沪科版八年级数学上12.1函数教案(3份)

文档属性

名称 沪科版八年级数学上12.1函数教案(3份)
格式 zip
文件大小 37.4KB
资源类型 教案
版本资源 沪科版
科目 数学
更新时间 2016-09-25 06:34:37

文档简介

第3课时
函数的表示方法——图象法
教学目标
1、了解函数的第三种表示方法-图象法
2、会用描点画出函数的近似图象
教学重点、难点
1、点:认识函数图象的意义,在了解列表或画图法表示函数的基础上,会对简单的函数列表、描点、连线,画出函数图象。
2、难点:如何正确使用描点画出函数图象。
教学过程
一、创设情境
导入新课
导语:
第一课时问题2中两个变量间的函数关系是用平面直角坐标系中的一条曲线来表示的,那么,其他问题中两个变量之间的函数关系能否也用这样的方法来示呢?如果能,可以怎么做呢?这又是一种什么样的方法呢?
二、合作交流
解读探究
问题1:对于第1课时问题1的函数y=30
t
+1200,能否用图形来表示呢?在平面直角坐标系中,以(t、h)为坐标,作出点,将表格中各对数值所对应的点画上。
问题2:尝试在平面直角坐标系中画出函数的图形(v≥0)
列表:
v/(km/h)
0
10
20
30
40
s/m
0
0.39
1.56
3.52
6.25
一般地,对于一个函数,把自变量X与函数Y的每对对应值分别作为点的横、纵坐标平面内描出相应的点,由这些点组成的图形就叫做函数的图象。
这种表示函数关系的方法叫做图象法
三、例题评析:
例2:画函数y=2x-1的图象
解:(1)列表:
x
……
-2
-1
0
1
2
3
……
y
……
-5
-3
-1
1
3
5
……
(2)描点:根据表中数值在直角坐标系内描点(x、y)
(3)连线:按照自变量由小到大的顺序,用光滑曲线连接所描的各点,得到y
=2x-1的图形。
四、学生练习:
课本P28,第1、2
五、小结
1、列表时应尽量体现函数自变量的取值范围
2、描点时描出的点越多,图象越精确
3、连接描点的同时,应使用光滑的曲线连接
六、布置作业:
课本P32,第8题
(补充)分别画出下列函数的图象
(1)y=-3x+2
(2)
教学后记:第1课时
变量与函数
一、素质教育目标
(一)知识教学点:
1.使学生了解函数的意义,会举出函数的实例,并能写出简单的函数关系式;
2.了解常量、变量的意义,能分清实例中出现的常量,变量与自变量和函数.
(二)能力训练点:培养学生观察、分析的能力.
(三)德育渗透点:
1.通过常量、变量、函数概念的学习,培养学生会运用运动、变化的观点思考问题;2.通过例题向学生进行生动具体的知识来源于实践反过来又作用于实践的辩证唯物主义教育;
3.通过函数的教学,使学生体会事物是互相联系和有规律变化着的.
二、教学重点、难点和疑点
1.教学重点:是在了解函数、常量、变量的基础上,能指出实例中的常量、变量,并能写出简单的函数关系式.因为函数关系式是画函数图象的基础.
2.教学难点:是对函数意义的正确理解.因为它是判断一个式子是否是函数的依据.
3.教学疑点:
①常量中写不写1;
②常量的数值包不包括“-”号;
三、教学步骤
(一)明确目标
在前面我们已经知道本章将学习有关一种量随另一种量变化的一些基本问题,这其实是函数问题.今天这节课我们就来学习数学中的一个重要的基本概念——函数.
(二)整体感知
请同学们先看两个实际问题:(出示幻灯)
问题1:某粮店在某一段时间内出售同一种大米,请大家思考:在整个的售米过程中出现了哪些量?其中哪些量是变化的?这其中有没有不变的量?
由学生讨论回答.
答:共出现了米的千克数、每千克米的价格、总价三个量,其中千克数和总价是随着顾客的需购量的不同而变化的,但每千克米的价钱即单价是不变的.
问题2:我们生活在美丽的海滨城市,我们知道大海的脾气是捉摸不透的,她有时暴躁不安,有时却温柔善良.试想,当海上风平浪静时,若我们将一块石头投入海中,我们将会发现水面上有怎样的变化?
答:水面上出现一圈圈圆形的水波纹,如图13-6.(出示幻灯)
那么,在这一变化过程中,圆的半径r,周长C和面积S是怎样变化的呢?圆的周长和直径2r的比值又是怎样的呢?
第一个问题很简单,学生可直接得到答案,针对第二个问题的回答结果可再提问:你是怎样得到圆的周长和直径2r的比值是不变的呢?这个比值是什么呢?
由上面的两个例子我们可以看到,在某一具体过程中有些量是可以取不同的数值的,如以上两例中的大米的千克数、总价、圆的半径r周长C以及面积S,我们称之为变量;而有些量在整个过程中都保持不变,例如米的单价与圆周率π,我们称之为常量.
但请大家注意:常量和变量并不是绝对的,而是相对的.例如:(出示幻灯)
(1)从大连到北京,如果我们乘坐火车,且火车的速度保持不变,在这一过程中,哪些量是变量,哪些量是常量?
这个问题的答案有很多种,引导学生回答:随着时间的不同,距北京的距离不同;但速度是不变的.
(2)从大连到北京,如果我们一部分人坐火车,一部分人乘飞机,在这一过程中,哪些量是变量,那些量是常量?
引导学生回答:距离不变,但随着两种交通工具速度的不同,到北京的时间也不同.
这两个问题都可由学生讨论、回答.通过这两个问题可以向学生进行对立统一的辩证唯物主义教育.
在日常生活中,工农业生产和科学实验中,常量和变量是普遍存在的,但数学所要研究的是某一变化过程中的两个量之间的关系,即它们是怎样互相制约、互相联系的.例如:大米的千克数与总价,圆的半径与面积之间的关系,这就是我们今天要学习的数学中一个很重要的基本概念——函数.
现在,我们就来研究什么叫函数?
首先,我们来看问题1:在售米的过程中,米的千克数和总价这两个量有什么关系?
给学生一定的时间讨论,由学生回答后加以总结:对于米的千克数,每确定一个值,就有唯一的总价与它相对应.
提问:(1)大家试想,若每千克大米售价2.40元,我们用字母n表示大米的千克数,字母m表示总价,那么n与m之间有怎样的关系式呢?
(2)若买5千克大米,应付多少钱?若买25千克大米呢?
这两问主要是为了让学生从实际问题体会一下对应的关系.
再来看问题2:(1)请大家考虑,若已知圆的半径为r,我们应怎样计算它的面积呢?
(2)半径r与面积S有怎样的关系呢?
总结:对于每一个半径r的值,面积S都有唯一的确定值与它相对应.
类似于这种变量间相互依存的关系还有很多,我们就不再一一例举.由上面两个例子中的共同特点,你能否总结出函数的概念呢?
教师提出问题之后,先由学生讨论,再由一名同学给出他的叙述方式,交由大家讨论,若完全正确,则教师可以加以肯定表扬之后,再强调其中的关键词语,然后板书;若回答的不完善,可由其他同学再接着补充,直到补充正确、完整之后(若学生不能总结完整,教师可适当给以提问性的铺垫)再强调关键词语,然后板书.此处是本节课的重点和难点,一定不能操之过急.
板书:一般地,设在一个变化过程中有两个量x与y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.
例1
用总长为60m的篱笆围成矩形场地,求矩形面积S(m2)与一边长L(m)之间的关系式,并指出式中的常量与变量,函数与自变量.(出示幻灯)
此题较简单,可由学生独立完成,完成之后,可适当给予几个数值加以计算,强化学生对定义中“唯一的”的理解.
练习:1,
2,
3.口答.
2.补充:(出示幻灯)
下列表达式是函数吗?若是函数,指出自变量与函数,若不是函数,请说明理由:
由学生加以讨论回答.
答:(1)、(2)、(3)是函数,其中x是自变量,y是x的函数;
(4)不是函数.因为对于每一个x的值,y不是有唯一的值与它对应.(注意学生在说明原因时的语言,一定要正确.)
提问:由练习(4)说明了什么问题?
(三)重点、难点的学习与目标完成过程
函数的概念是本章的一个重点,而函数的概念又是从两个量之间的关系得到的,因此本节课从两个实际问题入手,首先让学生分清什么是常量,什么是变量,接着让学生总结变量之间的关系,从而得出函数的概念,为了使学生能正确地理解函数的概念中的“唯一的”这三个字的含义,可给出数字,让学生代入式子中加以验证,最后又给出一道补充练习题,让学生能更深层次地理解这个概念.
(四)总结、扩展
教师提问,学生思考回答:
1.这节课我们主要学习了哪些知识?
2.你能否举出函数的例子?
这个问题的答案不确定,主要是为了让学生熟悉函数的概念,在学生举例的过程中,若发现问题,应及时加以纠正.
3.这节课我们还学习了常量和变量,请你回答:自变量和函数是什么量?
四、布置作业
第2课时
函数的表示方法——列表法与解析法
教学目标
1、回顾常量、变量、函数的意义。
2、了解函数三种表示方法中的列表法和解析法.
教学重点、难点
1、重点:理解函数的意义,并会根据具体问题探究相应的函数关系式
2、难点:对函数意义的准确理解
教学过程
一、创设情境,导入新课
导语:注意观察情境图,并引导学生思考情境图中的热气球是怎样运动变化的?图下方的表格以有等式“h=30t+1200”表达的是怎样的含义?
二、合作交流、解读探究
问题1、如图12-1,用热气球探测高空气象,设热气球从海拔1200m处的某地上升空,它上升后到达的海拔高度hm与上升时间tmin的关系记录如下表:
(引导学生观察课本P21图12-1)
(1)观察上表,热气球在升空的过程中平均每分上升多少米?
(2)你能写出表达式上升后到达的海拔高度h与上升时间t的关系式吗?
(h
=30
t
+1200)
从上面讨论可以看出,通过列出自变量的值,与对应函数值的表格来表示函数关系的方法叫做列表法
问题2:汽车在行驶过程中,由于惯性的作用刹车后的仍将滑行一段距离才能停住,刹车距离是分析事故原因的一个重要因素。某型号的汽车在平整路面上的刹车距离Sm与车速vkm/h之间有下列经验公式:
当刹车时速V分别是40、80、120
km/h时,相应的滑行距离S分别是多少?
通过上面的讨论可以学习到用数学式子表示函数关系的方法叫做解析法
三、例题评析
例1、一个游泳池内有水300
m3,现打开排水管以每时25
m3排出量排水。
(1)写出游泳池内剩余水量Q
m3与排水时间th间的函数关系式;
(2)写出自变量t的取值范围
(3)开始排水后的第5h末,游泳池中还有多少水?
(4)当游泳池中还剩150
m3已经排水多少时?
解:(1)排水后的剩水量Q
m3是排水量时间h的函数,有Q=-25
t
+300t
(2)由于池中共有300
m3每时排25
m3全部排完只需300÷25=12(h),故自变量T的取值范围是0≤t≤12
(3)当t=5,代入上式得Q=-5×25+300=175(m3),即第5h末池中还有水175
m3
(4)当Q=150时,由150=-25
t
+300,得t
=6,即节6
h末池中有水150m3
四、学生练习
课本P26,第1、2、3
五、小结
掌握函数的概念,能根据问题背景,确定函数关系式,会确定自变量的取值范围。
六、布置作业:
教学后记: