(期末考点培优)专项05 操作题-2025-2026学年六年级数学上册期末考点培优精练青岛版(六三制)(含答案解析)

文档属性

名称 (期末考点培优)专项05 操作题-2025-2026学年六年级数学上册期末考点培优精练青岛版(六三制)(含答案解析)
格式 docx
文件大小 3.9MB
资源类型 试卷
版本资源 青岛版
科目 数学
更新时间 2025-12-03 18:41:55

图片预览

文档简介

/ 让学习更有效 期末备考培优 | 数学学科
2025-2026学年六年级数学上册期末考点培优精练青岛版(六三制)
专项05 操作题
学校:___________姓名:___________班级:___________考号:___________
1.每个小方格的边长表示1cm。
(1)在方格纸上,画出两个大小不同的三角形,使每个三角形都有一组比是3:2的底和高。
(2)画一个周长是24cm,长与宽的比是2:1的长方形。
2.如图,两条互相垂直的直线相交于点O。
(1)以点O为圆心画一个直径为3厘米的圆。
(2)在这个圆内画一个最大的正方形。
3.写一写,涂一涂。
4.用圆规画圆。
(1)以点01 画 一个半径1.5厘米的圆。 并在圆中画出两条互相垂直的对称轴。
(2)圆心是点B,直径是5厘米。
5.按要求画图。
(1)画一个半径是1 cm的圆,并标出圆心(O)、半径(r)和直径(d)。
(2)在下面边长是 3c m的正方形中画一个最大的圆。(保留痕迹)
6.
(1)在图中标出点A (4.1)和点B (4.7),以这两点间的线段为直径,画一个圆心为O的圆。
(2)已知点C在(1)中所画的圆上,且在点O的北偏西 方向,在图中标出点C。(保留作图痕迹)
7.涂色表示。

8.如图所示的每个小方格的边长表示 1 cm。
(1)在方格纸上画一个周长是24 cm的长方形,使长与宽的比是3:1。
(2)把上面的三角形按2:1的面积比分成两个三角形,把面积较小的三角形涂色。
9.下面是一个美术体逗号,请你在方格纸上画出相同的美术体逗号,并计算逗号的周长。(小方格的边长表示1 cm)
10.根据下面的画图步骤用圆规和三角尺画出下面的图案。
(1)用三角尺画一个正方形。
(2)以各条边上的中点为圆心,向正方形内各画一个半圆。
11.在方格纸上画出两个大小不同的长方形,使每个长方形的长与宽的比都是3∶1。
12.把图中的平行四边形分成三个小平行四边形,且三个小平行四边形的面积比是2:1:1。
13.画一个周长是30cm,长和宽的比是3:2 的长方形。(每个方格都是边长1厘米的正方形。)
14.在下面的圆中画一个扇形,并标明扇形的半径、圆心角和弧。
15.一台拖拉机每小时耕地 公顷, 小时耕地多少公顷?先在图中表示思考过程,再列式计算。(下图表示1公顷)
16.用圆规在长方形中画一个最大的半圆,并画出这个组合图形的一条对称轴。
17.操作题。
下图中每个小方格的边长是1cm。
(1)以点O为圆心,画一个直径4cm的圆①;
(2)将点O向右平移7格,得到点O',以O'为圆心画一个半径3cm的圆②;
(3)圆①和圆②周长的比是_____。
18.李大叔在公顷的土地里种萝卜,其中是红萝卜。如图的大长方形代表1公顷,请在图中表示出红萝卜种植面积的计算过程。
19.在下面的图形中,画一画,涂一涂,试试表示“”
20.在如图所示的长方形中画一条线段,把它分成一个等腰三角形和一个梯形.算一算,三角形和梯形的面积各占长方形面积的百分之几?(结果保留一位小数)
21.如图所示,聪聪有一张长12cm,宽8cm的长方形彩纸,他想用彩纸裁剪出一个最大的圆,使其在正中间。
(1)请你在图中确定出圆心O的位置。
(2)画出这个最大的圆。
22.如下图,一个圆形硬币从点 A 开始,沿着直尺向右滚动一周到达点 B。请在直尺上标出点 B 的大概位置。(单位:cm)
23.如图,每个小方格的边长代表1 cm,请在图中画一个周长是36 cm且长和宽的比是2:1的长方形。
24.按要求画图形。
(1)在方格纸上画一个底边与高的比是4:3的三角形。
(2)把下图中平行四边形分成两个面积比为1:2的平行四边形。
25.按要求画图形。(每小格的面积是1平方厘米)
(1)在方格纸上画一个底边与高的比是4:3的三角形。
(2)把下图中平行四边形按面积比为1:2分成两个平行四边形。
26.请将网格中的图形用一条直线分成面积之比为3:2的两部分。
27.根据每个图形下面的面积比,把图形分成两部分,给其中的一部分涂上颜色。
28.如下图,每一个方格的边长表示1厘米。
(1)画一个长方形,周长是20厘米,长与宽的比是3:2。
(2)把这个长方形按1:2的面积比分成一个三角形和一个梯形。
29. 先在下面的正方形中画一个最大的圆,再在圆中画一个圆心角是120°的扇形。
30.在如下图的长方形中画一个最大的圆,并用字母标出圆心和半径。
31. 将方格图中的梯形分成3个三角形,使它们面积的比是1:2:3。
32.在下面的正方形中画一个最大的扇形,并计算出扇形的周长和面积。
33.
(1)在上面长方形中画出一个最大的圆。
(2)算出这个最大的圆的周长。
(3)在这样的长方形纸上最多能剪出几个这样的圆?
34.在下面方格纸上画一个正方形②,正方形②与正方形①的面积比是9:4(每个小方格的边长表示1厘米)。
35.下面是一块长方形菜地,用来种植白菜和青菜,白菜和青菜的种植面积的比是2:5,请在图中涂色表示出白菜的种植面积。
36.在图中画阴影表示出的含义。
37.小勇在方格纸中绘制图案,他只完成了整幅作品的,如下图。
整幅作品是由4个这样的图案组成的,且没有重叠。
(1)在方格纸上用直尺和圆规按照小勇的要求将整幅作品补充完整,并涂出阴影部分。
(2)计算整幅作品阴影部分的面积。
38.在下面的方格图中画一个周长为12厘米的长方形,长与宽的比是2:1。(每个小方格的面积是1平方厘米)
39.请在图5中画一个周长为14cm、长和宽比是5:2的长方形,再在这个长方形中涂色表示“”(每个小方格的边长表示1cm)
40.下图是个美术体逗号。请你用圆规在旁边的方格纸中画出同样的美术体逗号,并计算这个逗号的周长。(小方格边长表示1厘米)
41.按要求画一画,算一算。
(1)下面是一个直径为4厘米的圆,请在这个圆内所一个最大的正方形。
(2)将圆以内正方形以外的部分涂上阴影,求出阴影部分的面积。
42.在下边的正方形里画一个最大的圆,请保留作图痕迹,并填一填:
圆的半径=(  )厘米。
43.下图是个美术体逗号。请你用圆规在旁边的方格纸中画出同样的美术体逗号。(保留作图痕迹)
44.图中A、B是一个圆中的一条线段,你觉得这条线段是圆的一条半径吗?你准备如何来验证,请用你喜欢的方式表示出你的验证过程。(写出两种办法)
45.如图的方格里有一个正方形。(每一个小方格的边长表示1厘米),先画图,再填空。
(1)画图:在正方形里画一个最大的圆形。(辅助线用虚线,且保留痕迹)。
(2)填空:这个圆的半径是   厘米,圆心的位置用数对表示是   。
46.在图中画一个长方形,使长方形的周长是12厘米,长和宽的比为2:1。
47.圆从点A开始,沿着直尺向右滚动一周到达点B。请你在直尺上标出点B的大概位置。
48.先在长方形中涂色表示它的,再用斜线表示与的乘积.
49.在下面的方格纸中画一个长方形,周长是20厘米,长和宽的比是3∶2。
50.在下面的方格图上按要求画图。(每个小方格的边长表示1cm)
(1)画一个周长20厘米,长和宽的比是3:2的长方形。
(2)将所画长方形的面积按2:1分成两部分,其中面积较小的一部分画上斜线。
参考答案与试题解析
1.(1)解:3:2=6:4=9:6
如图:
(2)解: 24÷2=12(厘米)
12÷(2+1)=4(厘米)
4×2=8(厘米)
如图:
【分析】(1) 根据比的基本性质,3:2=6:4=9:6=……可画底为3格,高为2格、底为6格,高为2格,底为9格,高为6格的三角形…… ;
(2)长方形的周长=(长+宽)×2,已知一个长方形的周长是24cm,先求出长与宽的和,再按长与宽的比为2:1,利用按比例分配的方法即可求出长和宽,再作图即可。
2.(1)解:如图:
(2)解:如图:
【分析】(1) 圆的半径 = 3÷2=1.5厘米,以点 O 为圆心,圆规两脚张开 1.5 厘米,绕 O 画圆即可。
(2) 圆内最大正方形的对角线等于圆的直径(3 厘米)。利用图中互相垂直的直线(过 O 点),在圆上取这两条直线与圆的 4 个交点,依次连接这 4 个点,得到的正方形即为圆内最大正方形。
3.
【分析】观察图形,一共有10×10=100个小正方形,涂色的小正方形有36个,所以用百分数表示就是36100100%=36%;
观察图形,首先将百分数37.5%化为分数是,也就是说将整个圆形平均分成8份,涂色部分占其中3份,据此涂色即可;
观察图形,同样将百分数85%化为分数是,而图中的小长方形共20个,所以只需将其中17个小长方形涂色即可。
4.(1)解:
(2)解:5÷2=2.5(厘米)
【分析】画圆:①确定圆心位置,把圆规针尖固定在圆心位置保持不移动;②调整圆规两脚间的距离使之等于圆的半径;③手握圆规手柄,针尖不动,转动笔尖。
5.(1)
(2)
【分析】 (1)使用圆规,先在纸上确定圆心位置(标记为O),将圆规两脚间距调整为1cm(即半径r=1cm)。保持圆规一脚在圆心O,旋转一周画出圆。从圆心O向圆周任意一点画一条线段,标注为r(半径),长度为1cm。再画一条通过圆心且两端在圆周的线段,标注为d(直径),长度为2cm(d=2r)。
(2) 连接对角线交于中心点O;以O为圆心,半径1.5cm画圆。保留痕迹即可。
6.(1)解:
(2)解:
【分析】(1)用数对表示位置:第一个数表示列,第二个数表示行,即第一个数看横轴,第二个数看纵轴;
根据题意及看图可知圆的直径是6格,则半径是6÷2=3格,且圆心在已知直径的中点位置,因此:圆规针尖固定在圆心位置,圆规两脚间的距离调整至占3格,握住圆规手柄旋转一周即可画出所求作的圆;
(2)①确定方向:我们首先要确定观测点即“我在哪里”,然后确定观察的对象即“看什么”,最后根据地图上各个方向的基本知识:在地图上,上北下南,左西右东;“谁偏谁几度”,一般情况我们都是以前一个方向为角的一条边画出偏的角度;
②最后再在角的另一条边上找到与圆周相交的点即为所求作的点。
7.解:

【分析】把整个表格看作单位“1”,先浅灰色横向涂出,再在浅灰色区域涂出即可表示出的是多少,据此解答。
8.(1)解:24÷2=12(cm)
3+1=4
长:12×=9(cm)
宽:12×=3(cm)
(2)解:6×4÷2
=24÷2
=12(cm2)
12÷(2+1)=4(cm2)
4×2=8(cm2)
【分析】(1)长方形的周长=(长+宽)×2,因此,长方形的周长÷2=长+宽;根据比的应用可知长占3份,宽占1份,即长与宽的和平均分成了3+1=4份,其中长占长与宽和的,宽占长与宽和的,因此,长与宽的和×=长,长与宽的和×=宽,据此分别计算出长与宽即可画图;
(2)三角形的面积=底×高÷2,看图可知原三角形的底是6cm、高是4cm,先计算出原三角形的面积,再根据比的应用可知把原三角形的面积平均分成了2+1=3份,其中一个三角形面积占2份,较小的三角形面积占1份,据此可以画图。
9.解:2×3.14×1+2×3.14×2÷4=9.42(cm)
【分析】经过测量可知,每个方格的长度是1厘米,先画直径为2厘米的圆弧,再画一个半径分别为2厘米和1厘米的圆弧,据此即可画出;把逗号分成两部分进行计算,逗号的周长=一个直径为2厘米的圆+一个半径分别为2厘米和1厘米的圆,进行计算。
10.(1)解:
(2)解:
【分析】(1)正方形是特殊的平行四边形,具有四条边相等、四个角均为直角、对角线相等且互相垂直,据此作图即可;
(2)以每条边上的中点为圆心,边长的一半为半径,画出4个半圆,即可得到所要画的图案。
11.
【分析】长方形长画3格,宽画1格,长与宽的比就是3:1。长方形长画6格,宽画2格,长与宽的比就是3:1。
12.解:
【分析】已知平行四边形的面积公式:S=底高,三个小平行四边形的面积比是2:1:1,如果高相等,底的比也是2:1:1,大平行四边形的底是12,12(2+1+1)=3,32=6,所以三个小平行四边形的底分别是6、3、3,高是6,据此分即可。
13.
【分析】已知长方形的周长=(长+宽)×2,据此得出长+宽=30÷2=15(cm),又已知长和宽的比是3:2,就是将长+宽=15cm,平均分成5份,1份是15÷5=3(cm),长占3份,即3×3=9(cm),宽占2份,即3×2=6(cm),据此画图即可。
14.
【分析】 一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形;圆上AB两点之间的部分叫做弧,读作“弧AB”; 顶点在圆心的角叫做圆心角;在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关。 由圆的两条半径与这两条半径所夹的圆心角所对的弧围成的图形就是扇形。扇形是圆的一部分。据此作图。
15.解:
×=(公顷)
答:小时耕地公顷。
【分析】“每小时耕地公顷”即把1公顷的地平均分成2份,每小时耕其中的1份,再把这公顷的地平均分成5份,其中3份即为小时耕的地,据此可以画图;根据题意可知拖拉机的工作效率是每小时耕地公顷,工作时间是小时,因此,工作效率×工作时间=工作总量。
16.解:(答案不唯一)。
【分析】在长方形中画一个最大的半圆,则半圆的直径是长方形的长,即以长方形长的一半为半径,长的中点位置为圆心:则圆规两脚间的距离=4÷2=2cm,圆规针尖放于长的中点处,在长方形内旋转半周即可画出半圆;组合图形的对称轴是过圆心且垂直于长的直线。
17.(1)
(2)
(3)2×2=4(cm)
2×3=6(cm)
4∶6
=(4÷2)∶(6÷2)
=2∶3
答:圆①和圆②周长的比是2∶3。
【分析】(1)画圆的步骤:把圆规的两脚分开,定好两脚的距离,即半径,根据半径=直径÷2,即半径为:4÷2=2(cm);把有针尖的一只脚固定在一点上,即圆心;把装有铅笔尖的一只脚旋转一周,即可。
(2)先把圆心O向右平移7个格,即往右数7个格得到 O' ,然后再根据画圆的方法画一个半径是3厘米的圆即可;
(3)我们可以根据圆的周长=2r,代入数值分别求出两个圆的周长,再进行比,并根据比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变化简比。
18.解:×=(公顷)
【分析】把整个面积看作单位“1”,平均分成4份,萝卜占3份,然后把平均分成5份,红萝卜占2份,据此涂色并计算。
19.解:

【分析】表示长方形被平均分成2份,其中1份涂色;乘表示把涂色部分又平均分成4份,再把其中的3份涂色,表示两次涂色部分占长方形的几分之几。
20.解:如图:
等腰三角形的面积占
×5×5÷(5×6) ≈41.7%,
梯形的面积占1-41.7%=58.3%;
答:三角形占长方形面积的41.7%,梯形的面积各占长方形面积的58.3%。
【分析】等腰三角形两腰相等,且另一半为梯形,则只能从顶点画,如图,三角形的面积=底×高÷2,用三角形面积÷长方形面积求出占比,再用1-占比即得到梯形的面积的占比。
21.(1)解:
(2)解:
【分析】(1)欲在长12cm,宽8cm的长方形彩纸上剪出一个最大的圆,且在正中间,只需使圆心在长方形彩纸的中心即可,而长方形的中心即对角线两线的交点,故只需作出长方形两条对角线即可得出答案;
(2)以题(1)确定的点为圆心,长方形宽的一半为半径作圆即可。
22.解:2×3.14×1=6.28(cm)
标图如下:
【分析】从题图可知,圆形硬币的半径是1cm,圆从点A(即0刻度线)开始,沿着直尺向右滚动一周到达点B,滚动的路程等于圆的周长,根据圆的周长公式C=2πr求出圆的周长,就是点B的位置,在直尺上标出点B的大概位置即可。
23.解:36÷2=18(cm),
2+1=3
宽:18×=6(cm),
长:18×=12(cm),
作图如下:
【分析】根据长方形的周长计算公式“C =2(a+b)”即可求出这个长方形的长、宽之和,再把长方形的长、宽之和平均分成(2+1)份,先用除法求出1份(长方形宽)是多少厘米,再用乘法求出2份(长方形长)是多少厘米,然后根据长方形对边相等,四个角都是直角的特征,即可画出此长方形。
24.(1)
(2)
【分析】(1) 在方格纸上,可以选择每个小方格的边长作为单位长度。为了方便,可以选择底边长度为4个单位,高为3个单位。
(2)平行四边形的高一样,分成 两个面积比为1:2的平行四边形 ,即为底分成2:1。
25.(1)(答案不唯一)
(2)(答案不唯一)
【分析】(1)根据给出格子的数目确定最简单的三角形为底为4,高为3的三角形。
(2 )根据比的定义将平行四边形分成两个高相等,底边分成2:1两部分即可。
26.(答案不唯一)
【分析】将图中的格子定义为一个格子的边长为1,最好是划分成学过的图形,方便计算面积来做比较。通过面积公式计算并验算是否符合题目标准。
27.解:(答案不唯一)
【分析】三角形的面积=底×高÷2,面积比为2:3,高不变,底的比为2:3即可;
平行四边形面积=底×高,高不变,底的比为2:1即可;
梯形面积=(上底+下底)×高÷2,上底为3格,下底为5格,高相等,面积比则为3:5。
28.(1)
(2)
【分析】对于第一部分问题,需要根据给定的长宽比和周长条件来确定长方形的尺寸。接着,在第二部分问题中,需要在保持面积比的同时,将长方形分割成一个三角形和一个梯形。
29.
【分析】圆心确定圆的位置,半径确定圆的大小,以正方形两条对角线的交点为圆心,以正方形的边长除以2为半径,即可画出这个圆;因为圆周角为360°,所以用以圆的任意一条半径为扇形的边,再利用量角器画出圆心角为120°的扇形即可。
30.解:圆的直径等于长方形的宽,画出长方形中最大的圆,如图所示:
【分析】根据画圆的特征,首先要确定圆的直径,等于长方形的宽,然后根据画圆的方法画出即可。
31.解:
【分析】假设小正方形的边长是1,三个三角形的高相等,底别是1、2、3,则它们面积的比是1:2:3。
32.解:
周长:3.14×(5×2)÷4+5×2
=31.4÷4+10
=7.85+10
=17.85(厘米)
面积:3.14×52÷4
=78.5÷4
=19.625(平方厘米)
【分析】这个扇形的周长=π×半径×2÷4+半径×2;
这个扇形的面积=π×半径2÷4。
33.(1)解:
(2)解:3.14×3=9.42(厘米)
答: 这个最大的圆的周长为9.42厘米。
(3)解:6÷3=2(个)
答: 在这样的长方形纸上最多能剪出2个这样的圆 。
【分析】 (1)要使圆最大,那么圆的直径应等于长方形的宽,即最大圆的直径为3厘米,进行画圆即可;
(2)根据圆的周长公式C=πd,代入数值计算即可;
(3)最大圆的直径等于长方形的宽为3厘米,长方形的长为6厘米,则6÷3=2个,所以最多能剪出2个最大圆。
34.解:如图:
【分析】正方形①的边长是4厘米,所以正方形①的面积是:4×4=16(平方厘米);正方形②的面积:正方形①的面积=9:4=(9×4):(4×4)=36:16,所以正方形②的面积是36平方厘米,6×6=36,所以正方形②的边长是6厘米,也就是6格。
35.解:白菜:(格)
青菜:21-6=15(格)
【分析】白菜的格数=总格数×白菜占的份数;青菜占的格数=总格数-白菜占的格数;分别计算出白菜和青菜占的格数,然后再涂色。
36.解:
【分析】×可以表示把单位”1“平均分成9份,取其中的4份,然后把平均分成5份,取其中的3份。
37.(1)解:
(2)解:正方形面积:4×4=16(平方厘米)
圆的面积:3.14×22
=3.14×4
=12.56(平方厘米)
16-12.56=3.44(平方厘米)(根据所绘图形计算面积即可)
【分析】(1)图中阴影部分是一个以2cm为边长的正方形,去掉一个以2cm为半径的圆的,据此画出另外3个即可(答案不唯一)。
(2)阴影部分的面积=正方形面积-圆的面积,正方形面积=边长×边长,圆的面积=π×半径2,代入数值计算即可。
38.解:如图:
【分析】首先用周长除以2求出长宽之和,再根据长与宽的比可知,长是长宽之和的,宽是长宽之和的,用长宽之和分别乘长、宽的分率求出该长方形的长和宽,再进行作图即可。
39.解:长宽的和:14÷2=7(厘米)
因为长和宽比是5:2,所以长画5厘米,宽画2厘米,
【分析】已知长方形的周长和长方形长宽的比,可求出长方形的长与宽,然后画出长方形即可;
×表示把长方形平均分成5份,其中的4份涂上颜色,再把涂色部分平均分成2份,其中的1份涂上颜色。
40.解:
3.14×2×+3.14×2×2×+3.14×1×2×
=6.28×+3.14×(4×)+3.14×(2×)
=4.71+3.14+1.57
=7.85+1.57
=9.42(厘米)
【分析】经过测量可知,每个方格的长度是1厘米,①先画直径是2厘米的圆弧,②再画一个半径为2厘米和1厘米的圆弧即可;
这个逗号的周长=直径是2厘米的圆弧的长+半径为2厘米的圆弧的长+半径为1厘米的圆弧的长,圆弧的长=圆的周长×所占分率,圆的周长=π×直径。
41.(1)解:
(2)解:
4÷2=2(厘米)
3.14×22-4×2÷2×2
=12.56-8
=4.56(平方厘米)
【分析】阴影部分的面积=圆的面积-空白正方形的面积;其中,圆的面积=π×半径2,正方形的面积=三角形的面积×2,三角形的面积=底×高÷2。
42.解:圆的半径=2厘米。

【分析】在正方形内化最大的圆,圆的圆心就是正方形对角连线的交点,圆的半径=正方形的边长÷2。
43.
【分析】根据圆的特征作答即可。
44.解:圆的半径是从圆心到圆周上任意一点的线段:
方法①:把圆规的两脚放在线段的端点上,固定端点B,看端点A旋转是否与圆重合:
方法②:这条线段从圆心出发,另一端是否在圆周上。
【分析】圆的半径是连接圆心和圆上任意一点的线段,据此作答即可。
45.(1)
(2)2;(3,3)
【分析】(1)先画正方形的两条对角线,两条对角线的交点就是圆心;
(2)圆心到正方形边长的距离就是圆的半径,圆的半径是2格,就是2厘米;数对的表示方法是先列后行,据此用数对表示圆心的位置。
46.解:12÷2=6(厘米)
宽:6÷(2+1)=2(厘米)
长:6-2=4(厘米)
如图:
【分析】周长是12厘米,长与宽的和是6厘米,因为长与宽的比是2:1,所以长是4厘米,宽是2厘米,所以画出一个长4厘米、宽2厘米的长方形即可。
47.解:圆的直径是2,圆的周长是3.14×2=6.28,6.28的位置大约是6和7之间;
【分析】图中1格代表1,圆的周长=π×直径,据此先求出圆的周长,再根据计算的结果判断B点的位置。
48.
【分析】根据题意可知,把长方形平均分成3份,涂色部分占其中的2份,据此先涂色表示长方形的,然后把涂色部分平均分成6份,斜线部分占其中的5份,要求斜线部分占长方形的几分之几,用乘法计算。
49.解:20÷2÷(3+2)
=20÷2÷5
=10÷5
=2(厘米)
2×3=6(厘米)
2×2=4(厘米)
【分析】长、宽的长度=周长÷2÷总份数×长、宽分别占的份数;依据长、宽的格数画出长方形。
50.(1)解:(20÷2)÷(3+2)
=10÷5
=2(厘米)
2×3=6(厘米)
2×2=4(厘米)
(2)解:(6×4)÷(2+1)
=24÷3
=8(平方厘米)
【分析】(1)长、宽的长度=(周长÷2)÷总份数×长、宽分别占的份数,依据长、宽的格数画出长方形;
(2)较小的面积=长方形的长×宽÷总份数×较小面积占的份数;据此画出图形。
21世纪教育网(www.21cnjy.com)
同课章节目录