专题10 磁场
1.(2024年湖北考题) 9. 磁流体发电机的原理如图所示,MN和PQ是两平行金属极板,匀强磁场垂直于纸面向里。等离子体(即高温下电离的气体,含有大量正、负带电粒子)从左侧以某一速度平行于极板喷入磁场,极板间便产生电压。下列说法正确的是( )
A. 极板MN是发电机的正极
B. 仅增大两极板间的距离,极板间的电压减小
C. 仅增大等离子体的喷入速率,极板间的电压增大
D. 仅增大喷入等离子体的正、负带电粒子数密度,极板间的电压增大
【答案】AC
【解析】 带正电的离子受到的洛伦兹力向上偏转,极板MN带正电为发电机正极,A正确;离子受到的洛伦兹力和电场力相互平衡时,此时令极板间距为d,则 ,可得 ,因此增大间距U变大,增大速率U变大,U大小和密度无关,B、D错误C正确。
2.(2024浙江1月卷考题)4. 磁电式电表原理示意图如图所示,两磁极装有极靴,极靴中间还有一个用软铁制成的圆柱。极靴与圆柱间的磁场都沿半径方向,两者之间有可转动的线圈。a、b、c和d为磁场中的四个点。下列说法正确的是( )
A. 图示左侧通电导线受到安培力向下 B. a、b两点的磁感应强度相同
C. 圆柱内的磁感应强度处处为零 D. c、d两点的磁感应强度大小相等
【答案】A
【解析】由左手定则可知,图示左侧通电导线受到安培力向下,选项A正确; a、b两点的磁感应强度大小相同,但是方向不同,选项B错误;磁感线是闭合的曲线,则圆柱内的磁感应强度不为零,选项C错误;因c点处的磁感线较d点密集,可知 c点的磁感应强度大于d点的磁感应强度,选项D错误。
3.(2024年湖北卷考题)7. 如图所示,在以O点为圆心、半径为R的圆形区域内有垂直于纸面向里的匀强磁场,磁感应强度大小为B。圆形区域外有大小相等、方向相反、范围足够大的匀强磁场。一质量为m、电荷量为q(q>0)的带电粒子沿直径AC方向从A点射入圆形区域。不计重力,下列说法正确的是( )
A. 粒子运动轨迹可能经过O点
B. 粒子射出圆形区域时的速度方向不一定沿该区域的半径方向
C. 粒子连续两次由A点沿AC方向射入圆形区域最小时间间隔为
D. 若粒子从A点射入到从C点射出圆形区域用时最短,粒子运动的速度大小为
【答案】D
【解析】在圆形匀强磁场区域内,沿着径向射入的粒子,总是沿径向射出的;根据圆的特点可知粒子的运动轨迹不可能经过O点,故A、B错误;粒子连续两次由A点沿AC方向射入圆形区域,时间最短则根据对称性可知轨迹如图
则最短时间有 ,故C错误;粒子从A点射入到从C点射出圆形区域用时最短,则轨迹如图所示
设粒子在磁场中运动半径为r,根据几何关系可知 ,根据洛伦兹力提供向心力有
可得 ,故D正确。
4.(2024年河北卷考题 ) 10.如图,真空区域有同心正方形ABCD和abcd,其各对应边平行,ABCD的边长一定,abcd的边长可调,两正方形之间充满恒定匀强磁场,方向垂直于正方形所在平面.A处有一个粒子源,可逐个发射速度不等、比荷相等的粒子,粒子沿AD方向进入磁场。调整abcd的边长,可使速度大小合适的粒子经ad边穿过无磁场区后由BC边射出。对满足前述条件的粒子,下列说法正确的是( )
A. 若粒子穿过ad边时速度方向与ad边夹角为45°,则粒子必垂直BC射出
B. 若粒子穿过ad边时速度方向与ad边夹角60°,则粒子必垂直BC射出
C. 若粒子经cd边垂直BC射出,则粒子穿过ad边的速度方向与ad边夹角必为45°
D. 若粒子经bc边垂直BC射出,则粒子穿过ad边时速度方向与ad边夹角必为60°
【答案】ACD
【解析】根据几何关系可知,若粒子穿过ad边时速度方向与ad边夹角为45°,则粒子必经过cd边,作出粒子运动轨迹图,如图甲所示
粒子从C点垂直于BC射出,故AC正确;粒子穿过ad边时速度方向与ad边夹角为60°时,若粒子从cd边再次进入磁场,作出粒子运动轨迹如图乙所示
则粒子不可能垂直BC射出;若粒子从bc边再次进入磁场,作出粒子运动轨迹如图丙所示
则粒子一定垂直BC射出,故B错误、D正确。
5.(2024年安徽卷考题)10. 空间中存在竖直向下匀强电场和垂直于纸面向里的匀强磁场,电场强度大小为E,磁感应强度大小为B。一质量为m的带电油滴a,在纸面内做半径为R的圆周运动,轨迹如图所示。当a运动到最低点P时,瞬间分成两个小油滴Ⅰ、Ⅱ,二者带电量、质量均相同。Ⅰ在P点时与a的速度方向相同,并做半径为的圆周运动,轨迹如图所示。Ⅱ的轨迹未画出。己知重力加速度大小为g,不计空气浮力与阻力以及Ⅰ、Ⅱ分开后的相互作用,则( )
A. 油滴a带负电,所带电量的大小为
B. 油滴a做圆周运动的速度大小为
C. 小油滴Ⅰ做圆周运动的速度大小为,周期为
D. 小油滴Ⅱ沿顺时针方向做圆周运动
【答案】ABD
【解析】油滴a做圆周运动,故重力与电场力平衡,可知带负电,有
解得 ,故A正确;根据洛伦兹力提供向心力
得 ,解得油滴a做圆周运动的速度大小为 ,故B正确;设小油滴Ⅰ的速度大小为,得 ,解得 ,周期为 ,故C错误;
带电油滴a分离前后动量守恒,设分离后小油滴Ⅱ的速度为,取油滴a分离前瞬间的速度方向为正方向,得 , 解得
由于分离后的小液滴受到的电场力和重力仍然平衡,分离后小油滴Ⅱ的速度方向与正方向相反,根据左手定则可知小油滴Ⅱ沿顺时针方向做圆周运动,故D正确。
6.(2024年湖南卷考题)14.如图,有一内半径为2r、长为L的圆筒,左右端面圆心O′、O处各开有一小孔。以O为坐标原点,取O′O方向为x轴正方向建立xyz坐标系。在筒内x ≤ 0区域有一匀强磁场,磁感应强度大小为B,方向沿x轴正方向;筒外x ≥ 0区域有一匀强电场,场强大小为E,方向沿y轴正方向。一电子枪在O′处向圆筒内多个方向发射电子,电子初速度方向均在xOy平面内,且在x轴正方向的分速度大小均为v0。已知电子的质量为m、电量为e,设电子始终未与筒壁碰撞,不计电子之间的相互作用及电子的重力。
(1)若所有电子均能经过O进入电场,求磁感应强度B的最小值;
(2)取(1)问中最小的磁感应强度B,若进入磁场中电子的速度方向与x轴正方向最大夹角为θ,求tanθ的绝对值;
(3)取(1)问中最小的磁感应强度B,求电子在电场中运动时y轴正方向的最大位移。
【答案】(1);(2);(3)
【解析】(1)电子在匀强磁场中运动时,将其分解为沿x轴的匀速直线运动和在yOz平面内的匀速圆周运动,设电子入射时沿y轴的分速度大小为,由电子在x轴方向做匀速直线运动得
在yOz平面内,设电子做匀速圆周运动的半径为R,周期为T,由牛顿第二定律知
可得
且
由题意可知所有电子均能经过O进入电场,则有
联立得
当时,B有最小值,可得
(2)将电子的速度分解,如图所示
有
当有最大值时,最大,R最大,此时,又 ,
联立可得 ,
(3)当最大时,电子在电场中运动时沿y轴正方向有最大位移,根据匀变速直线运动规律有
由牛顿第二定律
又
联立得
7.(2024年广东卷考题)15. 如图甲所示。两块平行正对的金属板水平放置,板间加上如图乙所示幅值为、周期为的交变电压。金属板左侧存在一水平向右的恒定匀强电场,右侧分布着垂直纸面向外的匀强磁场。磁感应强度大小为B.一带电粒子在时刻从左侧电场某处由静止释放,在时刻从下板左端边缘位置水平向右进入金属板间的电场内,在时刻第一次离开金属板间的电场、水平向右进入磁场,并在时刻从下板右端边缘位置再次水平进入金属板间的电场。已知金属板的板长是板间距离的倍,粒子质量为m。忽略粒子所受的重力和场的边缘效应。
(1)判断带电粒子的电性并求其所带的电荷量q;
(2)求金属板的板间距离D和带电粒子在时刻的速度大小v;
(3)求从时刻开始到带电粒子最终碰到上金属板的过程中,电场力对粒子做的功W。
【答案】(1)正电;;(2);;(3)
【解析】(1)根据带电粒子在右侧磁场中运动轨迹结合左手定则可知,粒子带正电;粒子在磁场中运动的周期为
根据
则粒子所带的电荷量
(2)若金属板的板间距离为D,则板长粒子在板间运动时
出电场时竖直速度为零,则竖直方向
在磁场中时
其中的
联立解得
(3)带电粒子在电场和磁场中的运动轨迹如图,由(2)的计算可知金属板的板间距离
则粒子在3t0时刻再次进入中间的偏转电场,在4 t0时刻进入左侧的电场做减速运动速度为零后反向加速,在6 t0时刻再次进入中间的偏转电场,6.5 t0时刻碰到上极板,因粒子在偏转电场中运动时,在时间t0内电场力做功为零,在左侧电场中运动时,往返一次电场力做功也为零,可知整个过程中只有开始进入左侧电场时电场力做功和最后0.5t0时间内电场力做功,则
8.(2024年辽宁卷考题) 15. 现代粒子加速器常用电磁场控制粒子团的运动及尺度。简化模型如图:Ⅰ、Ⅱ区宽度均为L,存在垂直于纸面的匀强磁场,磁感应强度等大反向;Ⅲ、Ⅳ区为电场区,Ⅳ区电场足够宽,各区边界均垂直于x轴,O为坐标原点。甲、乙为粒子团中的两个电荷量均为+q,质量均为m的粒子。如图,甲、乙平行于x轴向右运动,先后射入Ⅰ区时速度大小分别为和。甲到P点时,乙刚好射入Ⅰ区。乙经过Ⅰ区的速度偏转角为30°,甲到O点时,乙恰好到P点。已知Ⅲ区存在沿+x方向的匀强电场,电场强度大小。不计粒子重力及粒子间相互作用,忽略边界效应及变化的电场产生的磁场。
(1)求磁感应强度的大小B;
(2)求Ⅲ区宽度d;
(3)Ⅳ区x轴上的电场方向沿x轴,电场强度E随时间t、位置坐标x的变化关系为,其中常系数,已知、k未知,取甲经过O点时。已知甲在Ⅳ区始终做匀速直线运动,设乙在Ⅳ区受到的电场力大小为F,甲、乙间距为Δx,求乙追上甲前F与Δx间的关系式(不要求写出Δx的取值范围)
【答案】(1);(2);(3)
【解析】(1)对乙粒子,如图所示
由洛伦兹力提供向心力
由几何关系
联立解得,磁感应强度的大小为
(2)由题意可知,根据对称性,乙在磁场中运动的时间为
对甲粒子,由对称性可知,甲粒子沿着直线从P点到O点,由运动学公式
由牛顿第二定律
联立可得Ⅲ区宽度为
(3)甲粒子经过O点时的速度为
因为甲在Ⅳ区始终做匀速直线运动,则
可得
设乙粒子经过Ⅲ区的时间为,乙粒子在Ⅳ区运动时间为,则上式中
对乙可得
整理可得
对甲可得
则
化简可得乙追上甲前F与Δx间的关系式为
26 / 26