第二十六章概率初步随堂练习(含答案)沪科版数学九年级下册

文档属性

名称 第二十六章概率初步随堂练习(含答案)沪科版数学九年级下册
格式 docx
文件大小 398.2KB
资源类型 试卷
版本资源 沪科版
科目 数学
更新时间 2025-11-25 15:17:11

图片预览

文档简介

中小学教育资源及组卷应用平台
第二十六章概率初步
一、单选题
1.下列事件为必然事件的是(  )
A.中秋节晚上一定能看到月亮
B.某彩票中奖率是1%,买100张彩票一定会中奖
C.明天的气温一定会比今天的高
D.地球上,上抛的篮球一定会下落
2.下面是一些可以自由转动的转盘,按照转出黄色的可能性由大到小进行排列正确的是(  )
A.②④①③ B.①②③④ C.③①④② D.④①③②
3.下列说法正确的是(  )
A.“打开电视机,正在播放《新闻联播》”是必然事件
B.天气预报“明天降水概率50%,是指明天有一半的时间会下雨”
C.甲、乙两人在相同的条件下各跳远8次,他们成绩的平均数相同,方差分别是,,则甲的成绩更稳定
D.了解一批冰箱的使用寿命,采用普查的方式
4.一个不透明的盒子中装有4个形状、大小、质地完全相同的小球,这些小球上分别标有、0、2、3.从中随机摸取一个小球,则摸到所标数字是负数的小球的概率为(  )
A. B. C. D.
5.一个不透明的袋子里装有白球和黑球共20个,这些球除颜色外都相同,从袋子中随机摸一个球记下颜色后放回搅匀,不断重复这一过程,统计发现摸到白球的概率为0.2,由此估计袋子里黑球的个数为(  )
A.4 B.16 C.12 D.8
6.如图,转盘中8个扇形的面积都相等,涂色的为灰色部分,其余为白色部分,任意转动这个转盘1次,当转盘停止转动时,指针落在灰色区域的概率是(  )
A. B. C. D.
7.小明有两根长度分别为5cm和8cm的木棒,他想钉一个三角形的木框。现在有5根木棒供他选择,其长度分别为3cm、5cm、10cm、13cm、14cm.小明随手拿了一根,恰好能够组成一个三角形的概率为()
A. B. C. D.1
8.下列事件中,为不可能事件的是(  )
A.掷一枚均匀的硬币,正面朝上 B.旭日东升
C.当x为某一实数时可使x2<0 D.明天要下雨
9.下列说法正确的是(  )
A.买彩票中奖是必然事件
B.“明天的降水概率为”,意味着明天一定下雨
C.“清明时节雨纷纷”是随机事件
D.若a是有理数,则“”是不可能事件
10.如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟不落在花圃上的概率为(  )
A. B. C. D.
11.班长邀请四名同学参加圆桌会议.如图,班长坐在⑤号座位,四名同学随机坐在①、②、③、④号座位,则两名同学座位相邻的概率是(  )
A. B. C. D.
12.两人玩一个有趣的拿球游戏,现有一堆球,两人轮流从中拿球,每人每次只能拿1个或者2个球,谁拿到最后一个球谁就获胜。已知这堆球的数量是在4到2025(包括4和2025)这些整数中随机选取一个数,则先取球的人有必胜策略的概率是(  )
A. B. C. D.
二、填空题
13.如图所示,用图中一个可自由转动的转盘做“配紫色”游戏:自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,转动无效,重新转动)的颜色,若其中一次转出红色,另一次转出蓝色即可配成紫色,那么可配成紫色的概率为   .
14.如果把3个苹果放入两个果盘中,至少有2个苹果在同一个果盘中,这是   (填“确定”或“不确定”)事件.
15.在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出红球的概率是   .
16.在一个不透明的口袋中,装有4个红球和若干个白球,这些球除颜色外其余都相同,如果摸到红球的概率是0.25,那么口袋中有白球   个.
17.将6名志愿者分到3个不同的社区,每个社区2名志愿者,则甲、乙两名志愿者分到同一个社区的概率为 .
三、解答题
18.在一个不透明的盒子里装有除颜色外,其他完全相同的红、黄、蓝三种颜色的球,其中红球3个,黄球5个,蓝球若干个.若从中任意摸出一个球,摸到黄球的概率是.
(1)求盒子中蓝球的个数.
(2)能否通过只改变盒子中黄球的数量,使得任意摸出一个球,摸到红球的概率为?若能,请写出应如何调整黄球的数量;若不能,请说明理由.
19.随着科技的发展,人与人之间的沟通方式越来越丰富.一天,甲、乙两人同步想从“微信”“QQ"“电话”三种方式中任意选一种与对方联系,求两人恰好选择同一种沟通方式的概率. (用列表或画树状图说明)
20.小翔、小宇一起研究一元二次方程的解法,他们在(A:配方法 B:公式法 C:因式分解法)中各自随机选择一种进行求解.
(1)小宇选择方法B的概率是 ;
(2)用画树状图或列表的方法求小翔、小宇选择同一种解法的概率.
21.某著名景区计划在西峰修建安装至多4条索道接送游客,过去10年景区游客统计资料显示,景区每年游客客流量都在160万人以上.过去10年的游客客流量的统计情况绘制成如下频数分布直方图(数据包括左端点,不含右端点,假设每年游客客流量不相互影响).
以过去10年的游客客流量的统计情况为参考依据.
(1)求该景区今年游客客流量不低于240万人的概率;
(2)若该景区希望安装的索道尽可能运行,但每年索道最多可运行条数受游客客流量的限制,并有如下表关系:
年游客客流量(单位:万人)
索道最多可运行条数 1 2 3 4
若某条索道运行,则该条索道年利润为6000万元;若某条索道未运行,则该条索道年亏损2000万元,从平均获利的角度看,帮景区作出决策,应选择安装2条还是3条索道获利较多?请说明理由.
22.小明和小亮用如图所示的同一个转盘进行“配紫色”游戏.游戏规则如下:连续转动两次转盘,如果两次转盘转出的颜色相同或配成紫色(若其中一次转盘转出蓝色,另一次转出红色,则可配成紫色),则小明得1分,否则小亮得1分.你认为这个游戏对双方公平吗?请说明理由.若不公平,请你修改规则使游戏对双方公平.
23.模拟经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,当同向行驶的三辆汽车经过这个十字路口时,
(1)求三辆车全部同向而行的概率.
(2)求至少有两辆车向左转的概率.
(3)这个路口汽车左转.右转、直行的指示绿灯交替亮起,亮的时间均为30秒.交管部门对这个十字路口交通高峰时段车流量作了统计,发现汽车在此十字路口向右转的频率为,向左转和直行的频率均为,在绿灯亮的总时间不变的条件下,为使交通更加通畅,请你用统计的知识对此十字路口三个方向的绿灯亮的时间做出合理的调整.
24.为了倡导保护资源节约用水,从某小区随机抽取了50户家庭,调查了他们5月的用水量情况,结果如图所示.
(1)这50户家庭中5月用水量在20~30t的有多少户?
(2)把图中每组用水量的值用该组的中间值(如0~10的中间值为5)来代替,估计该小区平均每户用水量;
(3)从该50户用水量在20~40t的家庭中,任抽取2户,用树状图或表格法求至少有1户用水量在30~40t的概率.
参考答案
1.D
2.C
3.C
4.C
5.B
6.B
7.A
8.C
9.C
10.A
11.C
12.C
13.
14.确定
15.
16.12
17.
18.(1)2
(2)能,需要减少黄球1个
19.解:画树状图如下:
两人恰好选择同一种沟通方式的概率为:.
20.(1)
(2)
21.(1)解:该景区地过去10年游客客流量不低于240万人的年数为(年),
占总年数的比率为,
因此该景区今年游客客流量不低于240万人的概率为.
(2)解:根据题意,年游客客流量在的概率为,
此时可维持1条索道运行;
年游客客流量在的概率为,
此时可维持2条索道运行;
年游客客流量在的概率为,
此时可维持3条索道运行;
年游客客流量在的概率为,
此时可维持4条索道运行;
若安装2条索道,则平均获利为(万元),
若安装3条索道,则平均获利为(万元),
∵,
∴选择安装2条索道获利较多.
22.解:列表如下:
第一次 第二次 红 黄 蓝
红 (红,红) (红,黄) (红,蓝)
黄 (黄,红) (黄,黄) (黄.蓝)
蓝 (蓝,红) (蓝.黄) (蓝,蓝)
由表知,P(小明获胜),P(小亮获胜).
∴小明的得分为.
小亮的得分为.
∵,∴游戏不公平.
修改规则不唯一.如若两次转出颜色相同或配成紫色.则小明得4分.否则小亮得5分.
23.(1)解:分别用A、B、C表示向左转,直行,向右转,根据题意画出树状图如下:
由图可知:共有27种等可能的结果数,三辆车全部同向而行的有3种情况,
∴P( 三辆车全部同向而行的概率)= ;
(2)解:∵至少有两辆车向左转的情况数有7种,
∴P( 至少有两辆车向左转 )=;
(3)解:∵汽车向右转、向左转,直行的概率分别为,
∴ 在绿灯亮的总时间不变的条件下可以调整绿灯亮的时间如下:
向左转及直行的绿灯亮的时间都为:(秒),
向右转绿灯亮的时间为:(秒).
24.(1)3
(2)12.4
(3)
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)