中小学教育资源及组卷应用平台
3.2用频率估计概率
一、单选题
1.学了概率的相关知识后,某综合实践小组利用计算机模拟抛掷一枚图钉的试验,研究落地后针尖朝上的概率,记录的试验数据如下表:
累计抛掷次数 100 1000 2000 3000 4000 5000 6000
针尖朝上频率
随着试验次数的增大,估计“针尖朝上”的概率接近于( )(精确到)
A. B. C. D.
2.一个盒子里有黑球6个,白球若干,这些球除颜色外都相同.将盒子里的球搅拌均匀,从中随机摸出一个球,记下颜色后放回盒子里,不断重复这一过程,共摸了100次球,发现有70次摸到白球.则盒子中白球大约有( )
A.7个 B.10个 C.14个 D.16个
3.两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘制出的统计图如图所示,则符合这一结果的试验可能是( )
A.掷一枚正六面体的骰子,出现点数是偶数的概率
B.抛一枚硬币,正面朝下的概率
C.从装有2个红球和1个篮球(3个球除颜色外均相同)的不透明口袋中,任取一个球恰好是篮球的概率
D.用一副去掉大、小王的扑克牌做摸牌游戏,随机抽取一张牌,花色为“红桃”的概率
4.一个不透明的箱子里有若干个小球,小球除颜色外完全相同.箱子中有12个白球,剩下的都是红球,经过多次重复试验,发现摸到红球的频率稳定在左右,则红球的个数是( )
A.3 B.4 C.5 D.6
5.已知不透明的袋子中装有20个白球和若干个红球,这些球除颜色外都相同,若随机从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀,经过大量重复试验发现摸出白球的频率稳定在附近,则袋子中的红球大约有( )
A.80个 B.98个 C.100个 D.120个
6.一个口袋中有红球、黄球共20个,这些除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一球,记下颜色后再放回口袋,不断重复这一过程,共摸了200次,发现其中有161次摸到红球.则这个口袋中红球数大约有( )
A.4个 B.10个 C.16个 D.20个
7.一个口袋中装有黑球、白球共15个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有60次摸到黑球,请估计口袋中黑球的个数大约有( )
A.3个 B.5个 C.6个 D.9个
8.行道树是指种在道路两旁及分车带,给车辆和行人遮荫并构成街景的树种.国槐是我市常见的行道树品种。如图是一批国槐树苗移植成活频率的统计图,由此可估计这种树苗移植成活的概率约为( )
A.0.95 B.0.90 C.0.85 D.0.80
9.某水果超市为了吸引顾客来店购物,设立了一个如图所示的可以自由转动的转盘,开展有奖购物活动.顾客购买商品满200元就能获得一次转动转盘的机会,当转盘停止时,指针落在“一袋苹果”的区域就可以获得一袋苹果;指针落在“一袋橘子”的区域就可以获得一袋橘子.若转动转盘2000次,指针落在“一袋橘子”区域的次数有600次,则某位顾客转动转盘一次,获得一袋橘子的概率大约是( )
A.0.3 B.0.7 C.0.4 D.0.2
10.如图1所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为,宽为的长方形,将不规则图案围起来,然后在适当位置随机朝长方形区域扔小球,并记录小球落在不规则图案上的次数(小球扔在界线上或长方形区域外不计入试验结果),他将若干次有效试验的结果绘制成了图2所示的折线统计图,由此可估计不规则图案的面积大约是( )
A. B. C. D.
二、填空题
11.如表是小明做“抛掷图钉试验”获得的数据,则可估计“钉尖不着地”的概率为 .
抛掷次数 100 300 500 600 800 900 1000
针尖不着地的频数 64 180 310 360 488 549 610
针尖不着地的频率 0.64 0.60 0.62 0.6 0.61 0.61 0.61
12.足球是一项非常古老的运动,最早起源于中国,是全球体育界最具影响力的单项体育运动,现从一批足球中随机抽检部分足球的质量,统计结果如表:
抽取的足球数个
优等品的频数个
优等品的频率
据此推测,从这批足球中随机抽取一个足球是优等品的概率是 结果精确到.
13.为估计可可西里某区域内藏羚羊的数量,先捕捉20只给它们作上标记,然后放回;待有标志的藏羚羊完全混合于藏羚羊群后,第二次捕捉40只,发现其中2只有标记,从而估计该区域有藏羚羊约有 只.
14.袋子中有红球、白球共10个,这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100次后,发现有30次摸到红球,请你估计这个袋中红球约有 个.
15.一口袋中有6个红球和若干个白球,除颜色外均相同,从口袋中随机摸出一球,记下颜色,再把它放回口袋中摇匀.重复上述实验共300次,其中120次摸到红球,则口袋中大约有 个白球.
三、解答题
16.在一个不透明的口袋里装有若干个相同的红球,为了用估计袋中红球的数量,八(1)班学生在数学实验室分组做摸球实验:每组先将10个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是这次活动统计汇总各小组数据后获得的全班数据统计表:
摸球的次数s 150 300 600 900 1200 1500
摸到白球的频数n 63 a 247 365 484 606
摸到白球的频率 0.420 0.410 0.412 0.406 0.403 b
(1)按表格数据格式,表中的______;______;
(2)请估计:当次数s很大时,摸到白球的频率将会接近______(精确到0.1);
(3)请推算:摸到红球的概率是_______(精确到0.1);
(4)试估算:这一个不透明的口袋中红球有______只.
17.某种油菜籽在相同条件下发芽试验的结果如下表:
每批粒数 100 150 200 500 800 1000
发芽粒数 65 111 345 560 700
发芽的频率
(1)填空:________,________;
(2)根据表格中的数据,估计这种油菜籽发芽的概率;(精确到)
18.在一个不透明的袋子里装有只有颜色不同的黑、白两种颜色的球共50个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,表格是活动进行中的一组统计数据:
摸球的次数n 100 200 300 500 800 1000
摸到黑球的次数m 65 118 189 310 482 602
摸到黑球的频率 0.65 0.59 0.63 0.62 0.603 0.602
(1)请估计:当n很大时,摸到黑球的频率将会接近 (精确到0.1);
(2)试估计袋子中有黑球 个;
(3)若学习小组通过实验结果,想使得在这个不透明袋子中每次摸到黑球的可能性大小为50%,则可以在袋子中增加相同的白球 个.
19.公司在购买某种机器时,往往会给每台机器分别一次性额外购买若干次维修服务,每次维修服务费为2000元.此类机器一般使用期为五年,如果维修次数未超过购机时购买的维修服务次数,则每次实际维修时还需支付工时费500元;如果维修次数超过购机时购买的维修服务次数,超出部分每次维修服务费为5000元(含工时费).甲公司计划购买1台该种机器,为决策在购买机器时应同时一次性额外购买几次维修服务,搜集并整理了100台这种机器在五年使用期内的维修次数,整理得下表:
维修次数 8 9 10 11 12
频数(台数) 10 20 30 30 10
(1)以这100台机器为样本,估计“1台机器在五年使用期内维修次数不大于10”的概率.
(2)试以这100台机器维修费用的平均数作为决策依据,说明购买1台该机器的同时应一次性额外购10次还是11次维修服务更省钱?
20. 某同学用计算机从3,4,5,x这四个数中,随机同时抽取两个数,多次重复实验后的数据记录如下:
实验总次数 10 50 100 500 1000 2000 5000 10000 20000 50000
“和为8”的次数 2 25 43 191 334 619 1608 3397 6622 16499
“和为8”的频率(结果保留两位小数) 0.20 0.50 0.43 0.38 0.33 0.31 0.32 0.34 0.33 0.33
(1)随着实验次数的增加,出现“和为8”的频率将越来越稳定于它的概率附近.由此可以估计出现“和为8”的概率是;
(2)当时,请用列表法或画树状图法中的一种方法,求“两数之和为8”的概率.
参考答案
1.C
2.C
3.C
4.B
5.A
6.C
7.D
8.B
9.A
10.B
11.0.61
12.0.94
13.400
14.3
15.9
16.(1)123;0.404;(2)0.40;(3)0.6;(4)15.
17.(1)136;
(2)0.7
18.(1)0.6
(2)30
(3)10
19.(1)解:“1台机器在五年使用期内维修次数不大于10”的概率==0.6.
(2)解:购买10次时,
某台机器使用期内维修台数 8 9 10 11 12
该台机器维修费用 24000 24500 25000 30000 35000
此时这100台机器维修费用的平均数
y1=×(24000×10+24500×20+25000×30+30000×30+35000×10)=27300.
购买11次时,
某台机器使用期内维修台数 8 9 10 11 12
该台机器维修费用 26000 26500 27000 27500 32500
此时这100台机器维修费用的平均数
y2=×(26000×10+26500×20+27000×30+27500×30+32500×10)=27500.
因为27300<27500,所以选择购买10次维修服务更省钱.
20.(1)解:利用图表得出:
实验次数越大越接近实际概率,所以出现“和为8”的概率是0.33.
故答案为:0.33;
(2)解:当时,列表如下:
3 4 5 6
3
4
5
6
共有12种等可能的情况数,其中“和为8”的有2种,
则“和为8”的概率是.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)