第三章 圆锥曲线的方程 章末能力综合试题 2025-2026学年高二年级数学选择性必修第一册(人教A版2019)

文档属性

名称 第三章 圆锥曲线的方程 章末能力综合试题 2025-2026学年高二年级数学选择性必修第一册(人教A版2019)
格式 docx
文件大小 1.3MB
资源类型 试卷
版本资源 人教A版(2019)
科目 数学
更新时间 2025-12-01 00:00:00

图片预览

文档简介

中小学教育资源及组卷应用平台
圆锥曲线的方程 章末能力综合试题 2025-2026学年
高二年级数学选择性必修第一册(人教A版2019)
一、单选题
1.已知椭圆的离心率为,分别为C的左、右顶点,B为C的上顶点.若,则C的方程为( )
A. B. C. D.
2.已知抛物线的焦点为,点在上.若到直线的距离为5,则( )
A.7 B.6 C.5 D.4
3.已知为双曲线的左焦点,为其右支上一点,点,则周长的最小值为( )
A. B. C. D.
4.已知椭圆的左、右焦点分别为,,直线与C交于A,B两点,若面积是面积的2倍,则( ).
A. B. C. D.
5.设为坐标原点,直线与双曲线的两条渐近线分别交于两点,若的面积为8,则的焦距的最小值为( )
A.4 B.8 C.16 D.32
6.设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为
A. B.
C.2 D.
7.已知双曲线的右焦点与抛物线的焦点重合,抛物线的准线交双曲线于A,B两点,交双曲线的渐近线于C、D两点,若.则双曲线的离心率为( )
A. B. C.2 D.3
8.数学美的表现形式多种多样,我们称离心率(其中)的椭圆为黄金椭圆,现有一个黄金椭圆方程为,若以原点为圆心,短轴长为直径作为黄金椭圆上除顶点外任意一点,过作的两条切线,切点分别为,直线与轴分别交于两点,则( )
A. B. C. D.
二、多选题
9.如图所示,“嫦娥五号”月球探测器飞行到月球附近时,首先在以月球球心F为圆心的圆形轨道Ⅰ上绕月球飞行,然后在点P处变轨进入以F为一焦点的椭圆轨道Ⅱ上绕月球飞行,最后在点Q处变轨进入以F为圆心的圆形轨道Ⅲ上绕月球飞行.设圆形轨道Ⅰ的半径为,圆形轨道Ⅲ的半径为,则下列结论中正确的是( )

A.轨道Ⅱ的焦距为
B.轨道Ⅱ的长轴长为
C.若不变,r越大,轨道Ⅱ的短轴长越小
D.若不变,越大,轨道Ⅱ的离心率越大
10.已知O为坐标原点,过抛物线焦点F的直线与C交于A,B两点,其中A在第一象限,点,若,则( )
A.直线的斜率为 B.
C. D.
11.已知双曲线的左 右焦点分别为、,过点的直线与双曲线的左 右两支分别交于、两点,下列命题正确的有( )
A.当点为线段的中点时,直线的斜率为
B.若,则
C.
D.若直线的斜率为,且,则
三、填空题
12.已知为坐标原点,抛物线:()的焦点为,为上一点,与轴垂直,为轴上一点,且,若,则的准线方程为 .
13.已知为椭圆C:的两个焦点,P,Q为C上关于坐标原点对称的两点,且,则四边形的面积为 .
14.已知是双曲线的左焦点,,是双曲线右支上的动点,则的最小值为 .
四、解答题
15.椭圆C的中心在坐标原点O,焦点在x轴上,椭圆C经过点且长轴长为.
(1)求椭圆C的标准方程;
(2)过点且斜率为1的直线l与椭圆C交于A,B两点,求弦长|AB|.
16.已知双曲线C与双曲线有相同的渐近线,且经过点,
(1)求双曲线C的标准方程
(2)已知直线与曲线C交于不同的两点A,B,且线段AB的中点在圆上,求实数m的值.
17.若椭圆过抛物线的焦点,且与双曲线有相同的焦点.
(1)求椭圆E的方程;
(2)不过原点O的直线与椭圆E交于A、B两点,求面积的最大值以及此时直线l的方程.
18.已知抛物线,为坐标原点,焦点在直线上.
(1)求抛物线的标准方程;
(2)过点作动直线与抛物线交于,两点,直线,分别与圆交于点,两点(异于点),设直线,斜率分别为,.
①求证:为定值;
②求证:直线恒过定点.
19.已知椭圆,定义椭圆上的点的“伴随点”为.
(1)求椭圆上的点的“伴随点”的轨迹方程;
(2)如果椭圆上的点的“伴随点”为,对于椭圆上的任意点及它的“伴随点”,求的取值范围;
(3)当,时,直线交椭圆于两点,若点的“伴随点”分别是,且以为直径的圆经过坐标原点,求的面积.
参考答案
题号 1 2 3 4 5 6 7 8 9 10
答案 B D B C B A A A ABD ACD
题号 11
答案 BCD
1.B
【分析】根据离心率及,解得关于的等量关系式,即可得解.
【详解】解:因为离心率,解得,,
分别为C的左右顶点,则,
B为上顶点,所以.
所以,因为
所以,将代入,解得,
故椭圆的方程为.
故选:B.
2.D
【分析】利用抛物线的定义求解即可.
【详解】因为抛物线的焦点,准线方程为,点在上,
所以到准线的距离为,
又到直线的距离为,
所以,故.
故选:D.
3.B
【分析】设双曲线的右焦点为,由双曲线方程可求出,b,c的值,利用双曲线的定义以及三点共线即可求出的周长的最小值.
【详解】设双曲线的右焦点为,由双曲线的方程可得:,则,
所以,且,所以,
的周长为,
当且仅当M,P,A三点共线时取等号,
则周长的最小值为.
故选:B.
4.C
【分析】首先联立直线方程与椭圆方程,利用,求出范围,再根据三角形面积比得到关于的方程,解出即可.
【详解】将直线与椭圆联立,消去可得,
因为直线与椭圆相交于点,则,解得,
设到的距离到距离,易知,
则,,
,解得或(舍去),
故选:C.
5.B
【分析】因为,可得双曲线的渐近线方程是,与直线联立方程求得,两点坐标,即可求得,根据的面积为,可得值,根据,结合均值不等式,即可求得答案.
【详解】
双曲线的渐近线方程是
直线与双曲线的两条渐近线分别交于,两点
不妨设为在第一象限,在第四象限
联立,解得

联立,解得

面积为:
双曲线
其焦距为
当且仅当取等号
的焦距的最小值:
故选:B.
【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.
6.A
【分析】准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率.
【详解】设与轴交于点,由对称性可知轴,
又,为以为直径的圆的半径,
为圆心.
,又点在圆上,
,即.
,故选A.
【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.
7.A
【分析】设公共焦点为,进而可得准线为,代入双曲线及渐近线方程,结合线段长度比值可得,再由双曲线离心率公式即可得解.
【详解】设双曲线与抛物线的公共焦点为,
则抛物线的准线为,
令,则,解得,所以,
又因为双曲线的渐近线方程为,所以,
所以,即,所以,
所以双曲线的离心率.
故选:A.
8.A
【分析】根据题意O、A、P、B四点在以OP为直径的圆上,可设点P坐标为,从而得出四点所在圆的方程为,利用两圆方程之差求得切点A、B所在直线方程,进而求得M、N两点坐标即可解决本题.
【详解】依题意有OAPB四点共圆,设点P坐标为,则该圆的方程为:,
将两圆方程:与相减,得切点所在直线方程为
,解得,因为,所以
故选:A
9.ABD
【分析】设椭圆方程,根据椭圆的性质得到,判断选项A,B;由判断选项C;由判断选项D.
【详解】解:设椭圆方程,
由椭圆的性质知,,,
则,,故选A,B正确;
,,所以,
若不变,越大,越大,即轨道Ⅱ的短轴长越大,故C的错误;

若不变,越大,则越小,越大,即轨道Ⅱ的离心率越大,故D正确.
故选:ABD.
10.ACD
【分析】由及抛物线方程求得,再由斜率公式即可判断A选项;表示出直线的方程,联立抛物线求得,即可求出判断B选项;由抛物线的定义求出即可判断C选项;由,求得,为钝角即可判断D选项.
【详解】对于A,易得,由可得点在的垂直平分线上,则点横坐标为,
代入抛物线可得,则,则直线的斜率为,A正确;
对于B,由斜率为可得直线的方程为,联立抛物线方程得,
设,则,则,代入抛物线得,解得,则,
则,B错误;
对于C,由抛物线定义知:,C正确;
对于D,,则为钝角,
又,则为钝角,
又,则,D正确.
故选:ACD.
11.BCD
【分析】对于A选项,设,代入双曲线,用点差法即可判断;对于B选项,设,表示出和,得出,再结合即可得出结论;对于C选项,设,其中,由双曲线方程,得出,利用两点之间距离公式,分别表示出和,通过做差即可得出结论;对于D选项,根据双曲线的定义,得出,再证出点与点关于直线对称,则,即可得出结论.
【详解】选项A:
设,代入双曲线得,
,两式相减得,

∵点为线段的中点,
∴,,
即,,
∴,
,故A错误;
选项B:
设,
,,


又 ,
,故B正确;
选项C:
设,其中,
则,即,





,故C正确;
选项D:
,,
,,

∵直线的斜率为即,且过点,
∴直线的方程为:,
又∵,,

即,
又∵点到直线的距离:,
点到直线的距离:,
即,
∴点与点关于直线对称,

,故D正确;
故选:BCD.
【点睛】结论点睛:本题涉及到双曲线中的有关结论:
(1)若点是双曲线上一条弦的中点,则直线的斜率;
(2)若双曲线上有两点、,且位于不同两支,则.
12.
【分析】先用坐标表示,再根据向量垂直坐标表示列方程,解得,即得结果.
【详解】抛物线: ()的焦点,
∵P为上一点,与轴垂直,
所以P的横坐标为,代入抛物线方程求得P的纵坐标为,
不妨设,
因为Q为轴上一点,且,所以Q在F的右侧,
又,
因为,所以,

所以的准线方程为
故答案为:.
【点睛】利用向量数量积处理垂直关系是本题关键.
13.
【分析】根据已知可得,设,利用勾股定理结合,求出,四边形面积等于,即可求解.
【详解】因为为上关于坐标原点对称的两点,
且,所以四边形为矩形,
设,则,
所以,
,即四边形面积等于.
故答案为:.
14.
【解析】作出图形,设双曲线的右焦点为,根据双曲线的定义可得,可得出,利用、、三点共线时取得最小值即可得解.
【详解】对于双曲线,则,,,如下图所示:
设双曲线的右焦点为,则,
由双曲线的定义可得,则,
所以,,
当且仅当、、三点共线时,等号成立.
因此,的最小值为.
故答案为:.
【点睛】关键点点睛:利用双曲线的定义求解线段和的最小值,有如下方法:
(1)求解椭圆、双曲线有关的线段长度和、差的最值,都可以通过相应的圆锥曲线的定义分析问题;
(2)圆外一点到圆上的点的距离的最值,可通过连接圆外的点与圆心来分析求解.
15.(1)
(2)
【分析】(1)根据椭圆的长轴长及所经过点直接求出,得出椭圆C的标准方程.
(2)直线l与椭圆方程联立,得出韦达定理,根据弦长公式得出结果.
【详解】(1)由题意设椭圆C的方程为,
因为椭圆经过点且长轴长为,
所以,
所以椭圆C的标准方程为.
(2)由已知设直线l的方程为,设,.
将直线代入,
得,
所以,,
.
16.(1)
(2)
【分析】(1)据共渐近线设双曲线的方程,然后代入点,计算,即可得出答案.
(2)联立直线与双曲线的方程,得关于的一元二次方程,写出韦达定理,然后表示出的中点坐标,代入圆的方程,计算即可得出答案.
【详解】(1)设双曲线的方程为,
代入,,得,解得,
所以双曲线的方程为.
(2)由,得,
设,,,,
则中点坐标为,,
由韦达定理可得,
所以,
所以中点坐标为,
因为点在圆上,
所以,解得.

【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:
(1)设直线方程,设交点坐标为;
(2)联立直线与圆锥曲线的方程,得到关于(或)的一元二次方程,注意的判断;
(3)列出韦达定理;
(4)将所求问题或题中的关系转化为、(或、)的形式;
(5)代入韦达定理求解.
17.(1)
(2)面积的最大值为,此时直线的方程为
【分析】(1)根据抛物线和双曲线的性质结合椭圆的的关系求解;
(2)利用韦达定理求出弦长,再利用点到直线距离公式为三角形的高即可求解.
【详解】(1)抛物线的焦点为,所以,
因为双曲线的焦点坐标为,
所以则,
所以椭圆E的方程为.
(2)设,
联立可得,
因为直线与椭圆E交于A、B两点,
所以解得,
由韦达定理可得,
由弦长公式可得,
点到直线的距离为,
所以
当且仅当即时取得等号,
所以面积的最大值为,此时直线的方程为.
18.(1)
(2)①证明见解析;②证明见解析
【分析】(1)先求出抛物线的焦点坐标,进而得到,可得,从而求解;
(2)①设直线方程为,,,联立方程组,结合韦达定理可得,结合可得,进而求证;
②设直线方程为,,,联立方程组,结合韦达定理可得,,再结合即可得证.
【详解】(1)易知直线与x轴交于,
即焦点坐标为,
所以,,
则抛物线方程为.
(2)①设直线方程为,,,
联立方程组,得,
所以,又,
所以,即,
则.
②设直线方程为,,
联立方程组,得,
所以,,

整理得,,所以直线过定点.
19.(1)
(2)
(3)
【分析】(1)根据“伴随点”的定义,结合点在椭圆上求解即可;
(2)根据题意,结合(1)得,进而得,再根据数量积的坐标表示,结合二次函数求解即可;
(3)设,,则,,进而根据得,再联立椭圆和直线的方程并结合韦达定理得,最后求弦长与点到直线的距离并求面积即可.
【详解】(1)解:设.
所以,根据“伴随点”的定义,有,则,
又因为,
所以,即.
所以,椭圆上的点的“伴随点”的轨迹方程为.
(2)解:由(1)知,椭圆上的点的“伴随点”的轨迹方程为,
因为椭圆上的点的“伴随点”为,
所以,根据“伴随点”的定义与(1)中结论,有,解得,
因为点在椭圆上,所以,
所以,,且,
所以.
因为,,所以,
所以的取值范围是.
(3)解:由题意,得椭圆的方程为.
设,,则,.
联立椭圆和直线的方程,得
所以.
由题意,得,
所以,.①
因为为直径的圆经过坐标原点,
所以,即,
所以.②
将①代入②,化简,得.
所以,,
所以.
又因为点到直线的距离,
所以.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)