动量
动量守恒定律及其应用
1.如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦.用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动.在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统( )
A.动量守恒,机械能守恒
B.动量守恒,机械能不守恒
C.动量不守恒,机械能守恒
D.动量不守恒,机械能不守恒
【解析】 B 因为滑块与车厢水平底板间有摩擦,且撤去推力后滑块在车厢底板上有相对滑动,即摩擦力做功,而水平地面是光滑的;以小车、弹簧和滑块为系统,根据动量守恒和机械能守恒的条件可知撤去推力后该系统动量守恒,机械能不守恒.故选B.
2.如图所示,曲面体P静止于光滑水平面上,物块Q自P的上端静止释放.Q与P的接触面光滑,Q在P上运动的过程中,下列说法正确的是( )
A.P对Q做功为零
B.P和Q之间相互作用力做功之和为零
C.P和Q构成的系统机械能守恒、动量守恒
D.P和Q构成的系统机械能不守恒、动量守恒
【解析】 B P对Q有弹力的作用,并且在力的方向上有位移,所以P对Q做功不为0,故A错误;因为PQ之间的力属于系统内力,并且等大反向,两者在力的方向上发生的位移相等,所以做功之和为0,故B正确;因为系统只有系统内力和重力的作用,所以P、Q组成的系统机械能守恒,系统水平方向上不受外力的作用,水平方向上动量守恒,但是在竖直方向上Q有加速度,即竖直方向上动量不守恒,故C、D错误.
3.如图所示,质量m=60 kg的人,站在质量M=300 kg的车的一端,车长L=3 m,相对于地面静止.当车与地面间的摩擦可以忽略不计时,人由车的一端走到另一端的过程中,车将( )
A.后退0.5 m B.后退0.6 m
C.后退0.75 m D.一直匀速后退
【解析】 A 人车组成的系统动量守恒,则mv1=Mv2,所以mx1=Mx2,又有x1+x2=L,解得x2=0.5 m.
4.小车上装有一桶水,静止在光滑水平地面上,如图所示,桶的前、后、底及侧面各装有一个阀门,分别为S1、S2、S3、S4(图中未全画出).要使小车向前运动,可采用的方法是( )
A.打开阀门S1 B.打开阀门S2 C.打开阀门S3 D.打开阀门S4
【解析】 B 水和车系统动量守恒,原来系统动量为0,由动量守恒定律得0=m水v水+m车v车,即:m水v水=-m车v车,车的运动方向与水的运动方向相反,故水应向后喷出,即应打开阀门S2.
5.下列叙述的情况中,系统动量不守恒的是( )
A.如图甲所示,小车停在光滑水平面上,车上的人在车上走动时,人与车组成的系统
B.如图乙所示,子弹射入放在光滑水平面上的木块中,子弹与木块组成的系统
C.子弹射入紧靠墙角的木块中,子弹与木块组成的系统
D.斜向上抛出的手榴弹在空中炸开时
【解析】 C 对于人和车组成的系统,人和车之间的力是内力,系统所受的外力有重力和支持力,合力为零,系统的动量守恒;子弹射入木块过程中,虽然子弹和木块之间的力很大,但这是内力,木块放在光滑水平面上,系统所受合力为零,动量守恒;子弹射入紧靠墙角的木块时,墙对木块有力的作用,系统所受合力不为零,系统的动量减小;斜向上抛出的手榴弹在空中炸开时,虽然受到重力作用,合力不为零,但爆炸的内力远大于重力,动量近似守恒,故选C.
6.(多选)2021年7月28日,全国U12冰球比赛在西宁市民中心冰球馆正式开赛.在光滑的冰面上,质量为80 kg的冰球运动员甲以5.0 m/s的速度向前运动时,与另一质量为100 kg、速度为3.0 m/s的迎面而来的运动员乙相撞,碰后甲恰好静止.假设碰撞时间极短,下列说法正确的是( )
A.碰后乙的速度的大小是1.5 m/s
B.碰后乙的速度的大小是1.0 m/s
C.碰撞中总机械能损失了1500 J
D.碰撞中总机械能损失了1400 J
【解析】 BD 设运动员甲、乙的质量分别为m、M,碰前速度大小分别为v1、v2,碰后乙的速度大小为v2′,规定碰撞前甲的运动方向为正方向,由动量守恒定律有:mv1-Mv2=Mv2′,解得v2′=1.0 m/s,故A错误,B正确.根据能量守恒定律可知,碰撞中总机械能的损失为ΔE=mv+Mv-Mv2′2,代入数据解得ΔE=1400 J,故C错误,D正确.
7.(多选)水平冰面上有一固定的竖直挡板.一滑冰运动员面对挡板静止在冰面上,他把一质量为4.0 kg 的静止物块以大小为5.0 m/s的速度沿与挡板垂直的方向推向挡板,运动员获得退行速度;物块与挡板弹性碰撞,速度反向,追上运动员时,运动员又把物块推向挡板,使其再一次以大小为5.0 m/s的速度与挡板弹性碰撞.总共经过8次这样推物块后,运动员退行速度的大小大于5.0 m/s,反弹的物块不能再追上运动员.不计冰面的摩擦力,该运动员的质量可能为( )
A.48 kg B.53 kg
C.58 kg D.63 kg
【解析】 BC 选运动员退行速度方向为正方向,设运动员的质量为M,物块的质量为m,物块被推出时的速度大小为v0,运动员第一次推出物块后的退行速度大小为v1.根据动量守恒定律,运动员第一次推出物块时有0=Mv1-mv0,物块与挡板发生弹性碰撞,以等大的速率反弹;第二次推出物块时有Mv1+mv0=-mv0+Mv2,依此类推,Mv2+mv0=-mv0+Mv3,…,Mv7+mv0=-mv0+Mv8.又运动员的退行速度v8>v0,v7 8.如图,一滑雪道由AB和BC两段滑道组成,其中AB段倾角为θ,BC段水平,AB段和BC段由一小段光滑圆弧连接,一个质量为2 kg的背包在滑道顶端A处由静止滑下,若1 s后质量为48 kg的滑雪者从顶端以1.5 m/s的初速度、3 m/s2的加速度匀加速追赶,恰好在坡底光滑圆弧的水平处追上背包并立即将其拎起,背包与滑道的动摩擦因数为μ=,重力加速度g取10 m/s2,sin θ=,cos θ=,忽略空气阻力及拎包过程中滑雪者与背包的重心变化,求:
(1)滑道AB段的长度;
(2)滑雪者拎起背包时这一瞬间的速度.
【解析】 (1)设斜面长度为L,背包质量为m1=2 kg,在斜面上滑行的加速度为a1,由牛顿第二定律有
m1gsin θ-μm1gcos θ=m1a1,
解得a1=2 m/s2.
滑雪者质量为m2=48 kg,初速度为v0=1.5 m/s,加速度为a2=3 m/s2,在斜面上滑行时间为t,落后时间t0=1 s,则背包的滑行时间为t+t0,由运动学公式得
L=a1(t+t0)2,
L=v0t+a2t2.
联立解得t=2 s,
故可得L=9 m.
(2)背包和滑雪者到达水平轨道时的速度为v1、v2,有
v1=a1(t+t0)=6 m/s,
v2=v0+a2t=7.5 m/s,
滑雪者拎起背包的过程,系统在光滑水平面上外力为零,动量守恒,设共同速度为v,有m1v1+m2v2=(m1+m2)v,
解得v=7.44 m/s.