质即可证明结论成立;
(2)由题意得,,根据折叠的性质得,,利用等腰直角三角形的判定和性质求得,,再利用梯形的面积公式求得四边形面积关于的二次函数,利用二次函数的性质求解即可.
【详解】(1)证明:对于直线,
令,则;令,则,
∴,,
∴,,
∵,
∴;
(2)解:∵点的坐标为,
∴,,
∵点关于直线的对称点为,
∴,,
∴,
∵,
∴,
∴,
∵,
∴,
∴,
∴四边形面积
∵,
∴当,四边形面积有最大值,最大值为.
【点睛】本题考查了一次函数的性质,二次函数的性质,等腰直角三角形的判定和性质.第2问求得四边形面积关于的二次函数的解析式是解题的关键.
考点12一次函数与新定义问题
42.(2025·湖南长沙·中考真题)我们约定:当满足,且时,称点与点为一对“对偶点”.若某函数图象上至少存在一对“对偶点”,就称该函数为“对偶函数”.请你根据该约定,解答下列问题:
(1)请你判断下列说法是否正确(在题后相应的括号中,正确的打“√”,错误的打“×”):
①函数(k是非零常数)的图象上存在无数对“对偶点”;( )
②函数一定不是“对偶函数”;( )
③函数的图象上至少存在两对“对偶点”.( )
(2)若关于x的一次函数与(都是常数,且)均是“对偶函数”,求这两个函数的图象分别与两坐标轴围成的平面图形的面积之和;
(3)若关于x的二次函数是“对偶函数”,求实数a的取值范围.
【答案】(1)①(√);②(√);③(×)
(2)
(3)
【分析】(1)根据题目中给出的“对偶点”, “对偶函数”的定义结合反比例函数,一次函数,二次函数的性质进行分析得出结果;
(2)由题意可得,,得出从而求出,,得出两个一次函数的图象分别与两坐标轴围成的平面图形是有公共直角顶点的分别位于二、四象限的两个等腰直角三角形,画出图形得出结果;
(3)由题意可得,且时,有,整理得到,利用关于的一元二次方程必有实数根,分别根据判别式等于零和大于零求解即可.
【详解】(1)解:,且,,
,,
,,
①函数(k是非零常数)的图象上,,
满足,,故①正确;
②由题意可得,,
则点与点且是一对“对偶点”,
函数的图像如下图:
函数中不存在“对偶点”,一定不是“对偶函数”,故②正确;
函数的图象上如下图,
由题意可得,,
则点与点且是一对“对偶点”,
图中不存在“对偶点”,故③错误;
故答案为:①(√);②(√);③(×)
(2)由题意可得,,点与点且是一对
“对偶点”,由于是“对偶函数”,则其图象上必存在一对“对偶点”.
从而有,两式相减可得,同理可得.
两个一次函数为,,由于,都是常数,且,
两个一次函数的图象分别与两坐标轴围成的平面图形是有公共直角顶点的分别位于二、四象限的两个等腰直角三角形,如下图所示
求得其面积之和;
(3)由题意可得,且时,有,
以上两式相减可得,
从而将,
代入①整理可得,
此关于的一元二次方程必有实数根,
由于时,(不符合题意).
从而必有,解得.
【点睛】本题考查了一元二次方程根的判别式,一次函数,反比例函数,二次函数的图形与性质,一次函数与坐标轴的交点问题,熟练掌握相关性质定理为解题关键.
43.(2025·江西·中考真题)问题背景:对于一个函数,如果存在自变量时,其对应的函数值,那么我们称该函数为“不动点函数”,点为该函数图象上的一个不动点.例如:在函数中,当时,,则我们称函数为“不动点函数”,点为该函数图象上的一个不动点.某数学兴趣小组围绕该定义,对一次函数和二次函数进行了相关探究.
探究1
(1)对一次函数进行探究后,得出下列结论:
①是“不动点函数”,且只有一个不动点;
②是“不动点函数”,且不动点是;
③是“不动点函数”,且有无数个不动点.
以上结论中,你认为正确的是________(填写正确结论的序号).
(2)若一次函数是“不动点函数”,请直接写出k,b应满足的条件;
探究2:
(3)对二次函数进行探究后,该小组设计了以下问题,请你解答.若抛物线的顶点为该函数图象上的一个不动点,求b,c满足的关系式.
探究3:
(4)某种商品每件的进价为6元,在某段时间内,若以每件x元出售,可卖出件,获得利润y元.请写出y关于x的函数表达式,判断该函数是否是“不动点函数”,并说明理由;若该函数是“不动点函数”,请联系以上情境说明该函数不动点表达的实际意义.
【答案】(1)③;(2)当且时,为任意实数;当时,;(3);(4)该函数是“不动点函数”,不动点表达的实际意义为:在这段时间内,当销售单价为8元或9元时,销售总利润与销售单价相等.
【分析】(1)根据“不动点函数”的定义,代入点,计算即可判断;
(2)根据“不动点函数”的定义,代入点,计算即可得解;
(3)先求得顶点坐标为,根据“不动点函数”的定义,即可得到;
(4)根据题意得,,令,解方程即可求解.
【详解】解:(1)①对于,
由于,
所以不是“不动点函数”,原说法错误;
②对于,代入点,
得,
解得,
所以是“不动点函数”,且不动点是,原说法错误;
③是“不动点函数”,且有无数个不动点,说法正确.
故答案为:③;
(2)∵一次函数是“不动点函数”,
∴代入点,
得,
整理得,
当即且时,为任意实数;
当即时,;
(3)由抛物线得,
顶点坐标为,
∵抛物线的顶点为该函数图象上的一个不动点,
∴;
(4)根据题意得,,
∴令,
整理得,
解得,,
∴该函数是“不动点函数”,不动点表达的实际意义为:在这段时间内,当销售单价为8元或9元时,销售总利润与销售单价相等.
【点睛】本题考查了一次函数、二次函数和一元二次方程的应用.正确理解“不动点函数”的定义是解题的关键.
21世纪教育网(www.21cnjy.com)