课题
3.2
解一元一次方程(2)
──合并同类项与移项
【学习目标】:运用方程解决实际问题,会用移项法则解方程;
【学习重点】:运用方程解决实际问题,会用移项法则解方程;
【学习难点】:理解“移项法则”的依据,以及寻找问题中的等量关系;
【导学指导】
一、知识链接
解方程:(1)3x-2x=7;
(2)x+x=3;
二、自主探究
1.
问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?
分析:设这个班有x名学生,根据第一种分法,分析已知量和未知量间的关系;
(1)每人分3本,那么共分出______本;共分出3x本和剩余的20本,可知道这批书共有________本;
根据第二种分法,分析已知量与未知量之间的关系.
(2)每人分4本,那么需要分出_______本;需要分出4x本和还缺少25本那么这批书共有________本;
这批书的总数是一个定值(不变量),表示它的两个式子应相等;
根据这一相等关系,列方程:
__________________;
本题还可以画示意图,帮助我们分析:
( http: / / www.21cnjy.com )
注意变化中的不变量,寻找隐含的相等关系,从本题列方程的过程,可以发现:“表示同一个量的两个不同式子相等”.
分析:方程3x+20=4x-2
( http: / / www.21cnjy.com )5的两边都含有x的项(3x与4x),也都含有不含字母的常数项(20与-25)怎样才能使它转化为x=a(常数)的形式呢?
要使方程右边不含x的项,根据等式性质1,两边都减去4x,同样,把方程两边都减去20,方程左边就不含常数项20,即
3x+20
-4x-20
=4x-25
-4x-20
即
3x-4x=-25-20
将它与原来方程比较,相当于把原方程左边的+20变为-20
后移到方程右边,把原方程右边的4x变为-4x后移到左边.
像上面那样,把等式一边的某项变号后移到另一边,叫做移项.
方程中的任何一项都可以在改
( http: / / www.21cnjy.com )变符号后,从方程的一边移到另一边,即可以把方程等号右边的项改变符号后移到等号的左边,也可以把方程左边的项改变符号后移到方程的右边,注意要先变号后移项,别忘了变号.
下面的框图表示了解这个方程的具体过程.
3x+20=4x-25
↓移项
3x-4x=-25-20
↓合并同类项
-x=-45
↓系数化为1
x=45
由此可知这个班共有45个学生.
2.
例2
解方程
3x+7=32-2x
(自己动手做一做)
【课堂练习】:
1.解方程:
(1)6x-7=4x
-5
(2)x-6
=
x
(3)3x+5=4x+1
(4)9-3y=5y+5
【要点归纳】:上面解方程中“移项”的作
( http: / / www.21cnjy.com )用很重要:
“移项”使方程中含x的项归到方程的同一边(左边),不含x的项即常数项归到方程的另一边(右边),这样就可以通过“合并”把方程转化为x=a形式.
在解方程时,要弄清什么时候要移项,移哪些项,目的是什么?
解方程时经常要“合并同类项”和“移项”,前面提到的古老的代数书中的“对消”和“还原”,指的就是“合并”和“移项”;
【拓展训练】
火眼金睛:
下列移项对不对?如果不对,错在哪里?应当怎样改正?
(1)从3x+6=0得3x=6;
(2)从2x=x-1得到2x-x=1;
(3)从2+x-3=2x+1得到2-
3
-1=2x-x;
【总结反思】:课题
3.2
解一元一次方程(1)
──合并同类项与移项
【学习目标】:会列一元一次方程解决实际问题,并会合并同类项解一元一次方程;
【学习重点】:会合并同类项解一元一次方程;
【学习难点】:会列一元一次方程解决实际问题;
【导学指导】
一、温故知新:
1.等式性质
1:
2:
2.解方程:(1)x-9=8;
(2)
3x+1=4;
二、
自主探究:
1.问题1:某校三年级共购买计算
( http: / / www.21cnjy.com )机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?
分析:设前年这个学校购买了x台计算机,已知去年购买数量是前年的2倍,那么去年购买___台,又知今年购买数量是去年的2倍,则今年购买了______(即____)台;
题目中的相等关系为:三年共购买计算机140台,即
前年购买量+去年购买量+今年购买量=140
列方程:_____________
如何解这个方程呢?
根据分配律,x+2x+4x=(______)x=7x;
这样就可以把含x的项合并为一项,合并时要注意x的系数是1,不是0;
下面的框图表示了解这个方程的具体过程:
x+2x+4x=140
↓合并同类项
7x=140
↓系数化为1
x=20
由上可知,前年这个学校购买了20台计算机.
上面解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b的形式,其中a、b是常数.
2.自己试着完成
例1
解方程
;
【课堂练习】
1.课本第89页练习;
2.某班学生共60人,外出参加种树活动,根据任务的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数.
思路:这里甲、乙、丙三个小组人数之
( http: / / www.21cnjy.com )比是2:3:5,就是说把总数60人分成___份,甲组人数占___份,乙组人数占___份,丙组人数占___份,如果知道每一份是多少,那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为x人.
关键:本题中相等关系是什么?
_____________________________________.
解:设每一份为x人,则甲组人数为__人,乙组人数为___人,丙组为___人,列方程:
_______________
合并,得________
系数化为1,得x=___
所以2x=____,3x=_____,5x=______
答:甲组_____人,乙组___人,丙组______人.
请同学们检验一下,答案是否合理,即这三组人数的比是否是2:3:5,且这三组人数之和是否等于60;
【要点归纳】:
列一元一次方程解决实际问题的一般
( http: / / www.21cnjy.com )步骤中,找等量关系是关键也是难点,本节课的两个问题的相等关系都是:“各部分量的和=总量”;这是一个基本的相等关系;
合并就是把类型相同的项系数相加合并为一项,也就是逆用乘法分配律,合并时,注意x或-x的系数分别是1,-1,而不是0;
【拓展训练】
1.足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3:5,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少?
解:设每份为_____个,则黑色皮块有_____个,白色皮块有_______个
列方程
_________
合并,得_________
系数化为1,得
x=_____
黑色皮块为___×___=____(个),白色皮块有____×___=____(个)
2.某学生读一本书,第一天读了全书的多2页,第二天读了全书的少1页,还剩23页没读,问全书共有多少页?(设未知数,列方程,不求解)
解:设全书共有____页,那么第一天读了(
)页,第二天读了(
)页.
本问题的相等关系是:_____________+_______________+_____________=全书页数;
列方程:_______________________。
【总结反思】:课题
3.2
解一元一次方程(3)
──合并同类项与移项
【学习目标】:
1.学会探索数列中的规律,建立等量关系。
2.探索并发现实际问题中的等量关系,并列出方程
【重点难点】:建立一元一次方程解决实际问题。
【导学指导】
一、知识链接
解下列方程:
(1)9x—5
x
=8
;
(2)4x-6x-x
=-15;
(3);
二、自主探究
前几节课,我们讨论了用一元一次方程解决一些实际问题,其实许多数列、游戏活动中也蕴含着方程知识。
例3:有一列数,按一定规律排列成1,-
( http: / / www.21cnjy.com )3,9,-27,81,-243……其中某三个相邻数的和是-1701,这三个数各是多少?引导学生观察这列数有什么规律?
(从符号和绝对值两方面)
学生讨论后发现:后面一个数是前一个数的-3倍。
师生共同分析,完成解答过程:
解:设这三个相邻数中的第一个数为x,则第2个数为-3x,第3个数为-3×(-3x)=9x
根据这三个数的和是-1710,得
x-3x+9x=-1710
合并同类项,得
7x=-1710
系数化为1,得
x=-243
所以-3x=729
9x=-2187
答:这三个数是-243、729、-2187
引导学生讨论以上列方程解决实际问题的关键。
学生讨论、分析:探索规律,找出相等关系
如有学生提出不同的设未知数的方法,同样给予鼓励。
【课堂练习】:
1.三个连续的奇数的和是27,求这三个奇数。
2.在某月内,李老师要参加三天的学习培训,现在知道这三天的日期的数字之和是39;
(1)培训时间是连续的三天,你知道这几天分别是当月的哪几号吗?
(2)若培训时间是连续三周的周六,那这几天又分是当月的哪几号?
学生练习,教师点评。
【要点归纳】:
1.你是怎样分析数列中的规律的?
2.你学会判明方程的解是否合理吗?
3.试用自己的话概括“用一元一次方程分析和解决实际问题”的一般过程
【拓展训练】
1.三个连续偶数的和是30,求这三个偶数。
2.小明和小红做游戏,小明拿出一张日历:“我用笔圈出了2×2的一个正方形,它们数字的和是76,你知道我圈出的是哪几个数字吗?”你能帮小红解决吗?
【总结反思】:课题
3.2
解一元一次方程(4)
──合并同类项与移项
【学习目标】:
1.经历由实际问题抽象为方程模型的过程,进一步体会模型化的思想。
2.通过探究实际问题与一元一次方程的关系,感受数学的应用价值,提高分析问题,解决问题的能力。
【重点难点】:建立一元一次方程解决实际问题。
【导学指导】
一、知识链接
解下列方程:
(1);
(2);
二、自主探究
信息社会,人们沟通交流方式多样化,移动电话已很普及,选择经济实惠的收费方式很有现实意义。
出示教科书91页的例4;
例4;观察下列两种移动电话计费方式表,考虑下列问题:
方式一
方式二
月租费
30元/月
0
本地通话费
0.30元/分
0.40元/分
你能从中表中获得哪些信息,试用自己的话说说。
猜一猜,使用哪一种计费方式合算?
一个月内在本地通话200分和350分,按两种计费方式各需交费多少元?
对于某个本地通通话时间,会出现两种计费方式的收费一样的情况吗?
你知道怎样选择计费方式更省钱吗?
让学生充分交流讨论、整理归纳
解:
1、用方式一每月收月租费50元,此外根据累计通话时间按0.30元/分加收通话费;用方式二不收月租费,根据累计通话时间按0.40元/分收通话费。
不一定,具体由当月累计通话时间决定。
3、
方式一
方式二
200分
90元
80元
350分
135元
140元
设累计通话t分,则用方式一要收费(30+0.3t)元,用方式二要收费0.4t元,如果两种计费方式的收费一样,则
0.4t=30+0.3t
移项得
0.4t-0.3t=30
合并,得0.1t=30
系数化为1,得t=300
答:如果一个月内通话300分,那么两种计费方式的收费相同。
5、如果一个月内通话时间大于300分,选择方式一更省钱;如果一个月内通话时间小于300分,选择方式二更省钱。
【课堂练习】:
1.课本94页10题
(学生练习,教师巡视,指导)
2.小组讨论,试用框图概括“用一元一次方程分析和解决实际问题”的基本过程
(学生思考、讨论、整理)。
【要点归纳】:
【拓展训练】
1.一个周末,王老师等3名教师带着若干名学生外出考察旅游(旅费统一支付),联系了标价相同的两家旅游公司,经洽谈,甲公司给出的优惠条件是:教师全部付费,学生按七五折付费;乙公司给的优惠条件是:全部师生按八折付费,请你参谋参谋,选择哪家公司较省钱?
【总结反思】:
实际问题题
列方程
数学问题
(一元一次方程)
实际问题的答案
数学问题的解
检验