(共18张PPT)
3.2 平面直角坐标系
北师大版数学八年级上册
复习引入
在数轴上,如何确定一个点的位置呢
在地图上,如何确定一个城市的位置呢
探究新知
水平方向的数轴称为x轴或横轴,垂直方向的数轴称为y轴或纵轴,它们称为坐标轴.两轴交点O称为原点.
在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系,如图所示.
y
O
x
1
2
3
4
5
1
2
3
4
5
6
平面直角坐标系
探究一
规定把横坐标写在前,纵坐标在后,记作:P(-2,3)
P(-2,3)就叫做点P在平面直角坐标系中的坐标,简称点P的坐标.
-4 -3 -2 -1 0 1 2 3
1
2
3
4
-1
-2
-3
-4
x
y
思考:如图点P如何表示呢?
后由P点向y轴画垂线,垂足N在y轴上的对应的数是3. 则将3称为P点的纵坐标.
先由P点向x轴画垂线,垂足M在x轴上的对应的数是-2;则将-2称为P点的横坐标.
P
N
M
点的坐标
1
1
-1
-2
-3
-4
2
3
2
3
4
5
4
-1
-2
-3
-4
-5
0
A
(4,3)
x
y
1. 找出点A的坐标.
试一试(点 坐标 )
x
O
1
2
3
-1
-2
-3
1
2
-1
-2
-3
y
2. 在平面直角坐标系中
找点A(3,-2)
A
试一试(坐标 点)
典例精析
A
B
C
E
F
D
例1:写出下图中的多边形ABCDEF各个顶点的坐标.
1
2
3
4
-1
-2
1
2
3
-1
-2
-3
【答案】
A(-2,0)
B(0,-3)
C(3,-3)
D(4,0)
E(3,3)
F(0,3)
y
O
x
3
1
4
2
5
-2
-1
-3
O
1
2
3
4
5
-4
-3
-2
-1
x
y
·
B
·
A
·
D
·
C
在直角坐标系中描出下列各点:
A(4,3),
B(-2,3),
C(-4,-1),
D(2,-2).
练一练
活动1: 观察坐标系,填写各象限内的点的坐标的特征:
点的位置 横坐标的符号 纵坐标的
符号
第一象限
第二象限
第三象限
第四象限
+
+
+
-
-
-
+
-
交流:不看平面直角坐标系,你能迅速说出A(4,5) , B(-2,3), C(-4,-1), D(2.5,-2), E(0,-4)所在的象限吗?你的方法是什么?
平面直角坐标系中坐标的特征
三
探究二
点的位置 横坐标的符号 纵坐标的
符号
在x轴的正半轴上
在x轴的负半轴上
在y轴的正半轴上
在y轴的负半轴上
0
+
+
-
-
0
0
0
交流:不看平面直角坐标系,你能迅速说出(-5,0),(0,-5),(3,0),
(0,3),(0,0)所在的位置吗?你的方法又是什么?
A
y
O
x
-1
-2
-3
-1
-2
-3
-4
1
2
3
4
1
2
3
4
5
-4
B
C
E
活动2.观察坐标系,填写坐标轴上的点的坐标的特征:
坐标平面内的点与有序实数对(坐标)关系
类似数轴上的点与实数是一一对应的.我们可以得出:
①对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y) (即点M的坐标)和它对应;
②反过来,对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M(即坐标为(x,y)的点)和它对应.
也就是说,坐标平面内的点与有序实数对是一一对应的.
探究三
例2 设点M(a,b)为平面直角坐标系内的点.
(1)当a>0,b<0时,点M位于第几象限?
(2)当ab>0时,点M位于第几象限?
(3)当a为任意有理数,且b<0时,点M位于第几象限?
解:(1)点M在第四象限.
(2)可能在第一象限(a>0,b>0)或者在第三象限(a<0,b<0).
(3)可能在第三象限(a<0,b<0)或者第四象限(a>0,b<0)或者y轴负半轴上(a=0,b<0).
练一练
已在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是________.
解析:根据第一象限内点的坐标的符号特征,横坐标为正,纵坐标为正,可得关于m的一元一次不等式组
解得m>2.
m>2
【方法总结】求点的坐标中字母的取值范围的方法:根据各个象限内点的坐标的符号特征,列出关于字母的不等式或不等式组,解不等式或不等式组即可求出相应字母的取值范围.
例3 点A(m+3,m+1)在x轴上,则A点的坐标为( )
A.(0,-2) B.(2,0) C.(4,0) D.(0,-4)
【解析】点A(m+3,m+1)在x轴上,根据x轴上点的坐标特征知m+1=0,求出m的值代入m+3中即可.
B
【方法总结】坐标轴上的点的坐标特点:x轴上的点的纵坐标为0,y轴上的点的横坐标为0.根据点所在坐标轴确定字母取值,进而求出点的坐标.
练一练
已知点P到x轴的距离为2,到y轴的距离为1.如果过点P作两坐标轴的垂线,垂足分别在x轴的正半轴上和y轴的负半轴上,那么点P的坐标是( )
A.(2,-1) B.(1,-2) C.(-2,-1) D.(1,2)
解析:由点P到x轴的距离为2,可知点P的纵坐标的绝对值为2,又因为垂足在y轴的负半轴上,则纵坐标为-2;由点P到y轴的距离为1,可知点P的横坐标的绝对值为1,又因为垂足在x轴的正半轴上,则横坐标为1.故点P的坐标是(1,-2).
B
2.已知P点坐标为(a+1,a-3)
①点P在x轴上,则a= ;
②点P在y轴上,则a= ;
3.若点P(x,y)在第四象限,|x|=5,|y|=4,则P点的坐标为 .
3
(5,-4)
-1
1.已知a那么点P(a,-b)在第 象限.
二
练面直角坐标系
定义:原点、坐标轴
课堂小结
点的坐标
定义与符号特征
平面内的点与有序实数对成一一对应
点的坐标的确定