25.2用列举法求概率(3)同步测试含答案

文档属性

名称 25.2用列举法求概率(3)同步测试含答案
格式 zip
文件大小 132.6KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2016-09-30 21:03:24

图片预览

文档简介

《25.2
用列举法求概率》(3)
 
一、选择题
1.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为(  )
A.
B.
C.
D.
2.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是(  )
A.
B.
C.
D.
3.有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为(  )
A.
B.
C.
D.
4.小明与小刚一起玩抛掷两枚硬币的游戏,游戏规则:
抛出两个正面﹣﹣小明赢1分;抛出其他结果﹣﹣小刚赢1分;
谁先到10分,谁就获胜.
这是个不公平的游戏规则,要把它修改成公平的游戏,下列做法中错误的是(  )
A.把“抛出两个正面”改为“抛出两个同面”
B.把“抛出其他结果”改为“抛出两个反面”
C.把“小明赢1分”改为“小明赢3分”
D.把“小刚赢1分”改为“小刚赢3分”
5.“服务他人,提升自我”,七一学校积极开展志愿者服务活动,来自初三的5名同学(3男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是(  )
A.
B.
C.
D.
6.如图,随机闭合开关K1,K2,K3中的两个,则能让两盏灯泡同时发光的概率为(  )
A.
B.
C.
D.
7.一枚质地均匀的正方体骰子,六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,其朝上面上的两个数字之和为6的概率是(  )
A.
B.
C.
D.
8.有四张形状、大小和质地完全相同的卡片,每张卡片的正面写有一个算式.将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.则抽取的两张卡片上的算式都正确的概率是(  )
A.
B.
C.
D.
 
二、填空题
9.在一个不透明的口袋中,有3个完全相同的小球,他们的标号分别是2,3,4,从袋中随机地摸取一个小球然后放回,再随机的摸取一个小球,则两次摸取的小球标号之和为5的概率是______.
10.如右图,在某十字路口,汽车可直行、可左转、可右转.若这三种可能性相同,则两辆汽车经过该路口都向右转的概率为______.
11.如图所示,小明和小龙做转陀螺游戏,他们同时分别转动一个陀螺,当两个陀螺都停下来时,与桌面相接触的边上的数字都是奇数的概率是______.
12.把同一副扑克中的红桃2,3,4,5有数字的一面朝下放置,洗匀后甲先抽取一张,记下数字后将牌放回,洗匀后乙再抽取一张.设先后两次抽得的数字分别记为x和y,则|x﹣y|≥2的概率为______.
13.现有点数为:2,3,4,5的四张扑克牌,背面朝上洗匀,然后从中任意抽取两张,这两张牌上的数字之和为偶数的概率为______.
14.有背面完全相同,正面上分别标有两个连续自然数k,k+1(其中k=0,1,2,…,19)的卡片20张.小李将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,则该卡片上两个数的各位数字之和(例如:若取到标有9,10的卡片,则卡片上两个数的各位数字之和为9+1+0=10)不小于14的概率为______.
15.假定有一排蜂房,形状如图,一只蜜蜂在左下角的蜂房中,由于受伤,只能爬,不能飞,而且只能永远向右方(包括右上、右下)爬行,从一间蜂房爬到与之相邻的右蜂房中去,则从最初位置爬到4号蜂房中,不同的爬法有______种.
16.从3,0,﹣1,﹣2,﹣3这五个数中,随机抽取一个数,作为函数y=(5﹣m2)x和关于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为______.
17.小静和哥哥两人都很想去观看某场体育比赛,可门票只有一张.哥哥想了一个办法,拿了8张扑克牌,将数字为2、3、5、9的四张牌给小静,将数字为4、6、7、8的四张牌留给自己,并按如下游戏规则进行:小静和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小静去;如果和为奇数,则哥哥去.哥哥设计的游戏规则______(填“公平”或“不公平”).
 
《25.2
用列举法求概率》(3)
答案
一、选择题
1.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为(  )
A.
B.
C.
D.
【解答】解:分别用A、B、C、D表示等腰三角形、平行四边形、菱形、圆,
画树状图得:
∵共有12种等可能的结果,抽到卡片上印有的图案都是轴对称图形的有6种情况,
∴抽到卡片上印有的图案都是轴对称图形的概率为:
=.
故选D.
 
2.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是(  )
A.
B.
C.
D.
【解答】解:用A表示没蛋黄,B表示有蛋黄的,画树状图如下:
∵一共有12种情况,两个粽子都没有蛋黄的有6种情况,
∴则这两个粽子都没有蛋黄的概率是=
故选B.
 
3.有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为(  )
A.
B.
C.
D.
【解答】解:根据题意,画出树状图如下:
一共有6种情况,在第二象限的点有(﹣1,1)(﹣1,2)共2个,
所以,P==.
故选B.
 
4.小明与小刚一起玩抛掷两枚硬币的游戏,游戏规则:
抛出两个正面﹣﹣小明赢1分;抛出其他结果﹣﹣小刚赢1分;
谁先到10分,谁就获胜.
这是个不公平的游戏规则,要把它修改成公平的游戏,下列做法中错误的是(  )
A.把“抛出两个正面”改为“抛出两个同面”
B.把“抛出其他结果”改为“抛出两个反面”
C.把“小明赢1分”改为“小明赢3分”
D.把“小刚赢1分”改为“小刚赢3分”
【解答】解:
因为p(正,正)=,则出现其他结果的概率为:,
A.根据出现抛出两个相同面的概率为:,则把“抛出两个正面”改为“抛出两个同面”正确,故此选项正确不符合题意;
B.把“抛出其他结果”改为“抛出两个反面”时,两人获胜概率都为:,故此时公平,故此选项正确不符合题意;
C.∵小明获胜概率为:,小刚获胜概率为:,故把“小明赢1分”改为“小明赢3分”,故此时公平,故此选项正确不符合题意;
D.把“小刚赢1分”改为“小刚赢3分,此时不公平,故此选项错误符合题意;
故选:D.
 
5.“服务他人,提升自我”,七一学校积极开展志愿者服务活动,来自初三的5名同学(3男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是(  )
A.
B.
C.
D.
【解答】解:根据题意画出树状图如下:
一共有20种情况,恰好是一男一女的有12种情况,
所以,P(恰好是一男一女)==.
故选:D.
 
6.如图,随机闭合开关K1,K2,K3中的两个,则能让两盏灯泡同时发光的概率为(  )
A.
B.
C.
D.
【解答】解:画树状图得:
∵共有6种等可能的结果,能让两盏灯泡同时发光的是闭合开关K1、K3与K3、K1,
∴能让两盏灯泡同时发光的概率为:
=.
故选B.
 
7.一枚质地均匀的正方体骰子,六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,其朝上面上的两个数字之和为6的概率是(  )
A.
B.
C.
D.
【解答】解:列表得:
1
2
3
4
5
6
1
(1,1)
(1,2)
(1,3)
(1,4)
(1,5)
(1,6)
2
(2,1)
(2,2)
(2,3)
(2,4)
(2,5)
(2,6)
3
(3,1)
(3,2)
(3,3)
(3,4)
(3,5)
(3,6)
4
(4,1)
(4,2)
(4,3)
(4,4)
(4,5)
(4,6)
5
(5,1)
(5,2)
(5,3)
(5,4)
(5,5)
(5,6)
6
(6,1)
(6,2)
(6,3)
(6,4)
(6,5)
(6,6)
∵共有36种等可能的结果,向上的两个面上的数字之和为6的有5种情况,
∴掷两次骰子,其朝上面上的两个数字之和为6的概率是:.
故选D.
 
8.有四张形状、大小和质地完全相同的卡片,每张卡片的正面写有一个算式.将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.则抽取的两张卡片上的算式都正确的概率是(  )
A.
B.
C.
D.
【解答】解:设这四个卡片分别为:A,B,C,D,
画树状图得:
∴一共有12种情况,
∵A、﹣5﹣2=﹣7,本项错误;
B、+=2,此项正确;
C、a5﹣a2≠a3,本项错误;
D、a6 a2=a8,此项正确,
∴抽取的两张卡片上的算式都正确的有BD,DB共2个,
∴抽取的两张卡片上的算式都正确的概率是=.
故选D.
 
二、填空题
9.在一个不透明的口袋中,有3个完全相同的小球,他们的标号分别是2,3,4,从袋中随机地摸取一个小球然后放回,再随机的摸取一个小球,则两次摸取的小球标号之和为5的概率是  .
【解答】解:列表如下:
2
3
4
2
(2,2)
(3,2)
(4,2)
3
(2,3)
(3,3)
(4,3)
4
(2,4)
(3,4)
(4,4)
所有等可能的结果有9种,其中之和为5的情况有2种,
则P之和为5=.
故答案为:
 
10.如右图,在某十字路口,汽车可直行、可左转、可右转.若这三种可能性相同,则两辆汽车经过该路口都向右转的概率为  .
【解答】解:画树状图得:
∵共有9种等可能的结果,两辆汽车经过该路口都向右转的有1种情况,
∴两辆汽车经过该路口都向右转的概率为:.
故答案为:.
 
11.如图所示,小明和小龙做转陀螺游戏,他们同时分别转动一个陀螺,当两个陀螺都停下来时,与桌面相接触的边上的数字都是奇数的概率是  .
【解答】解:列表得:
(4,6)
(5,6)
(6,6)
(7,6)
(8,6)
(9,6)
(4,5)
(5,5)
(6.5)
(7,5)
(8,5)
(9,5)
(4,4)
(5,4)
(6,4)
(7,4)
(8,4)
(9,4)
(4,3)
(5,3)
(6,3)
(7,3)
(8,3)
(9,3)
(4,2)
(5,2)
(6,2)
(7,2)
(8,2)
(9,2)
(4,1)
(5,1)
(6,1)
(7,1)
(8,1)
(9,1)
∴一共有36种情况,与桌面相接触的边上的数字都是奇数的有9种情况,
∴与桌面相接触的边上的数字都是奇数的概率是,
所以答案:.
 
12.把同一副扑克中的红桃2,3,4,5有数字的一面朝下放置,洗匀后甲先抽取一张,记下数字后将牌放回,洗匀后乙再抽取一张.设先后两次抽得的数字分别记为x和y,则|x﹣y|≥2的概率为  .
【解答】解:画树状图得:
∵共有16种等可能的结果,|x﹣y|≥2的有6种情况,
∴|x﹣y|≥2的概率为:
=.
故答案为:.
 
13.现有点数为:2,3,4,5的四张扑克牌,背面朝上洗匀,然后从中任意抽取两张,这两张牌上的数字之和为偶数的概率为  .
【解答】解:根据题意,作树状图可得:
分析可得,共12种情况,有4种情况符合条件;
故其概率为.
 
14.有背面完全相同,正面上分别标有两个连续自然数k,k+1(其中k=0,1,2,…,19)的卡片20张.小李将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,则该卡片上两个数的各位数字之和(例如:若取到标有9,10的卡片,则卡片上两个数的各位数字之和为9+1+0=10)不小于14的概率为  .
【解答】解:根据题意,列表可得:
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10
10
11
11
12
12
13
13
14
14
15
15
16
16
17
17
18
18
19
19
20
分析可得,在20种情况中有5种符合条件,故其概率为=;
故答案为:.
 
15.假定有一排蜂房,形状如图,一只蜜蜂在左下角的蜂房中,由于受伤,只能爬,不能飞,而且只能永远向右方(包括右上、右下)爬行,从一间蜂房爬到与之相邻的右蜂房中去,则从最初位置爬到4号蜂房中,不同的爬法有 8 种.
【解答】解:蜜蜂的爬法可能为:1﹣2﹣4;1﹣3﹣4;0﹣3﹣4,1﹣0﹣3﹣4,0﹣3﹣4,0﹣1﹣3﹣4,0﹣1﹣2﹣4,0﹣1﹣3﹣2﹣4共8种.
故答案为:8
 
16.从3,0,﹣1,﹣2,﹣3这五个数中,随机抽取一个数,作为函数y=(5﹣m2)x和关于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为  .
【解答】解:∵所得函数的图象经过第一、三象限,
∴5﹣m2>0,
∴m2<5,
∴3,0,﹣1,﹣2,﹣3中,3和﹣3均不符合题意,
将m=0代入(m+1)x2+mx+1=0中得,x2+1=0,△=﹣4<0,无实数根;
将m=﹣1代入(m+1)x2+mx+1=0中得,﹣x+1=0,x=1,有实数根;
将m=﹣2代入(m+1)x2+mx+1=0中得,x2+2x﹣1=0,△=4+4=8>0,有实数根.
故方程有实数根的概率为.
故答案为.
 
17.小静和哥哥两人都很想去观看某场体育比赛,可门票只有一张.哥哥想了一个办法,拿了8张扑克牌,将数字为2、3、5、9的四张牌给小静,将数字为4、6、7、8的四张牌留给自己,并按如下游戏规则进行:小静和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小静去;如果和为奇数,则哥哥去.哥哥设计的游戏规则 不公平 (填“公平”或“不公平”).
【解答】解:(1)法1,列表
哥哥小墩
2
3
5
9
4
6
7
9
13
6
8
9
11
15
7
9
10
12
16
8
10
11
13
17
法2,画树状图
从上表可以看出共有16种可能的值,而其中偶数有6种,奇数有10种,
所以P(小静去看比赛)=,P(哥哥去看比赛)=;所以不公平.
故答案为:不公平.