【教学评一体化】西师大版三上6.3《线段、射线和直线的关系》(教案)

文档属性

名称 【教学评一体化】西师大版三上6.3《线段、射线和直线的关系》(教案)
格式 zip
文件大小 1.4MB
资源类型 试卷
版本资源 西师大版
科目 数学
更新时间 2025-11-20 00:00:00

文档简介

中小学教育资源及组卷应用平台
《线与角》单元整体设计
一、单元主题解读
(一)课程标准要求分析
《线与角》单元是图形与几何领域第二学段“图形的认识与测量”中的重要内容。《数学课程标准》在“内容要求”中提出:“结合实例认识线段、射线和直线;体会两点间所有连线中线段最短,知道两点间距离;会用直尺和圆规作一条线段等于已知线段;了解同一平面内两条直线的位置关系。结合生活情境认识角,知道角的大小关系。在图形认识与测量的过程中,增强空间观念和量感。”在“学业要求”中指出:“能说出线段、射线和直线的共性与区别;知道两点间所有连线中线段最短,能在具体情境中运用‘两点之间线段最短’解决简单问题。形成空间观念和初步的几何直观。会比较角的大小;能说出直角、锐角、钝角的特征,能辨认平角。经历用直尺和圆规将三角形的三条边画到一条直线上的过程。”
(二)单元教材内容分析
本单元以“生活中的线与角”为切入点,按照“线的认识→角的认识→线与角的操作应用”的逻辑编排:
线的认识:通过灯光、铁轨等生活场景,区分线段(有两个端点)、射线(一个端点,无限延伸)、直线(无端点,无限延伸),明确三者的联系与区别;结合“两点之间线段最短”的实例,深化对线段的理解,同时学习用直尺、圆规画线段。
角的认识:从国旗、时钟、折扇等生活物品中抽象出角,理解角的定义(一点引出两条射线);通过折纸、比较操作,认识直角、锐角、钝角、平角,掌握角的大小比较方法(顶点和一边重合,比较张口)。
操作应用:设计“画线段”“用圆规画等长线段”“根据站位画等距图形”等活动,将线与角的知识转化为实践技能,培养空间操作能力。
教材编排注重“生活直观→概念抽象→实践应用”的认知过程,通过大量观察、操作活动(如找线、折角、画线段),帮助学生建立清晰的图形表象。
(三)学生认知情况
四年级学生具备以下认知特点:
知识基础:对线段、直角有初步认识(如知道线段有长度、直角是“方角”),但对射线的“无限延伸性”、平角的“射线旋转”本质理解较模糊,易将射线与线段的长度混淆,对圆规的操作也缺乏经验。
思维发展:以具体形象思维为主,能通过“找一找、折一折、画一画”的直观操作理解线与角的特征,但对“无限”“旋转形成角”等抽象概念的理解需借助具象化的演示(如激光笔模拟射线、折纸模拟角的形成)。
学习倾向:对生活中的图形现象(如斜拉桥的角、铁轨的直线)充满兴趣,喜欢动手操作(如用圆规画线段、用三角板比直角),适合通过探究性活动深化认知。
二、单元目标拟定
1.认识线段、射线、直线,掌握其特征(端点数量、延伸性)及相互关系;理解“两点之间线段最短”,能画指定长度的线段,会用圆规画与已知线段等长的线段。
2.认识角,理解角的定义(由一点引出两条射线),会用符号表示角;能比较角的大小,认识直角、锐角、钝角、平角,掌握分类标准。
3.经历“观察生活中的线与角→抽象图形概念→操作验证特征”的过程,发展空间观念、动手操作能力与逻辑推理能力;通过小组合作、探究活动,提升问题解决与交流表达能力。
4感受数学与生活的紧密联系(如建筑中的线与角、交通中的线段应用),激发学习兴趣;在操作活动中获得成功体验,培养严谨细致的学习习惯。
三、关键内容确定
(一)教学重点
1.掌握线段、射线、直线的特征及相互关系;理解角的定义与分类。
2.能正确画线段、比较角的大小,会用圆规画等长线段。
(二)教学重难点
1.理解射线的“无限延伸性”和平角的“射线旋转”本质。
2.熟练运用圆规画等长线段及解决等距图形问题。
四、单元整合框架及说明
整合指导思想定位:
会用数学的眼光观察现实世界
会用数学的思维思考现实世界
会用数学的语言表达现实世界
这是数学课程的核心素养内涵,测量的核心素养是量感。数学课程标准(2022年版)中指出:“空间观念主要是指对空间物体或图形的形状、大小及位置关系的认识。能够根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象并表达物体的空间方位和相互之间的位置关系;感知并描述图形的运动和变化规律。空间观念有助于理解现实生活中空间物体的形态与结构,是形成空间想象力的经验基础。”
本单元教材的具体编排结构如下:
教材编排特点:
1.生活情境贯穿,直观感知图形
以校园跑道、剪刀口、斜拉桥等生活场景引入线与角的概念,让学生在熟悉的环境中感知图形的存在,降低抽象概念的理解难度,体现“数学源于生活”的理念。
2.操作活动主导,深化概念理解
设置“找线、折角、画线段、用圆规作图”等系列操作活动(如描出线段和射线的端点、折纸比较角的大小、用圆规复制线段),让学生在“做中学”,通过动手实践构建清晰的图形表象,突破“无限延伸”“角的大小比较”等难点。
3.知识层次递进,符合认知规律
按照“线的认识(线段→射线→直线)→角的认识(定义→分类→比较)→操作应用(画线段→用圆规作图)”的顺序编排,知识难度由浅入深、由单一到综合,契合学生“从具体到抽象、从感知到应用”的认知发展节奏。
4.跨学科融合,拓宽学习视野
将线与角的知识与建筑(斜拉桥)、体育(足球场站位)、生活工具(圆规、三角板)等领域结合,既巩固数学知识,又拓宽学科视野,培养综合素养。
五、单元课时规划
单元划分依据 □课程标准 教材章节 □知识结构
课程内容模块 □数与运算 □方程与代数 图形与几何 □数据整理与概率统计
单元数量 6
单元主题 单元名称 主要内容 课时
图形与几何 线与角 线段、射线的认识 1
曲线与直线 1
线段、射线和直线的关系 1
认识角 1
角的表示与大小比较 1
认识直角 1
认识锐角、钝角和平角 1
线段的性质与画法 1
用圆规和直尺画等长线段 1
用圆规直尺画等长线段与等边的三角形 1
重点渗透的数学思想方法 抽象 符号化 分类 集合 对应 演绎 归纳 类比 转化 数形结合 □极限 模型 □方程 □函数 统计 分析 综合 比较 □假设 □其他
课时 学习目标 评价形式 评价标准
6.1《线段、射线的认识》 目标: 线段、射线的认识。 探究1:认识线段 → 探究2:认识射线 → 探究3:试一试 → 1.能掌握线段的表示方法,并找出线段的特点。 2.能掌握射线的表示方法,并找出射线的特点。 3.能描出图中一条线段或射线,指出它的端点。
6.2《曲线与直线》 目标: 学生能准确区分曲线和直线,掌握直线“无端点、可向两端无限延伸”的特点,能从生活场景中识别并举例说明曲线和直线。 探究1:直观比较,探究其特点 → 探究2:找一找 → 探究3:课堂活动 → 1.能掌握直线的表示方法,并找出直线的特点。 2.能找出图中的线。 3.能分辨线段、射线和直线,并写出它们的端点数量。
6.3《线段、射线和直线的关系》 目标: 掌握线段、射线、直线的端点特征及延伸性,明确三者之间的联系与区别;能正确用字母表示直线。 探究1:动手操作:画一画,变一变 → 探究2:议一议:小组探究,明确关系 → 探究3:课堂活动 → 1.能用线段画出射线和直线。 2.能说说线段、射线和直线的关系 3.能完成画线段量长度和过点画直线的任务。
6.4《认识角》 目标: 认识角,理解角是由从一点引出的两条射线组成的图形,掌握角的顶点和边的名称。 探究1:找一找,画一画 → 探究2:认识角的各部分名称 → 探究3:找一找图中的角 → 1.能找出图中的角,并画出各角。 2.能观察自己画的角找共同特征,总结出角的定义,并掌握角各部分的名称。 3.能在上图和生活中找角,并说说它们的顶点和边。
6.5《角的表示与大小比较》 目标: 掌握角的记法(如∠1)和读法;学会用 “顶点和一边重合,比较张口大小”的方法比较角的大小。 探究1:角的记法与认识 → 探究2:角的大小比较 → 探究3:课堂活动 → 1.能用一张纸折出角,并掌握角的记法和读法。 2.能制作活动角和重合比角,掌握比较角的大小的方法。 3.能数清角的个数并比较大小,并在车轮中找出隐藏的角。
6.6《认识直角》 目标: 认识三角板上的直角,掌握用三角板判断一个角是否为直角的方法,明确长方形、正方形的角都是直角。 探究1:认识直角 → 探究2:用三角尺判断直角 → 探究3:课堂活动 → 1.能认识直角,会用直角符号表示。 2.能用三角板比一比判断一个角是不是直角。 3.能利用学习的知识数生活物品的角。
6.7《认识锐角、钝角和平角》 目标: 认识锐角、钝角、平角,明确它们与直角的大小关系,能准确区分并画出锐角、直角、钝角、平角。 探究1:认识锐角、钝角和平角 → 探究2:分类比较,画图巩固 → 探究3:课堂活动 → 1.能借助直角比一比认识锐角、钝角和平角。 2.能知道锐角、钝角和平角之间的大小关系,并画出这三种角。 3.能利用学习的知识判断方格图中角、用手臂做角、用物体摆角。
6.8《线段的性质与画法》 目标: 理解“两点之间所有连线中,线段最短” 的性质;掌握用直尺画指定长度线段的方法,能准确画出3cm长的线段。 探究1:探究“两点之间线段最短” → 探究2:用直尺画指定长度的线段 → 探究3:课堂活动 → 1.能找出小军家到小丽家最近的路线,总结出在两点之间的所有连线中线段最短。 2.能用直尺画一条3 cm长的线段。 3.能利用学习的知识连接两点画线段和画指定长度线段。
6.9《用圆规和直尺画等长线段》 目标: 认识圆规的结构与功能,掌握用圆规和直尺画与已知线段等长线段的方法,能准确完成作图。 探究1:认识圆规:“工具结构我来探” → 探究2:画与已知线段OA等长的线段OB → 探究3:课堂活动 → 1.能认识圆规的结构,并能比划出已知线段的长度。 2.能用圆规画一条与线段OA等长的线段OB。 3.能画不同方向射线和用圆规在射线上截取等长线段。
6.10《用圆规直尺画等长线段与等边的三角形》 目标: 掌握用圆规和直尺画与已知线段等长线段的方法,能画出三条线段相等的图形(如等边三角形站位),理解作图的“定长不变”原理。 探究1:画等长的线段 → 探究2:画三条线段都相等的站位图形 → 探究3:课堂活动 → 1.能用圆规和直尺画一条与线段AB等长的线段CD。 2.能用圆规画一个等边的三角形。 3.能画等长线段、画直角、画等边的三角形。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
《线段、射线和直线的关系》教学设计
学科 数学 年级 三年级 课型 新授课 单元 第六单元
课题 《线段、射线和直线的关系》 课时 一课时
课标要求 《义务教育数学课程标准(2022年版)》在“数与代数”领域对第二学段(3-4年级)的要求:结合直观操作与探究活动,理解线段、射线和直线的关系,掌握它们的特征及动态转化过程;发展空间观念、推理能力与几何直观,体会图形之间的联系与变化。
教材分析 本内容属于“图形与几何”领域中几何图形概念的深化探究部分,是在学生认识线段(两个端点)、射线(一个端点)、直线(无端点)的基础上,进一步探究三者的内在关系。教材通过“画一画、议一议”的活动,以动态视角呈现“线段向两端无限延长成直线,向一端无限延长成射线”的转化过程,同时明确直线的小写字母表示方法。教材在编排上遵循“操作探究→关系建构→知识拓展”,帮助学生从静态特征认知进阶到动态联系理解,为后续学习角的形成、平行线等知识奠定概念与逻辑基础。
学情分析 学生已掌握线段、射线、直线的静态特征(端点数量、形态),但对它们之间的动态转化关系(线段如何延伸成射线、直线)缺乏直观认知,易将三者视为孤立的图形。三年级的学生已经具备初步的动手操作与逻辑推理能力,能通过“画一画”直观感受图形的延伸,但对“无限延长”的抽象过程需借助动态演示或类比(如手电筒光线的延伸)理解;语言表达上,能描述图形特征,但精准表述三者的转化关系需教师引导。
核心素养目标 1.通过动态演示线段的延伸过程,直观感知线段、射线、直线的转化关系,发展对几何图形动态变化的空间表象。2.能从“线段有两个端点”推理出“向一端延长成射线(一个端点)、向两端延长成直线(无端点)”的结论,培养逻辑推理能力。3.借助画图、动态演示等方式,理解三者的联系与区别,体会几何直观在概念建构中的作用。4.能将三者的关系应用于后续几何知识的学习(如角的定义),感受图形关系的实用性。
教学重点 掌握线段、射线和直线的关系,理解线段向一端、两端无限延长分别形成射线、直线的动态过程。
教学难点 理解“无限延长”的抽象概念,以及线段、射线、直线之间的动态转化逻辑。
教学准备 多媒体课件
教学过程
教学环节 教师活动 学生活动 设计意图
一、温故 复习提问,温故孕新师:同学们,咱们之前认识了“直直的直线”“弯弯的曲线”,还初步接触了线段和射线的影子。现在咱们来玩个“线的家族旧识大闯关”,看看大家对这些 “线朋友”记得多牢!1.下面的哪些是射线?哪些是线段?哪些是直线?2.举一个生活中线段、射线、直线的例子。师:大家对旧知识掌握得很扎实。 学生独自完成,然后集体订正。学生1:铅笔的一段是线段,手电筒的光是射线,笔直的铁轨可以看成直线。学生2:书本的边是线段,太阳的光线是射线,无限延伸的数轴可以想象成直线。 通过复习旧知,检查学生掌握知识的情况,同时为后面学习新的知识做准备。
一、引新 创设情境,引入课题师:同学们,咱们来玩个“线的家族猜谜会”!老师说谜面,大家猜是哪种线。课件出示:(1)有始有终一条线,两端固定长度显。(2)有始无终一条线,一端射出向天边。(3)无始无终一条线,两端无限永向前。师:大家猜得又快又准!这三种线看似独立,其实藏着亲密的“家族关系”。今天咱们就来“画一画、议一议”,揭开线段、射线和直线的关系之谜! 学生独自猜一猜:线段、射线、直线。 用三句谜面分别对应线段、射线、直线,设计意图是通过趣味游戏唤醒学生对三种线的旧知记忆
二、探究 合作探究,活动领悟探究1:动手操作:画一画,变一变师:请大家拿出直尺,先画一条线段。师:你们是怎样画一条线段的?课件出示:师:这个图形有几个端点?能测量长度吗?师:这种有2个端点、直直的、可以测量长度的线,叫作线段。它是三种线中唯一能测量长度的,像我们的直尺边缘就是线段的典型例子。如果把线段的一端无限延长,会变成什么呢?画一画。师:这个图形有几个端点?能向哪个方向延伸?师指出:这种只有1个端点、直直的、向一端无限延伸的线,叫作射线。因为它向一端无限延伸,所以长度无法测量。像我们的手电筒发出的光就是射线的典型例子。要是把线段的两端都无限延长,又会得到什么呢?画一画。 师:这个图形有端点吗?能怎么延伸? 师指出:这种没有端点、直直的、向两端无限延伸的线,叫作直线。它的长度也无法测量,我们通常用“直线AB”表示。 学生拿出直尺画一画。学生:先画一个端点,再画一条直直的线,最后画另外一个端点。学生:有2个端点、能测量。学生独自画一画,然后回答:是射线。学生:有1个端点、向一端无限延伸。学生独自画一画,然后回答:是直线。学生:没有端点、向两端无限延伸。 线段是学生最熟悉的基础图形,从线段“一端延伸”得到射线、“两端延伸”得到直线,符合“从已知到未知”的认知规律。学生在画图中能直观感受到“端点数量减少、延伸范围扩大”的变化,避免了“死记关系”的被动学习,让“线段是射线、直线的一部分”成为亲自观察到的结论。
探究2:议一议:小组探究,明确关系师:画完后,大家看看这三种线,有什么共同特点?师:观察它们的端点,你有什么发现?师:大家对旧知识掌握得很扎实!其实线段、射线和直线之间,还藏着亲密的关系。大家有没有发现这三种线的变化规律?请以小组为单位,结合图示,讨论讨论它们的关系。课件出示——小组讨论问题:(1)线段怎样变化能得到射线?怎样变化能得到直线?(2)线段、射线和直线,有什么关系?师参与小组讨论,引导学生关注“延伸”的特点。师:谁来分享一下你们的发现?师:线段、射线和直线,有什么关系?师:结合讨论结果,我们再深入梳理。课件出示:师:线段、射线和直线都可以用大写字母表示。课件出示:师补充:直线通常也用小写字母l等表示,这是我们需要补充的知识点。 学生独自观察,然后回答:它们都是直直的……学生:线段有两个端点,射线有一个端点,直线没有端点。学生分小组合作探究,交流讨论结果。学生:线段向一端无限延长就是射线,线段向两端无限延长就是直线。学生1:线段是射线的一部分,线段也是直线的一部分。学生2:射线是直线的一部分。 通过“线段怎样变射线/直线”“三者有什么关系”两个问题,引导学生聚焦“延伸”这一核心纽带,在交流中自主归纳“线段延伸得射线、再延伸得直线”的逻辑,同时补充“字母表示方法”,实现“直观感知→抽象归纳→规范表达”的升级。教师参与讨论则确保方向不偏离,帮助基础薄弱学生梳理思路,避免探究流于形式。
四、变式 师生互动,变式深化探究3:课堂活动师:同学们,在几何世界里,线段和直线是基础图形。今天咱们要完成两个小任务:一是确定两点画线段并量长度,二是经过一点画直线。这些技能在画图纸、做手工时都很有用,大家准备好成为 “几何小画师” 了吗?课件出示:2.画一画,量一量。确定两点A,B,以这两点为端点画一条线段,并量出它的长度。师:现在要确定两点A、B,画线段并量长度,谁来说说怎么做?师:非常准确!咱们分三步来画图。师演示:第一步,确定两点A、B。请在练习本上任意画两个点,标记为A和B。师巡视,并提醒:注意两点间距适中,方便后续操作。师演示:第二步,画线段AB。将直尺边缘对齐点A和点B,用铅笔沿直尺画直线,连接A、B,得到线段AB。师演示:第三步,测量线段长度。将直尺的O刻度线与点A对齐,看点B对应的刻度,即为线段AB的长度。师巡视指导,强调:“画线段时直尺要放稳”“测量时刻度对齐准确”。师组织学生集体展示反馈。师:过两点画线段,能画几条?师:由此我们可以得出过两点之间只能画一条线段的结论。那么直线和线段有什么不同?师:非常好!现在要经过点A画直线l,大家思考一下怎么画。课件出示:3. 经过下面的点A,画一条直线l。 师演示:拿出直尺,将直尺边缘靠近点A,沿直尺边缘,经过点A向两端无限延伸画直线,标记为l。师巡视,并强调:直线要画得“直且长”,体现无限延伸的特点;“直线画长”“未经过点A”等问题。师:画好直线后,同桌互相检查:直线是否经过点A?是否体现了无限延伸的特点?再思考:经过一点可以画几条直线?师:回答正确!这就是直线的一个重要性质——经过一点可以画无数条直线。 学生:准备好了。学生:先画两个点,再用直尺连接成线段,最后用直尺量长度。学生确定点。学生按要求画图。学生测量线段的长度。学生集体交流。学生:1条。学生:直线没有端点,能向两端无限延伸;线段有两个端点,长度有限。学生模仿操作。同伴相互检查,然后回答:经过一点可以画无数条直线。 “画线段量长度”巩固“线段可测量”的特征,同时通过“过两点只能画一条线段”的结论,强化“两点确定一条线段”的性质。“过点画直线”则让学生在动手尝试中发现“经过一点能画无数条直线”,结合“直线无限延伸”的特点,深化对直线性质的理解。两项任务均关联“画图纸、做手工”的生活场景,让技能学习有实际意义。
五、尝试 尝试练习,巩固提高1.判断。(1)线段向两端无限延长就得到直线。(2)直线可以用小写字母l表示,线段可以用两个端点的大写字母表示,如线段AB。(3)直线没有端点,能向一端无限延伸。2.如图,点M、O、N、P、L在同一条直线上,从探照灯(点O)射出一条光线,如果光线穿过点 N,则一定不能穿过( )。 3.经过点A 画一条射线,在这条射线上截取点B,使线段AB=3厘米。4.按要求画图(1)画直线AB。(2)画线段AC。(3)画射线BC。5.在下图中任意两点之间画一条线段,一共可以画( )条线段。 学生独自完成,然后集体订正。 引导学生能够在课堂练习的完成过程中对要点知识加深巩固,有效应用。
六、提升 适时小结,兴趣延伸回顾这节课你学到了什么? 师:今天我们通过画、议、辨,明确了线段、射线、直线的关系:线段是“基石”,向两端延生成直线,向一端延伸成射线;三者都是直直的,只是端点和延伸性不同。大家可以课后用思维导图整理这一知识,让“线的家族”关系更清晰! 学生1:我知道了线段、射线和直线的关系。 学生2:我还知道了经过一点可以画无数条直线。 引导学生从知识内容、研究方法以及运用过程三个方面总结自己的收获,让学生全面把握本节课的重点和难点,并启发学生用类比或迁移的方法学习后续课程。
板书设计 线段、射线与直线的关系 线段是射线、直线的一部分 射线是直线的一部分 利用简洁的文字、符号、图表等呈现本节课的新知,可以帮助学生理解掌握知识,形成完整的知识体系。
作业设计(课外练习) 基础达标:1.填空。(1)线段有( )个端点,射线有( )个端点,直线有( )个端点。(2)线段向( )无限延长就是直线,向( )无限延长就是射线。(3)直线可以用小写字母( )表示,如直线( )。(4)线段是( )、( )的一部分,射线是( )的一部分。2.选一选。(1)把一条长5厘米的线段向两端各延长5厘米,得到的是一条( )。 A.直线 B.线段 C.射线(2)把线段向一端无限延长,就得到()。A.线段 B.射线 C.直线(2)下列说法正确的是()。A.射线比线段长 B.直线和射线一样长 C.线段是直线的一部分(3)表示直线的是( )。A.线段CD B.射线OA C.直线l能力提升:1.画一画。(1)画一条6cm长的线段。 (2)以点O为端点,画一条射线OC。 2.请用两种方式表示图中的直线。拓展迁移:观察家中或小区的物品,找出3个线段、2个射线、1个直线,用文字或画图记录下来。
教学反思 亮点与成效趣味导入与动手操作结合,课堂参与度高:猜谜导入快速调动课堂氛围,让学生主动回忆三种线的特征;画一变三的操作让抽象关系变得可感,多数学生能清晰说出线段延伸成射线、直线的逻辑,对端点数量、延伸方向的区分准确。小组探究与技能应用联动,知识掌握扎实:小组讨论中,学生能自主发现三种线的核心关系,而非被动接受;课堂活动则通过“画—量—议”,让学生既掌握作图技能,又理解两点定线段、一点无数直线的性质,实现“认知—技能”双重巩固。不足与改进方向“无限延伸”的理解仍有薄弱:部分学生画射线、直线时,因 无法画出真正的无限延伸,对射线向一端延伸、直线向两端延伸的理解停留在表面。后续可借助动画演示线段不断延伸的动态过程,或用手电筒光越照越远的生活实例辅助,让无限从抽象概念变为直观感知。测量与作图的规范性需加强:少数学生测量线段时存在0刻度未对齐端点的问题,画直线时未体现长且直的特点。后续教学中,可增加测量小口诀(如0刻度对起点,看终点对刻度),并通过规范作图示范+错误作品对比,强化操作细节,同时增加一对一指导时间,关注基础薄弱学生。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://www.21cnjy.com/" 21世纪教育网(www.21cnjy.com)
同课章节目录