沪科(2024)八上15.4.2等腰三角形(课件+教案+大单元整体教学)

文档属性

名称 沪科(2024)八上15.4.2等腰三角形(课件+教案+大单元整体教学)
格式 zip
文件大小 1.8MB
资源类型 试卷
版本资源 沪科版
科目 数学
更新时间 2025-12-03 10:10:40

文档简介

中小学教育资源及组卷应用平台
15.4.2等腰三角形教学设计
学科 数学 年级 八 课型 新授课 单元 15
课题 15.4等腰三角形 课时 第2课时
教材分析 该性质是初中几何的核心定理,教材通常通过折叠等腰三角形引入,引导学生发现底边中线、高线和顶角平分线重合。其编排承上启下,既巩固了全等三角形的证明,又为后续学习对称性及特殊三角形(如等边三角形)奠定基础,体现了从直观感知到逻辑推理的过渡。
学情 分析 学生已掌握三角形全等与轴对称概念,具备初步推理能力。但“三线合一”的逆命题、不同表述方式及其灵活运用是难点。教学中需警惕学生将“中线”等同于“高线”的思维定势,并通过变式练习强化其在不同几何语境下的识别与应用能力。
核心素养目标 1. 掌握等腰三角形中的“三线合一”的概念. 2. 理解验证等腰三角形“三线合一”定理的过程. 3. 能利用等腰三角形的推论来解决问题
教学重点 理解验证等腰三角形“三线合一”定理的过程
教学难点 等腰三角形的性质解决问题
教学准备 多媒体课件
教学过程
教学环节 教师活动 学生活动 设计意图
一、温故 复习提问,温故孕新 等腰三角形的性质 性质 1 等腰三角形的两个底角相等. (简写成等边对等角) 学生回顾旧知,回答问题 通过复习重新巩固上节内容,为后面的学习进行铺垫。
二、引新 创设情境,引入课题 出示图片,向学生提问: “同学们,在我们挂这个画框的时候,如果想只用一根钉子就让它保持水平、不歪斜,我们应该把钉子钉在画框上边的哪个位置呢?” (学生会给出各种答案,大概率会有人说“中间”。) 老师继续追问:“没错,是中间。但这其中蕴含着什么数学道理呢?如果我们把画框、绳子和墙面抽象成一个几何图形——画框的上边是底边,两侧的绳子是两条相等的边,这就构成了一个什么图形?” (引导学生回答:等腰三角形。) “那么,钉子所在的那个‘中点’,在这个等腰三角形里扮演了什么角色?为什么绳子挂在这个点上,就能保证画框是水平的呢?” 学生思考回答问题 让学生带着疑问进入课堂,激发学习本节课的兴趣
三、探究 合作探究,活动领悟 由前面定理1的证明还能得到什么结论? ∠ADB = ∠ADC = 90°, ∠BAD =∠CAD. 猜想:等腰三角形底边上的中线垂直于底边且平分顶角. 思考 如图,在△ABC中,AB=AC. 1. 如果作BC边上的高线 AD,那么AD平分BC 吗?AD平分∠BAC吗? 2.如果作∠ABC的顶角平分线AD,那么AD垂直平分BC吗? (1) 证明:作底边 BC 的高 AD,交 BC 于点 D. ∵ AD⊥BC, ∴∠ADB =∠ADC=90°. 在 Rt△ABD 与 Rt△ACD 中, ∴ Rt△ABD≌Rt△ACD(HL). ∴ BD=CD,∠BAD =∠CAD. (2) 证明:作顶角∠BAC的平分线AD,交BC于点D. ∵ AD平分∠BAC ,∴ ∠BAD=∠CAD. 在△ABD与△ACD中, ∴ △ABD≌△ACD(SAS), ∴ BD=CD,∠ADB=∠ADC. 又∵∠ADB+∠ADC=180°, ∴∠ADB=∠ADC=90°. 归纳 定理2 等腰三角形的顶角平分线、底边上的中线和底边上的高重合. 问题:等边三角形有“三线合一”的性质吗?等边三角形有几条对称轴? 结论:等边三角形每条边上的中线,高和所对角的平分线都“三线合一”. 教师引导学生自主思考,可以进行讨论交流 小组讨论,归纳 通过探索的方式学习新知,培养学生独立思考,解决问题的态度.
四、变式 师生互动,变式深化 例1 如图,在△ABC中,AB=AC,AD是BC边上的中线,点E是AD上一点,求证:BE=CE. 证明 ∵ AB=AC,AD 是边BC上的中线,(已知) ∴ AD是BC 边上的高.(三线合一) ∴ AD 垂直平分线段BC . (线段垂直平分线的定义) ∵ 点E 是AD上一点(已知) ∴ BE =CE.(线段垂直平分线的性质) 例2 求证:斜边和一直角边分别相等的两个直角三角形全等. 已知:如图,在 Rt△ABC 和 Rt△A'B'C' 中, ∠C =∠C' = 90°,AB =A'B',AC =A'C' 求证:Rt△ABC≌Rt△A'B'C'. 证明:如图,在平面内移动Rt△ABC 和Rt△A'B'C',使点A 和A',点C 和C' 重合,点B 和点B' 在AC 两侧. ∵∠BCB' =90°+90°=180°, ∴B,C,B' 三点在一条直线上. 在△ABB' 中,∵AB =AB',∴∠B =∠B'. 在 Rt△ABC 和 Rt△A'B'C' 中, ∴Rt△ABC≌Rt△A'B'C' (AAS). 学生思考解答 通过例题的讲解,巩固所学知识
五、尝试 尝试练习,巩固提高 1.如图,在△ABC 中,AB=AC,AD⊥BC,垂足为D,BD=4,则BC =( ) A.2 B.4 C.6 D.8 2. 如图,在等边△ABC 中,BD 平分∠ABC,BD =BF,则∠CDF 的度数是(  ) A.10° B.15° C.20° D.25° 3.如图,在等腰直角三角形ABC中,∠ABC=90°,AB=AC,D是BC边上的一点,过点B,C作BE⊥AD,CF⊥AD分别交AD于E,F,若BE=5,CF=3,则EF= . 4.在△ABC中,AB=AC,BD是∠ABC的平分线,且BD=AD,则∠A= . 5. 如图,在△ABC中,AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C. 自主完成练习,然后集体交流评价. 通过课堂练习及时巩固本节课所学内容,并考查学生的知识应用能力,培养独立完成练习的习惯.
六、提升 适时小结,兴趣延伸 回顾这节课你学到了什么? 等腰三角形的“三线合一”的性质 各小组思考,代表总结本节课内容 学生回顾所学知识并内化,熟练掌握。
板书 设计
作业 设计 1.如图,在△ABC中, ∠ABC的平分线交于点D,AD=6,过点D作DE//BC交AB于点E,若△AED的周长为16,则边AB的长为(  ) A.10 B.8 C.6 D.16 2.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠BAC的度数为(  ) A.75° B.70° C.65° D.35° 3.如图,在直角坐标系中,点A、B的坐标分别为(2,4)和(3、0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,在运动的过程中,当△ABC是以AB为底的等腰三角形时,OC= . 4.已知等腰三角形的一个底角的外角等于100°,则它的顶角为 . 5.如图,在等边三角形ABC中,点D在AB上,点E在BC上,AD=BE,AE、CD相交于点P.求证:∠CPE=60°.
教学反思 本节课成功之处在于通过动手操作激发了学生兴趣,并利用几何证明巩固了知识。不足之处在于部分学生对性质的逆命题理解不深,应用时思路单一。未来教学应增加逆向思维训练,设计更多开放性问题,引导学生体会该性质作为证明“线段相等”或“角相等”的重要工具价值。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)(共26张PPT)
第十五章 轴对称和等腰三角形
15.4.2等腰三角形
01
教学目标
02
新知导入
03
新知讲解
04
课堂练习
05
课堂小结
06
作业布置
01
教学目标
掌握等腰三角形中的“三线合一”的概念
01
理解验证等腰三角形“三线合一”定理的过程
02
能利用等腰三角形的推论来解决问题
03
02
复习旧知
等腰三角形的性质
性质 1 等腰三角形的两个底角相等.
(简写成等边对等角)
A
B
C
02
创设情境
同学们,在我们挂这个画框的时候,如果想只用一根钉子就让它保持水平、不歪斜,我们应该把钉子钉在画框上边的哪个位置呢?
中间
02
创设情境
但这其中蕴含着什么数学道理呢?如果我们把画框、绳子和墙面抽象成一个几何图形——画框的上边是底边,两侧的绳子是两条相等的边,这就构成了一个什么图形?
钉子
等腰三角形
02
创设情境
钉子
那么,钉子所在的那个‘中点’,在这个等腰三角形里扮演了什么角色?为什么绳子挂在这个点上,就能保证画框是水平的呢?”
03
新知探究
∠ADB = ∠ADC = 90°,
∠BAD =∠CAD.
由前面定理1的证明还能得到什么结论?
A
C
D
B
猜想:等腰三角形底边上的中线垂直于底边且平分顶角.
03
新知探究
思考
如图,在△ABC中,AB=AC.
1. 如果作BC边上的高线 AD,那么AD平分BC 吗?AD平分∠BAC吗
2.如果作∠ABC的顶角平分线AD,那么AD垂直平分BC 吗
03
新知探究
(1)
证明:作底边 BC 的高 AD,交 BC 于点 D.
∵ AD⊥BC,
∴∠ADB =∠ADC=90°.
在 Rt△ABD 与 Rt△ACD 中,
∴ Rt△ABD≌Rt△ACD(HL).
∴ BD=CD,∠BAD =∠CAD.
A
B
C
D
03
新知探究
(2)
证明:作顶角∠BAC的平分线AD,交BC于点D.
∵ AD平分∠BAC ,∴ ∠BAD=∠CAD.
在△ABD与△ACD中,
∴ △ABD≌△ACD(SAS),
∴ BD=CD,∠ADB=∠ADC.
又∵∠ADB+∠ADC=180°,∴∠ADB=∠ADC=90°.
A
C
D
B
03
新知探究
归纳
定理2 等腰三角形的顶角平分线、底边上的中线和底边上的高重合.
03
新知探究
A
B
C
结论:等边三角形每条边上的中线,高和所对角的平分线都“三线合一”.
三条对称轴
问题:等边三角形有“三线合一”的性质吗?等边三角形有几条对称轴?
03
新知探究
例1 如图,在△ABC中,AB=AC,AD是BC边上的中线,点E是AD上一点,求证:BE=CE.
证明 ∵ AB=AC,AD 是边BC上的中线,(已知)
∴ AD是BC 边上的高.(三线合一)
∴ AD 垂直平分线段BC .
(线段垂直平分线的定义)
∵ 点E 是AD上一点(已知)
∴ BE =CE.(线段垂直平分线的性质)
03
新知探究
例2 求证:斜边和一直角边分别相等的两个直角三角形全等.
已知:如图,在 Rt△ABC 和 Rt△A'B'C' 中,
∠C =∠C' = 90°,AB =A'B',AC =A'C'
求证:Rt△ABC≌Rt△A'B'C'.
A'
A
B
C
C'
B'
A
B
C
(C')
03
新知探究
证明:如图,在平面内移动Rt△ABC 和Rt△A'B'C',使点A 和A',点C 和C' 重合,点B 和点B' 在AC 两侧.
∵∠BCB' =90°+90°=180°,
∴B,C,B' 三点在一条直线上.
在△ABB' 中,∵AB =AB',∴∠B =∠B'.
在 Rt△ABC 和 Rt△A'B'C' 中,
∴Rt△ABC≌Rt△A'B'C' (AAS).
A
B
C
(C')
04
课堂练习
【知识技能类作业】必做题:
1.如图,在△ABC 中,AB=AC,AD⊥BC,垂足为D,BD=4,则BC =( )
A.2 B.4 C.6 D.8
2. 如图,在等边△ABC 中,BD 平分∠ABC,BD =BF,则∠CDF 的度数是(  )
A.10° B.15°
C.20° D.25°
D
B
04
课堂练习
【知识技能类作业】选做题:
3.如图,在等腰直角三角形ABC中,∠ABC=90°,AB=AC,D是BC边上的一点,过点B,C作BE⊥AD,CF⊥AD分别交AD于E,F,若BE=5,CF=3,则EF= .
4.在△ABC中,AB=AC,BD是∠ABC的平分线,且BD=AD,则∠A= .
36°
2
04
课堂练习
【综合拓展类作业】
5. 如图,在△ABC中,AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C.
04
课堂练习
【综合拓展类作业】
证明:如图,延长AB到点F,使AF=AC,连接DF.
∵AC=AB+BD,AF=AC,∴BD=BF,∴∠F=∠BDF.
∵∠ABC=∠F+∠BDF,
∴∠ABC=2∠F.
在△ADF和△ADC中,
∴△ADF≌△ADC(SAS),
∴∠C=∠F,
∴∠ABC=2∠C.
05
课堂小结
等腰三角形
性质2 等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合 (简写成“三线和一”)
应用: 研究等腰三角形的有关问题时“三线”是常用的辅助线.
06
作业布置
【知识技能类作业】必做题:
1.如图,在△ABC中, ∠ABC的平分线交于点D,AD=6,过点D作DE//BC交AB于点E,若△AED的周长为16,则边AB的长为(  )
A.10 B.8 C.6 D.16
2.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠BAC的度数为(  )
A.75° B.70° C.65° D.35°
A
A
06
作业布置
【知识技能类作业】选做题:
3.如图,在直角坐标系中,点A、B的坐标分别为(2,4)和(3、0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,在运动的过程中,当△ABC是以AB为底的等腰三角形时,OC= .
4.已知等腰三角形的一个底角的外角等于100°,则它的顶角为 .
20°
06
作业布置
【综合拓展类作业】
5.如图,在等边三角形ABC中,点D在AB上,点E在BC上,AD=BE,AE、CD相交于点P.求证:∠CPE=60°.
证明:∵△ABC是等边三角形,
∴∠B=∠BAC=60°,AB=CA.
又∵BE=AD,∴△ABE≌△CAD,
∴∠BAE=∠ACD,
又∵∠CPE是△APC的一个外角,
∴∠CPE=∠PAC+∠ACD=∠EAC+∠BAE=∠BAC.
∵∠BAC=60°,∴∠CPE=60°.
Thanks!
https://www.21cnjy.com/recruitment/home/fine中小学教育资源及组卷应用平台
学 科 数学 年 级 八 设计者
教材版本 沪科版 册、章 上册第十五章
课标要求 1.理解角平分线的概念,探索并证明角平分线的性质定理和判定定理。2.理解线段垂直平分线的概念,探索并证明线段垂直平分线的性质定理和判定定理。3.理解等腰三角形的概念,探索并证明等腰三角形的性质定理;探索等边三角形的性质定理及判定定理。4.能用尺规作图(了解作图原理,保留作图痕迹,不要求写出作法):作一条线段的垂直平分线;作一个角的平分线。5.通过具体实例理解轴对称的概念,探索它的基本性质。6.能画出简单平面图形(点、线段、直线、三角形等)关于给定对称轴的对称图形。7.理解轴对称图形的概念,探索等腰三角形的轴对称性质。8.认识并欣赏自然界和现实生活中的轴对称图形。
内容分析 本章教材以“轴对称”为核心主线,贯穿始终,构建了一个从感性认知到理性论证的完整知识体系。内容编排上,先引导学生从整体上认识轴对称图形,通过观察、操作理解其概念与性质,建立空间观念。继而,将轴对称作为研究特定图形的工具,聚焦于等腰三角形。教材通过“折叠”这一直观操作,自然引出其轴对称性,并严格推导出“等边对等角”与“三线合一”两大核心性质,最后完成“等角对等边”的判定,形成逻辑闭环。
学情分析 学生在小学阶段已对轴对称图形有初步的感性认识,具备一定的观察与动手操作能力,这为本章学习奠定了基础。然而,学生面临的挑战主要在于三个跨越:一是从直观感知到逻辑证明的跨越,如何将“折叠重合”转化为严谨的“几何语言”论证是一大难点;二是从概念理解到综合应用的跨越,特别是在复杂图形中识别轴对称结构,并灵活运用等腰三角形的性质与判定解决问题;三是从静态认识到动态理解的跨越,即真正将“轴对称”视为一种研究工具而非孤立知识点。
单元目标 (一)教学目标1.清晰识别轴对称图形,准确理解轴对称及相关概念,熟练掌握轴对称的基本性质;2.能够精准绘制简单平面图形关于给定对称轴对称的图形,切实掌握用坐标表示轴对称的方法;3.透彻理解线段垂直平分线、等腰三角形、等边三角形的概念,牢固掌握其性质定理与判定定理,并能熟练运用。(二)教学重点、难点重点:理解线段垂直平分线、等腰三角形、等边三角形的概念,牢固掌握其性质定理与判定定理。难点:能熟练运用其性质定理与判定定理解决问题
单元知识结构框架及课时安排 (一)单元知识结构框架(二)课时安排课时编号单元主要内容课时数15.1 轴对称图形315.2 线段垂直平分线215.3角平分线215.4等腰三角形3
达成评价 课题课时目标达成评价评价任务15.1轴对称图形(第一课时)1. 通过观察生活中的对称现象(如蝴蝶、窗户、字母等),初步认识轴对称图形。2. 能正确识别轴对称图形,并找出其对称轴。3. 能举例说明生活中的轴对称图形。1. 学生能正确判断一个图形是否为轴对称图形。2. 能准确画出轴对称图形的对称轴。3. 能举出至少两个生活中常见的轴对称图形实例。任务一:出示多个图形(如长方形、三角形、不规则图形等),让学生判断哪些是轴对称图形。任务二:让学生在轴对称图形上画出对称轴。任务三:请学生列举生活中见到的轴对称图形(如国旗、脸谱、标志等)。15.1轴对称图形(第二课时)1. 通过动手操作(如剪纸、折纸),理解轴对称图形的性质。2. 能在方格纸中补全简单的轴对称图形。3. 能根据对称轴判断两个图形是否成轴对称。1. 学生能通过折叠验证轴对称图形,并说出对称点的关系。2. 能根据对称轴,补全轴对称图形的另一侧。3. 能正确区分一个轴对称图形与两个图形成轴对称。任务一:发放图形纸片(如心形、松树等),让学生通过折叠验证对称性并标记对称点。任务二:在方格纸上给出对称轴和一半图形,让学生补全轴对称图形。任务三:出示多组图形,让学生判断是“一个轴对称图形”还是“两个图形成轴对称”。15.1轴对称图形(第三课时)1. 探索并理解关于坐标轴轴对称的点的坐标变化规律。2. 能在平面直角坐标系中,作出一个图形关于坐标轴轴对称的图形。3. 能运用轴对称的坐标规律解决简单问题1. 学生能准确说出点关于x轴、y轴对称的点的坐标变化规律。2. 能根据规律,在坐标系中熟练地作出已知图形关于x轴或y轴的对称图形。3. 能利用坐标规律,解决已知对称点求坐标或判断对称性的问题。任务一:坐标规律探究——给定点A(2,3),让学生写出它关于x轴、y轴对称的点的坐标,并总结规律。任务二:轴对称作图—在坐标系中给出一个简单图形(如三角形),让学生画出它关于y轴的对称图形。任务三:综合应用,提供一些问题15.2线段垂直平分线(第一课时)1. 通过动手操作和观察,理解线段垂直平分线的概念。2. 通过探究发现并理解线段垂直平分线的性质定理。3. 通过探究发现并理解线段垂直平分线的判定定理。1. 学生能准确说出线段垂直平分线的定义和两个关键要素(垂直、平分)。2. 能通过测量验证并表述线段垂直平分线的性质定理(垂直平分线上的点到线段两端点的距离相等)。3.能利用线段垂直平分线的判定定理证明任务一:概念辨析,给出一些图形,让学生判断哪条直线是线段的垂直平分线,并说明理由。任务二:性质探究,在作好的垂直平分线上任取几点,让学生测量这些点到线段两端点的距离,记录数据,并总结发现的规律。任务三:基础证明,给出图形和条件,例如“已知PA=PB,QA=QB”,让学生证明“PQ是线段AB的垂直平分线”。15.2线段垂直平分线(第二课时)1. 掌握线段垂直平分线的尺规作图方法。2.能运用线段垂直平分线的性质和判定定理解决简单的几何证明与计算问题。3. 理解线段垂直平分线在解决实际问题中的应用。1. 能使用尺规正确作出已知线段的垂直平分线能使用尺规正确作出已知线段的垂直平分线任务一:尺规作图——给定线段AB,要求学生在纸上使用无刻度的直尺和圆规作出其垂直平分线。任务二:定理辨析,给出命题,让学生判断它们之间的关系,并说明哪个是性质定理,哪个是判定定理。任务三:综合应用,解决实际问题,并说明其数学原理。15.3角平分线(第一课时)1. 通过观察和动手操作,理解角平分线的概念。2. 掌握角平分线的尺规作图方法。3. 通过作垂线掌握尺规作图1. 学生能准确说出角平分线的定义,并能在图形中正确识别。2. 能使用尺规正确作出已知角的角平分线。3. 会利用尺规作图作垂线任务一:概念识别,给出几个包含角平分线的图形,让学生指认并描述角平分线。任务二:尺规作图,给定一个角,要求学生在纸上使用无刻度的直尺和圆规作出其角平分线。任务三:利用尺规作图作垂线 15.3角平分线 (第二课时)1.通过实验探究发现并理解角平分线的性质定理。2.理解一次函数与坐标轴的交点3.会求一次函数的特殊点2. 掌握角平分线的判定定理。3. 能运用角平分线的性质和判定定理进行简单的几何证明与计算1.能通过测量验证并表述角平分线的性质定理(角平分线上的点到角两边的距离相等)2.会求函数与坐标轴的交点2. 学生能准确表述角平分线的判定定理(角的内部到角两边距离相等的点,在这个角的平分线上)。3. 能正确区分并应用性质定理和判定定理进行推理证明。任务一:性质探究,在作好的角平分线上任取几点,让学生测量这些点到角两边的距离,记录数据,并总结发现的规律。任务二:定理辨析——给出命题,让学生判断它们之间的关系,并说明哪个是性质定理,哪个是判定定理。任务三:基础证明——给出图形和条件,让学生证明点在的平分线上。任务四:综合应用——解决实际问题。15.4等腰三角形(第一课时)1. 通过观察、操作认识等腰三角形,理解其相关概念(腰、底边、顶角、底角)。2. 通过折叠等操作,探索并理解等腰三角形的轴对称性。3. 通过实验发现并猜想等腰三角形的性质定理(等边对等角)。1. 学生能准确识别等腰三角形,并能正确指出其腰、底边、顶角和底角。2. 能通过动手操作验证等腰三角形是轴对称图形,并能找出对称轴。3. 能通过测量等方法发现“等边对等角”的性质,并能用文字语言初步表述该性质。任务一:概念识别,出示不同类型的三角形(等腰、等边、不等边),让学生识别出等腰三角形,并标出各要素名称。任务二:操作探究,发放等腰三角形纸片,让学生通过折叠验证其轴对称性,并指出对称轴。任务三:性质猜想,引导学生测量等腰三角形两个底角的度数,比较并记录结果,最终归纳出“等边对等角”的猜想。15.4等腰三角形(第二课时)1. 证明并掌握等腰三角形的性质定理(等边对等角)及推论(三线合一)。2. 能初步运用等腰三角形的性质进行简单的计算和证明。3. 体会几何证明的逻辑性,发展推理能力。1. 学生能准确表述“等边对等角”和“三线合一”的性质,并理解其推理过程。2. 能利用等腰三角形的性质,进行有关角度的计算和简单线段的证明。3. 能在具体情境中识别并应用“三线合一”的性质解决问题。任务一:定理证明,在教师的引导下,学生理解并共同完成“等边对等角”的证明,并由此推导出“三线合一”的性质。任务二:基础应用,给出图形和条件,让学生计算其他角的度数;或证明线段相等任务三:综合识别,出示一个等腰三角形及其底边上的中线,让学生判断这条线是否同时是高和顶角平分线,并说明理由。15.4等腰三角形(第三课时)1. 探索并掌握等腰三角形的判定定理(等角对等边)。2. 能综合运用等腰三角形的性质和判定进行推理和计算。3. 运用等腰三角形的相关知识解决简单的实际问题。1. 学生能准确表述等腰三角形的判定定理(等角对等边),并能说明其与性质定理的区别与联系。2. 能根据已知条件,选择合适的定理证明一个三角形是等腰三角形。3. 能运用等腰三角形的性质和判定,解决涉及角度、线段相等的综合性问题及简单应用问题。任务一:定理探究,给定一个三角形,已知两个角相等,引导学生通过折叠或推理,发现并验证“等角对等边”的结论。任务二:判定应用,出示图形和条件(如∠B=∠C,或AD既是高又是角平分线),让学生证明△ABC是等腰三角形。任务三:综合应用,解决实际问题
《轴对称图形与等腰三角形》单元教学设计
活动1:引入课题
活动2:探究轴对称图形相关概念
15.1轴对称图形(第一课时)
活动3:例题讲解
轴对称图形与等腰三角形
活动1:引入课题
15.1轴对称图形 (第二课时)
活动2:探究轴对称的概念及性质
活动3:归纳线段垂直平分线的概念
活动4:例题讲解
活动1:引入课题
15.1轴对称图形 (第三课时)
活动2:探究平面直角坐标系中点的对称特点
活动3:例题讲解
活动1:引入课题
15.2线段垂直平分线(第一课时)
活动2:探究线段垂直平分线的性质定理
活动3:探究线段垂直平分线的判定定理
活动4:例题讲解
活动1:引入课题
活动2:尺规作线段垂直平分线
15.2线段垂直平分线(第二课时)
活动3:例题讲解
活动2:探究利用尺规作角平分线的方法
活动1:引入课题
活动3:利用尺规作已知直线的垂线
15.3角平分线(第一课时)
活动4:例题讲解
活动3:探究角平分线的判定定理
活动2:探究角平分线的性质定理
活动1:引入课题
15.3角平分线 (第二课时)
轴对称图形与等腰三角形
活动4:例题讲解
活动1:引入课题
活动2:探究等腰三角形的性质
15.4等腰三角形(第一课时)
活动3:探究等边三角形的性质
活动4:例题讲解
活动1:引入课题
15.4等腰三角形(第二课时)
活动2:探究等腰三角形“三线合一”的性质
活动3:例题讲解
活动1:引入课题
活动2:探究等腰三角形的判定定理
15.4等腰三角形(第三课时)
活动3:总结归纳其推论
活动4:例题讲解
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)