沪科版九年级数学下册26.3《用频率估计概率》测试卷
一.选择题(共10小题)
1.(2016 南通一模)在一个不透明的盒子中装有n个小球,它们除了颜色不同外,其余都相同,其中有4个白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中.大量重复上述试验后发现,摸到白球的频率稳定在0.4,那么可以推算出n大约是( )
A.10
B.14
C.16
D.40
2.(2016 宁波二模)在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表,由表估计该麦种的发芽概率是( )
试验种子数n(粒)
50
200
500
1000
3000
发芽频数m
45
188
476
951
2850
发芽频率
0.9
0.94
0.952
0.951
0.95
A.0.8
B.0.9
C.0.95
D.1
3.(2016 开平区二模)一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为( )
A.60个
B.50个
C.40个
D.30个
4.(2016 宁国市一模)如图,由于各人的习惯不同,双手交叉时左手大拇指或右手大拇指在上是一个随机事件,曾老师对他任教的学生做了一个调查,统计结果如下表所示:
2011届
2012届
2013届
2014届
2015届
参与实验的人数
106
110
98
104
112
右手大拇指在上的人数
54
57
49
51
56
频率
0.509
0.518
0.500
0.490
0.500
根据表格中的数据,你认为在这个随机事件中,右手大拇指在上的概率可以估计为( )
A.0.6
B.0.5
C.0.45
D.0.4
5.(2016 朝阳区二模)一个袋子中只装有黑、白两种颜色的球,这些球的形状、质地等完全相同,其中白色球有2个,黑色球有n个.在看不到球的条件下,随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀.同学们进行了大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值为( )
A.2
B.3
C.4
D.5
6.(2016 长沙校级一模)下列说法不正确的是( )
A.了解一批电视机的使用寿命适合用抽样调查
B.若甲组数据的方差S甲2=0.31,乙组数据的方差S乙2=0.25,则乙组数据比甲组数据稳定
C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖
D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在附近
7.(2016春 灵石县期末)某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是( )
实验次数
100
200
300
500
800
1000
2000
频率
0.365
0.328
0.330
0.334
0.336
0.332
0.333
A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃
B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
C.抛一个质地均匀的正六面体骰子,向上的面点数是5
D.抛一枚硬币,出现反面的概率
8.(2016春 南京期末)某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是( )
A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”
B.从一副扑克牌中任意抽取一张,这张牌是“红色的”
C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”
D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6
9.(2016春 南京校级期中)在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( )
A.频率就是概率
B.频率与试验次数无关
C.概率是随机的,与频率无关
D.随着试验次数的增加,频率一般会越来越接近概率
10.(2016春 泰山区期中)一个不透明的袋子中装有2个白球和若干个黑球,它们除颜色外完全相同,从袋子中随机摸出一球,记下颜色并放回,重复该实验多次,发现摸到白球的频率稳定在0.4,则可判断袋子中黑球的个数为( )
A.2个
B.3个
C.4个
D.5个
二.填空题(共4小题)
11.(2016 湖北襄阳)一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球______个.
12.(2016 兰州)一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述实验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球______个.
13.(2016 贵阳)现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为______.
14.(2016 北京)林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:
移植的棵数n
1000
1500
2500
4000
8000
15000
20000
30000
成活的棵数m
865
1356
2220
3500
7056
13170
17580
26430
成活的频率
0.865
0.904
0.888
0.875
0.882
0.878
0.879
0.881
估计该种幼树在此条件下移植成活的概率为______.
三.解答题(共6小题)
15.(2016 宁夏)为了解学生的体能情况,随机选取了1000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.
长跑
短跑
跳绳
跳远
200
√
×
√
√
300
×
√
×
√
150
√
√
√
×
200
√
×
√
×
150
√
×
×
×
(1)估计学生同时喜欢短跑和跳绳的概率;
(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;
(3)如果学生喜欢长跑、则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?
16.(2016 迁安市一模)在一个不透明的盒子里装有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是“摸到白色球”的频率折线统计图.
(1)请估计:当n很大时,摸到白球的概率将会接近______(精确到0.01),假如你摸一次,你摸到白球的概率为______;
(2)试估算盒子里白、黑两种颜色的球各有多少个?
(3)在(2)条件下如果要使摸到白球的概率为,需要往盒子里再放入多少个白球?
17.(2016 盘龙区一模)一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.
(1)当n=1时,从袋中随机摸出1个球,摸到红球和摸到白球的可能性是否相同?
(2)从袋中随机摸出一个球,记录其颜色,然后放回,大量重复该实验,发现摸到绿球的频率稳定于0.25,则n的值是______;
(3)当n=2时,先从袋中任意摸出1个球不放回,再从袋中任意摸出1个球,请用列表或画树状图的方法,求两次都摸到白球的概率.
18.(2016春 苏州期末)王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.
摸球的次数n
100
150
200
500
800
1000
摸到黑球的次数m
23
31
60
130
203
251
摸到黑球的频率
0.23
0.21
0.30
0.26
0.253
______
(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是______;(精确到0.01)
(2)估算袋中白球的个数.
19.(2016春 玄武区期末)在一个不透明的盒子里装有黑、白两种颜色的球共40只,这些球除颜色外其余完全相同.小颖做摸球实验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:
摸球的次数n
100
200
300
500
800
1000
3000
摸到白球的次数m
65
124
178
302
481
599
1803
摸到白球的频率
0.65
0.62
0.593
0.604
0.601
0.599
0.601
(1)请估计:当n很大时,摸到白球的频率将会接近______;(精确到0.1)
(2)若从盒子里随机摸出一只球,则摸到白球的概率的估计值为______;
(3)试估算盒子里黑、白两种颜色的球各有多少只?
20.(2016春 高邮市校级期末)一个不透明的袋子中有1个红球,2个绿球和n个白球,这些球除颜色外都相同.
(1)当n=1时,从袋中随机摸出1个球,摸到红球和摸到白球的可能性______(填“相同”或“不相同”)
(2)从袋中随机摸出1个球,记录其颜色,然后施加.大量重复该实验,发现摸到绿球的频率稳定于0.2,求n的值.
参考答案与试题解析
一.选择题(共10小题)
1.(2016 南通一模)在一个不透明的盒子中装有n个小球,它们除了颜色不同外,其余都相同,其中有4个白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中.大量重复上述试验后发现,摸到白球的频率稳定在0.4,那么可以推算出n大约是( )
A.10
B.14
C.16
D.40
【分析】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
【解答】解:∵通过大量重复试验后发现,摸到红球的频率稳定于0.4,
∴=0.4,
解得:n=10.
故选A.
【点评】此题主要考查了利用频率估计概率,正确运用概率公式是解题关键.
2.(2016 宁波二模)在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表,由表估计该麦种的发芽概率是( )
试验种子数n(粒)
50
200
500
1000
3000
发芽频数m
45
188
476
951
2850
发芽频率
0.9
0.94
0.952
0.951
0.95
A.0.8
B.0.9
C.0.95
D.1
【分析】根据5批次种子粒数从50粒增加到3000粒时,种子发芽的频率趋近于0.95,所以估计种子发芽的概率为0.95.
【解答】解:∵种子粒数3000粒时,种子发芽的频率趋近于0.95,
∴估计种子发芽的概率为0.95.
故选C.
【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.
3.(2016 开平区二模)一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为( )
A.60个
B.50个
C.40个
D.30个
【分析】由条件共摸了1000次,其中200次摸到白球,则有800次摸到红球;所以摸到白球与摸到红球的次数之比可求出,由此可估计口袋中白球和红球个数之比,进而可计算出红球数.
【解答】解:∵小亮共摸了1000次,其中200次摸到白球,则有800次摸到红球,
∴白球与红球的数量之比为1:4,
∵白球有10个,
∴红球有4×10=40(个).
故选C.
【点评】本题考查的利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.解答此题的关键是要计算出口袋中白色球所占的比例.
4.(2016 宁国市一模)如图,由于各人的习惯不同,双手交叉时左手大拇指或右手大拇指在上是一个随机事件,曾老师对他任教的学生做了一个调查,统计结果如下表所示:
2011届
2012届
2013届
2014届
2015届
参与实验的人数
106
110
98
104
112
右手大拇指在上的人数
54
57
49
51
56
频率
0.509
0.518
0.500
0.490
0.500
根据表格中的数据,你认为在这个随机事件中,右手大拇指在上的概率可以估计为( )
A.0.6
B.0.5
C.0.45
D.0.4
【分析】求得几次频率的平均数,看最接近哪个数即可.
【解答】解:频率的平均数为:(0.509+0.518+0.5+0.49+0.5)=0.5034≈0.5,
故选B.
【点评】本题考查了用频率估计概率的知识,解题的关键是能够了解大量重复试验中,事件发生的频率约等于概率.
5.(2016 朝阳区二模)一个袋子中只装有黑、白两种颜色的球,这些球的形状、质地等完全相同,其中白色球有2个,黑色球有n个.在看不到球的条件下,随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀.同学们进行了大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值为( )
A.2
B.3
C.4
D.5
【分析】根据白球的频率稳定在0.4附近得到白球的概率约为0.4,根据白球个数确定出总个数,进而确定出黑球个数.
【解答】解:根据题意得:=0.4,
解得:n=3,
则n的值为3,
故选B.
【点评】此题考查了利用频率估计概率,解答此题的关键是了解白球的频率稳定在0.4附近即为概率约为0.4.
6.(2016 长沙校级一模)下列说法不正确的是( )
A.了解一批电视机的使用寿命适合用抽样调查
B.若甲组数据的方差S甲2=0.31,乙组数据的方差S乙2=0.25,则乙组数据比甲组数据稳定
C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖
D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在附近
【分析】根据调查的定义、方差的定义、概率的定义、用频率估计概率解答.
【解答】解:A、电视机使用寿命的调查具有破坏性,适合抽样调查,故本选项正确;
B、方差越小越稳定,故本选项正确;
C、中奖概率为1%,意味着可能性为1%,并不一定中奖,故本选项错误;
D、随着实验次数的增加,频率会稳定在概率附近,故本选项正确.
故选C.
【点评】本题考查了利用频率估计概率、全面调查与抽样调查、用频率估计概率,要加深理解.
7.(2016春 灵石县期末)某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是( )
实验次数
100
200
300
500
800
1000
2000
频率
0.365
0.328
0.330
0.334
0.336
0.332
0.333
A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃
B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
C.抛一个质地均匀的正六面体骰子,向上的面点数是5
D.抛一枚硬币,出现反面的概率
【分析】根据利用频率估计概率得到实验的概率在0.33左右,再分别计算出四个选项中的概率,然后进行判断.
【解答】解:A、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为,不符合题意;
B、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率是,符合题意;
C、抛一个质地均匀的正六面体骰子,向上的面点数是5的概率为,不符合题意;
D、抛一枚硬币,出现反面的概率为,不符合题意,
故选B.
【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.
8.(2016春 南京期末)某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是( )
A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”
B.从一副扑克牌中任意抽取一张,这张牌是“红色的”
C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”
D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6
【分析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.
【解答】解:
A、从一装有2个白球和1个红球的袋子中任取一球,取到白球的概率是≈0.67>0.16,故此选项错误;
B、从一副扑克牌中任意抽取一张,这张牌是“红色的概率=≈0.24>0.16,故此选项错误;
C、掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率==0.5>0.16,故此选项错误;
D、掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率=≈0.16故此选项正确,
故选D.
【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.
9.(2016春 南京校级期中)在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( )
A.频率就是概率
B.频率与试验次数无关
C.概率是随机的,与频率无关
D.随着试验次数的增加,频率一般会越来越接近概率
【分析】根据大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率解答即可.
【解答】解:∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,
∴D选项说法正确.
故选:D.
【点评】本题考查了利用频率估计概率的知识,大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率.
10.(2016春 泰山区期中)一个不透明的袋子中装有2个白球和若干个黑球,它们除颜色外完全相同,从袋子中随机摸出一球,记下颜色并放回,重复该实验多次,发现摸到白球的频率稳定在0.4,则可判断袋子中黑球的个数为( )
A.2个
B.3个
C.4个
D.5个
【分析】利用频率估计概率得到估计摸到白球的概率0.4,设袋子中黑球的个数为x,则利用概率公式得到=0.4,然后解方程求出x即可.
【解答】解:∵重复该实验多次,摸到白球的频率稳定在0.4,
∴估计摸到白球的概率0.4,
设袋子中黑球的个数为x,
∴=0.4,解得x=3,
∴可判断袋子中黑球的个数为3个.
故选B.
【点评】本题考查了利用频率估计概率:用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了概率公式.
二.填空题(共4小题)
11.(2016 湖北襄阳)一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球 8 个.
【分析】根据摸到红球的频率,可以得到摸到黑球和白球的概率之和,从而可以求得总的球数,从而可以得到红球的个数.
【解答】解:由题意可得,
摸到黑球和白球的频率之和为:1﹣0.4=0.6,
∴总的球数为:(8+4)÷0.6=20,
∴红球有:20﹣(8+4)=8(个),
故答案为:8.
【点评】本题考查利用频率估计概率,解题的关键是明确题意,找出所求问题需要的条件.
12.(2016 兰州)一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述实验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球 20 个.
【分析】由于摸到黄球的频率稳定在30%,由此可以确定摸到黄球的概率,而袋中有6个黄球,由此即可求出.
【解答】解:∵摸到黄球的频率稳定在30%,
∴在大量重复上述实验下,可估计摸到黄球的概率为30%=0.3,
而袋中黄球只有6个,
∴推算出袋中小球大约有6÷0.3=20(个),
故答案为:20.
【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.
13.(2016 贵阳)现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为 15 .
【分析】利用频率估计概率得到抽到绘有孙悟空这个人物卡片的概率为0.3,则根据概率公式可计算出这些卡片中绘有孙悟空这个人物的卡片张数,于是可估计出这些卡片中绘有孙悟空这个人物的卡片张数.
【解答】解:因为通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3,
所以估计抽到绘有孙悟空这个人物卡片的概率为0.3,
则这些卡片中绘有孙悟空这个人物的卡片张数=0.3×50=15(张).
所以估计这些卡片中绘有孙悟空这个人物的卡片张数约为15张.
故答案为15.
【点评】本题考查了频率估计概率:用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.
14.(2016 北京)林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:
移植的棵数n
1000
1500
2500
4000
8000
15000
20000
30000
成活的棵数m
865
1356
2220
3500
7056
13170
17580
26430
成活的频率
0.865
0.904
0.888
0.875
0.882
0.878
0.879
0.881
估计该种幼树在此条件下移植成活的概率为 0.882 .
【分析】对于不同批次的幼树移植成活率往往误差会比较大,为了减少误差,我们经常采用多批次计算求平均数的方法.
【解答】解:=(0.865+0.904+0.888+0.875+0.882+0.878+0.879+0.881)÷8=0.882,
∴这种幼树移植成活率的概率约为0.882.
故答案为:0.882
【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.
三.解答题(共6小题)
15.(2016 宁夏)为了解学生的体能情况,随机选取了1000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.
长跑
短跑
跳绳
跳远
200
√
×
√
√
300
×
√
×
√
150
√
√
√
×
200
√
×
√
×
150
√
×
×
×
(1)估计学生同时喜欢短跑和跳绳的概率;
(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;
(3)如果学生喜欢长跑、则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?
【分析】(1)根据求概率的公式即可得到结论;
(2)根据求概率的公式即可得到结论;
(3)根据喜欢长跑同时喜欢短跑、跳绳、跳远人数即可得到结论.
【解答】解:(1)同时喜欢短跑和跳绳的概率==;
(2)同时喜欢三个项目的概率==;
(3)喜欢长跑的有700人中,有150人选择了短跑,550人选择了跳绳,200人选择了跳远,于是喜欢长跑的学生又同时喜欢跳绳的可能性大.
【点评】本题考查了利用频率估计概率,求概率,正确的理解题意是解题的关键.
16.(2016 迁安市一模)在一个不透明的盒子里装有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是“摸到白色球”的频率折线统计图.
(1)请估计:当n很大时,摸到白球的概率将会接近 0.50 (精确到0.01),假如你摸一次,你摸到白球的概率为 0.5 ;
(2)试估算盒子里白、黑两种颜色的球各有多少个?
(3)在(2)条件下如果要使摸到白球的概率为,需要往盒子里再放入多少个白球?
【分析】(1)根据题意容易得出结果;
(2)由40×0.5=20,40﹣20=20,即可得出结果;
(3)设需要往盒子里再放入x个白球;根据题意得出方程,解方程即可.
【解答】解:(1)根据题意得:当n很大时,摸到白球的概率将会接近0.50;假如你摸一次,你摸到白球的概率为0.5;
(2)40×0.5=20,40﹣20=20;
答:盒子里白、黑两种颜色的球分别有20个、20个;
(3)设需要往盒子里再放入x个白球;
根据题意得:=,
解得:x=10;
答:需要往盒子里再放入10个白球.
【点评】本题考查了利用频率估计概率、概率公式的运用.大量反复试验下频率稳定值即概率;本题难度适中.
17.(2016 盘龙区一模)一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.
(1)当n=1时,从袋中随机摸出1个球,摸到红球和摸到白球的可能性是否相同?
(2)从袋中随机摸出一个球,记录其颜色,然后放回,大量重复该实验,发现摸到绿球的频率稳定于0.25,则n的值是 2 ;
(3)当n=2时,先从袋中任意摸出1个球不放回,再从袋中任意摸出1个球,请用列表或画树状图的方法,求两次都摸到白球的概率.
【分析】(1)当n=1时,利用概率公式可得到摸到红球和摸到白球的概率都为;
(2)利用频率估计概率,则摸到绿球的概率为0.25,根据概率公式得到=0.25,然后解方程即可;
(3)先画树状图展示所有12种等可能的结果数,再找出两次摸出的球颜色不同的结果数,然后根据概率公式求解.
【解答】解:(1)当n=1时,从袋中随机摸出1个球,摸到红球和摸到白球的可能性相同;
(2)利用频率估计概率得到摸到绿球的概率为0.25,
则=0.25,解得n=2,
故答案为2;
(3)解:画树状图为:
共有12种等可能的结果数,其中两次摸出的球都是的结白色的结果共有2
种,
所以两次摸出的球颜色不同的概率==.
【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.
18.(2016春 苏州期末)王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.
摸球的次数n
100
150
200
500
800
1000
摸到黑球的次数m
23
31
60
130
203
251
摸到黑球的频率
0.23
0.21
0.30
0.26
0.253
0.251
(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是 0.25 ;(精确到0.01)
(2)估算袋中白球的个数.
【分析】(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可;
(2)列用概率公式列出方程求解即可.
【解答】解:(1)251÷1000=0.251;
∵大量重复试验事件发生的频率逐渐稳定到0.25附近,
∴估计从袋中摸出一个球是黑球的概率是0.25;
(2)设袋中白球为x个,
=0.25,
x=3.
答:估计袋中有3个白球,
故答案为:(1)0.251;0.25.
【点评】此题考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.
19.(2016春 玄武区期末)在一个不透明的盒子里装有黑、白两种颜色的球共40只,这些球除颜色外其余完全相同.小颖做摸球实验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:
摸球的次数n
100
200
300
500
800
1000
3000
摸到白球的次数m
65
124
178
302
481
599
1803
摸到白球的频率
0.65
0.62
0.593
0.604
0.601
0.599
0.601
(1)请估计:当n很大时,摸到白球的频率将会接近 0.6 ;(精确到0.1)
(2)若从盒子里随机摸出一只球,则摸到白球的概率的估计值为 0.6 ;
(3)试估算盒子里黑、白两种颜色的球各有多少只?
【分析】(1)计算出其平均值即可;
(2)概率接近于(1)得到的频率;
(3)白球个数=球的总数×得到的白球的概率,让球的总数减去白球的个数即为黑球的个数,问题得解.
【解答】解:(1)∵摸到白球的频率为0.6,
∴当n很大时,摸到白球的频率将会接近0.6,
故答案为:0.6;
(2)∵摸到白球的频率为0.6,
∴假如你摸一次,你摸到白球的概率P(白球)=0.6,
故答案为:0.6;
(3)盒子里黑、白两种颜色的球各有40﹣24=16,40×0.6=24.
【点评】本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.
20.(2016春 高邮市校级期末)一个不透明的袋子中有1个红球,2个绿球和n个白球,这些球除颜色外都相同.
(1)当n=1时,从袋中随机摸出1个球,摸到红球和摸到白球的可能性 相同 (填“相同”或“不相同”)
(2)从袋中随机摸出1个球,记录其颜色,然后施加.大量重复该实验,发现摸到绿球的频率稳定于0.2,求n的值.
【分析】(1)因为红球和白球的个数一样,所以被摸到的可能性相同;
(2)根据摸到绿球的频率稳定于0.2,即可求出n的值.
【解答】解:(1)当n=1时,红球和白球的个数一样,所以被摸到的可能性相同,
故答案为:相同;
(2)∵摸到绿球的频率稳定于0.2,
∴=0.2,
∴n=7.
【点评】本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.