/ 让教学更有效 2026年高考 | 物理学科
专题06 功和能(解析版)
……………………………………………………………………………………
目录
TOC \o "1-3" \h \z \u 一、考情统计 1
二、应试策略 2
三、真题汇编 2
考点1 功与变力做功 2
考点2功率与机车启动 11
考点3动能定理的理解及应用 24
考点4机械能守恒定律 43
考点5功能关系 74
考点6能量守恒定律 76
考点7动力学和能量观点的综合应用 80
……………………………………………………………………………………
一、考情统计
考点 2025年 2024年 2023年
考点1 功与变力做功 2025 福建、2025 广东、 2024 海南、2024 重庆、2024 福建、 2023 北京、2023 江苏、2023 新课标卷、2023 广东、2023 湖北、
考点2功率与机车启动 2025 广西、2025 广东、2025 上海、2025 山东、 2024 贵州、2024 浙江、2024 安徽、2024 江西、2024 广东、2024 福建、2024 上海 2023 山东、2023 辽宁、2023 湖南、2023 天津、2023 山东、2023 湖北、
考点3动能定理的理解及应用 2025 浙江、2025 北京、2025 湖南、2025 浙江、2025 河北、2025 福建、2025 黑吉辽蒙卷、2025 广东 2024 江西、2024 新疆河南、2024 重庆、2024 贵州、2024 福建、2024 安徽、2024 海南、2024 辽宁 2023 辽宁、2023 江苏、2023 全国乙卷、2023 上海、2023 新课标卷、2023 新课标卷
考点4机械能守恒定律 2025 河南、2025 全国卷、2025 安徽、2025 海南、2025 陕晋青宁卷、2025 云南、2025 全国卷、2025 山东、 2024 北京、2024 浙江、2024 浙江、2024 福建、2024 山东、2024 全国甲卷、2024 江苏、2024 福建、2024 海南、2024 山东、2024 湖北、2024 辽宁、2024 浙江、2023 浙江、2023 重庆 2023 浙江、2023 浙江、2023 全国甲卷、2023 河北、2023 北京、2023 辽宁、2023 全国甲卷、2024 全国甲卷
考点5功能关系 2025 湖南 2024 浙江
考点6能量守恒定律 2025 浙江、2025 山东 2024 浙江、2024 山东、2024 广西
考点7动力学和能量观点的综合应用 2025 福建、2025 云南 2024 辽宁、2024 浙江、2024 新疆河南、2024 北京、2024 贵州、2024 湖北、2024 北京 2023 全国乙卷、2023 海南、2023 全国乙卷、2023 广东、
二、应试策略
1.命题热度角度:“功、功率和机械能”是高考物理的经典核心考点,近年来命题热度居高不下。题型覆盖选择题、实验题与计算题。命题呈现出三大趋势:一是强化 实际情境融合 ,如以新能源汽车、机械吊装等生产生活场景为背景,考查功和功率的估算;二是注重 功能关系的综合应用 ,常结合平抛运动、圆周运动等模型,通过动能定理、机械能守恒定律解决多过程问题;三是 创新设问方式 ,例如引入图像分析(如F-s图、P-t图)要求定量计算或定性判断。特别提醒,机械能守恒与曲线运动的结合题、摩擦力做功与内能转化的探究题,已成为高频难点。
2.备考策略: 复习本章时, 需立足三点: 概念深化 、 模型构建 与 应用迁移 。首先,精确区分“功的正负与能量转化方向”“瞬时功率与平均功率的计算区别”等易混淆概念,建议通过典型错题归类梳理本质差异。其次,重点掌握五大模型:恒力做功模型、机车启动两类模型、机械能守恒的单体与多体模型、功能关系在弹簧问题中的应用模型、非匀变速运动中动能定理的灵活使用。最后,强化实际应用能力,每周至少完成2道综合计算题,注重书写规范性与分步得分策略。真题训练建议以近五年全国卷为主,拓展至新高考省份的创新题。
三、真题汇编
考点1 功与变力做功
1.(2024·海南·高考真题)神舟十七号载人飞船返回舱于2024年4月30日在东风着陆场成功着陆,在飞船返回至离地面十几公里时打开主伞飞船快速减速,返回舱速度大大减小,在减速过程中( )
A.返回舱处于超重状态 B.返回舱处于失重状态
C.主伞的拉力不做功 D.重力对返回舱做负功
【答案】A
【详解】AB.返回舱在减速过程中,加速度竖直向上,处于超重状态,故A正确,B错误;
C.主伞的拉力与返回舱运动方向相反,对返回舱做负功,故C错误;
D.返回舱的重力与返回舱运动方向相同,重力对返回舱做正功,故D错误。
故选A。
2.(2024·重庆·高考真题)活检针可用于活体组织取样,如图所示。取样时,活检针的针芯和针鞘被瞬间弹出后仅受阻力。针鞘质量为m,针鞘在软组织中运动距离d1后进入目标组织,继续运动d2后停下来。若两段运动中针鞘整体受到阻力均视为恒力。大小分别为F1、F2,则针鞘( )
A.被弹出时速度大小为
B.到达目标组织表面时的动能为F1d1
C.运动d2过程中,阻力做功为(F1+F2)d2
D.运动d2的过程中动量变化量大小为
【答案】A
【详解】A.根据动能定理有
解得
故A正确;
B.针鞘到达目标组织表面后,继续前进d2减速至零,有Ek = F2d2
故B错误;
C.针鞘运动d2的过程中,克服阻力做功为F2d2,故C错误;
D.针鞘运动d2的过程中,动量变化量大小
故D错误。
故选A。
3.(2023·北京·高考真题)如图所示,一物体在力F作用下沿水平桌面做匀加速直线运动。已知物体质量为m,加速度大小为a,物体和桌面之间的动摩擦因数为,重力加速度为g,在物体移动距离为x的过程中( )
A.摩擦力做功大小与F方向无关 B.合力做功大小与F方向有关
C.F为水平方向时,F做功为 D.F做功的最小值为
【答案】D
【详解】A.设力F与水平方向的夹角为θ,则摩擦力为
摩擦力的功
即摩擦力的功与F的方向有关,选项A错误;
B.合力功
可知合力功与力F方向无关,选项B错误;
C.当力F水平时,则
力F做功为
选项C错误;
D.因合外力功为max大小一定,而合外力的功等于力F与摩擦力f做功的代数和,而当时,摩擦力f=0,则此时摩擦力做功为零,此时力F做功最小,最小值为max,选项D正确。
故选D。
4.(2023·江苏·高考真题)滑块以一定的初速度沿粗糙斜面从底端上滑,到达最高点B后返回到底端。利用频闪仪分别对上滑和下滑过程进行拍摄,频闪照片示意图如图所示。与图乙中相比,图甲中滑块( )
A.受到的合力较小 B.经过A点的动能较小
C.在A、B之间的运动时间较短 D.在A、B之间克服摩擦力做的功较小
【答案】C
【详解】A.频闪照片时间间隔相同,图甲相邻相等时间间隔内发生的位移差大,根据匀变速直线运动的推论,可知图甲中滑块加速度大,根据牛顿第二定律可知图甲中滑块受到的合力较大,故A错误;
B.设斜面倾角为,动摩擦因数为,上滑阶段根据牛顿第二定律有
下滑阶段根据牛顿第二定律有
可知上滑阶段阶段加速度大于下滑阶段加速度,图甲为上滑阶段,从图甲中的A点到图乙中的A点,先上升后下降,重力不做功,摩擦力做负功,根据动能定理可知图甲经过A点的动能较大,故B错误;
C.由逆向思维,由于图甲中滑块加速度大,根据
可知图甲在A、B之间的运动时间较短,故C正确;
D.由于无论上滑或下滑均受到滑动摩擦力大小相等,故图甲和图乙在A、B之间克服摩擦力做的功相等,故D错误。
故选C。
5.(2023·新课标卷·高考真题)(多选)一质量为1kg的物体在水平拉力的作用下,由静止开始在水平地面上沿x轴运动,出发点为x轴零点,拉力做的功W与物体坐标x的关系如图所示。物体与水平地面间的动摩擦因数为0.4,重力加速度大小取10m/s2。下列说法正确的是( )
A.在x = 1m时,拉力的功率为6W
B.在x = 4m时,物体的动能为2J
C.从x = 0运动到x = 2m,物体克服摩擦力做的功为8J
D.从x = 0运动到x = 4的过程中,物体的动量最大为2kg m/s
【答案】BC
【详解】由于拉力在水平方向,则拉力做的功为W = Fx
可看出W—x图像的斜率代表拉力F。
AB.在物体运动的过程中根据动能定理有
则x = 1m时物体的速度为v1= 2m/sx = 1m时,拉力为
则此时拉力的功率P = Fv1= 12Wx = 4m时物体的动能为Ek= 2J
A错误、B正确;
C.从x = 0运动到x = 2m,物体克服摩擦力做的功为Wf= μmgx = 8J
C正确;
D.根据W—x图像可知在0—2m的过程中F1= 6N,2—4m的过程中F2= 3N,由于物体受到的摩擦力恒为f = 4N,则物体在x = 2m处速度最大,且根据选项AB分析可知此时的速度
则从x = 0运动到x = 4的过程中,物体的动量最大为
D错误。
故选BC。
6.(2024·福建·高考真题)我国古代劳动人民创造了璀璨的农耕文明。图(a)为《天工开物》中描绘的利用耕牛整理田地的场景,简化的物理模型如图(b)所示,人站立的农具视为与水平地面平行的木板,两条绳子相互平行且垂直于木板边缘。已知绳子与水平地面夹角为,,。当每条绳子拉力的大小为时,人与木板沿直线匀速前进,在内前进了,求此过程中
(1)地面对木板的阻力大小;
(2)两条绳子拉力所做的总功;
(3)两条绳子拉力的总功率。
【答案】(1)450N
(2)9.0×103J
(3)600W
【详解】(1)由于木板匀速运动则有
解得
(2)根据功的定义式有
解得
(3)根据功率的定义,有
7.(2023·广东·高考真题)(多选)人们用滑道从高处向低处运送货物.如图所示,可看作质点的货物从圆弧滑道顶端点静止释放,沿滑道运动到圆弧末端点时速度大小为。已知货物质量为,滑道高度为,且过点的切线水平,重力加速度取。关于货物从点运动到点的过程,下列说法正确的有( )
A.重力做的功为 B.克服阻力做的功为
C.经过点时向心加速度大小为 D.经过点时对轨道的压力大小为
【答案】BCD
【详解】A.重力做的功为
A错误;
B.下滑过程据动能定理可得
代入数据解得,克服阻力做的功为
B正确;
C.经过点时向心加速度大小为
C正确;
D.经过点时,据牛顿第二定律可得
解得货物受到的支持力大小为
据牛顿第三定律可知,货物对轨道的压力大小为,D正确。
故选BCD。
8.(2023·湖北·高考真题)(多选)如图所示,原长为l的轻质弹簧,一端固定在O点,另一端与一质量为m的小球相连。小球套在竖直固定的粗糙杆上,与杆之间的动摩擦因数为0.5。杆上M、N两点与O点的距离均为l,P点到O点的距离为,OP与杆垂直。当小球置于杆上P点时恰好能保持静止。设最大静摩擦力等于滑动摩擦力,重力加速度大小为g。小球以某一初速度从M点向下运动到N点,在此过程中,弹簧始终在弹性限度内。下列说法正确的是( )
A.弹簧的劲度系数为
B.小球在P点下方处的加速度大小为
C.从M点到N点的运动过程中,小球受到的摩擦力先变小再变大
D.从M点到P点和从P点到N点的运动过程中,小球受到的摩擦力做功相同
【答案】AD
【详解】A.小球在P点受力平衡,则有,,
联立解得
A正确;
C.在PM之间任取一点A,令AO与MN之间的夹角为,则此时弹簧的弹力为
小球受到的摩擦力为
化简得
在MP之间增大在PN减变小,即摩擦力先变大后变小,C错误;
D.根据对称性可知在任意关于P点对称的点摩擦力大小相等,因此由对称性可知M到P和P到N摩擦力做功大小相等;D正确;
B.小球运动到P点下方时,此时摩擦力大小为
由牛顿第二定律
联立解得
B错误。
故选AD。
9.(2025·福建·高考真题)如图甲,水平地面上有A、B两个物块,两物块质量均为0.2kg,A与地面动摩擦因数为,B与地面无摩擦,两物块在外力F的作用下向右前进,F与位移x的图如图乙所示,P为圆弧最低点,M为最高点,水平地面长度大于4m,重力加速度。
(1)求,F做的功;
(2)时,A与B之间的弹力;
(3)要保证B能到达M点,圆弧半径满足的条件。
【答案】(1)1.5J
(2)0.5N
(3)
【详解】(1)求,F做的功
(2)对AB整体,根据牛顿第二定律
其中
对B根据牛顿第二定律
联立解得
(3)当A、B之间的弹力为零时,A、B分离,根据(2)分析可知此时
此时
过程中,对A、B根据动能定理
根据题图可得
从点到点,根据动能定理
在点的最小速度满足
联立可得
即圆弧半径满足的条件。
10.(2025·广东·高考真题)如图所示,用开瓶器取出紧塞在瓶口的软木塞时,先将拔塞钻旋入木塞内,随后下压把手,使齿轮绕固定支架上的转轴转动,通过齿轮啮合,带动与木塞相固定的拔塞钻向上运动。从0时刻开始,顶部与瓶口齐平的木塞从静止开始向上做匀加速直线运动,木塞所受摩擦力f随位移大小x的变化关系为,其中为常量,h为圆柱形木塞的高,木塞质量为m,底面积为S,加速度为a,齿轮半径为r,重力加速度为g,瓶外气压减瓶内气压为且近似不变,瓶子始终静止在桌面上。(提示:可用图线下的“面积”表示f所做的功)求:
(1)木塞离开瓶口的瞬间,齿轮的角速度。
(2)拔塞的全过程,拔塞钻对木塞做的功W。
(3)拔塞过程中,拔塞钻对木塞作用力的瞬时功率P随时间t变化的表达式。
【答案】(1)
(2)
(3)
【详解】(1)木塞的末速度等于齿轮线速度,对木塞,根据运动学公式
根据角速度和线速度的关系
联立可得
(2)根据题意画出木塞摩擦力与运动距离的关系图如图所示
可得摩擦力对木塞所做的功为
对木塞,根据动能定理
解得
(3)设开瓶器对木塞的作用力为,对木塞,根据牛顿第二定律
速度
位移
开瓶器的功率
联立可得
考点2功率与机车启动
11.(2024·贵州·高考真题)质量为的物块静置于光滑水平地面上,设物块静止时的位置为x轴零点。现给物块施加一沿x轴正方向的水平力F,其大小随位置x变化的关系如图所示,则物块运动到处,F做功的瞬时功率为( )
A. B. C. D.
【答案】A
【详解】根据图像可知物块运动到处,F做的总功为
该过程根据动能定理得
解得物块运动到处时的速度为
故此时F做功的瞬时功率为
故选A。
12.(2024·浙江·高考真题)一个音乐喷泉喷头出水口的横截面积为,喷水速度约为10m/s,水的密度为kg/m3,则该喷头喷水的功率约为( )
A.10W B.20W C.100W D.200W
【答案】C【详解】设时间内从喷头流出的水的质量为
喷头喷水的功率等于时间内喷出的水的动能增加量,即
联立解得
故选C。
13.(2024·安徽·高考真题)在某地区的干旱季节,人们常用水泵从深水井中抽水灌溉农田,简化模型如图所示。水井中的水面距离水平地面的高度为H。出水口距水平地面的高度为h,与落地点的水平距离约为l。假设抽水过程中H保持不变,水泵输出能量的倍转化为水被抽到出水口处增加的机械能。已知水的密度为,水管内径的横截面积为S,重力加速度大小为g,不计空气阻力。则水泵的输出功率约为( )
A. B.
C. D.
【答案】B
【详解】设水从出水口射出的初速度为,取时间内的水为研究对象,该部分水的质量为
根据平抛运动规律。
解得
根据功能关系得
联立解得水泵的输出功率为
故选B。
14.(2024·江西·高考真题)庐山瀑布“飞流直下三千尺,疑是银河落九天”瀑布高150m,水流量10m3/s,假设利用瀑布来发电,能量转化效率为70%,则发电功率为( )
A.109W B.107W C.105W D.103W
【答案】B
【详解】由题知,Δt时间内流出的水量为m = ρQΔt = 1.0×104Δt
发电过程中水的重力势能转化为电能,则有
故选B。
15.(2023·山东·高考真题)《天工开物》中记载了古人借助水力使用高转筒车往稻田里引水的场景。引水过程简化如下:两个半径均为R的水轮,以角速度ω匀速转动。水筒在筒车上均匀排布,单位长度上有n个,与水轮间无相对滑动。每个水筒离开水面时装有质量为m的水,其中的60%被输送到高出水面H处灌入稻田。当地的重力加速度为g,则筒车对灌入稻田的水做功的功率为( )
A. B. C. D.nmgωRH
【答案】B
【详解】由题知,水筒在筒车上均匀排布,单位长度上有n个,且每个水筒离开水面时装有质量为m的水、其中的60%被输送到高出水面H处灌入稻田,则水轮转一圈灌入农田的水的总质量为m总 = 2πRnm × 60% = 1.2πRnm
则水轮转一圈灌入稻田的水克服重力做的功W = 1.2πRnmgH
则筒车对灌入稻田的水做功的功率为,
联立有
故选B。
16.(2023·辽宁·高考真题)如图(a),从高处M点到地面N点有Ⅰ、Ⅱ两条光滑轨道。两相同小物块甲、乙同时从M点由静止释放,沿不同轨道滑到N点,其速率v与时间t的关系如图(b)所示。由图可知,两物块在离开M点后、到达N点前的下滑过程中( )
A.甲沿I下滑且同一时刻甲的动能比乙的大
B.甲沿Ⅱ下滑且同一时刻甲的动能比乙的小
C.乙沿I下滑且乙的重力功率一直不变
D.乙沿Ⅱ下滑且乙的重力功率一直增大
【答案】B
【详解】AB.由图乙可知,甲下滑过程中,甲做匀加速直线运动,则甲沿Ⅱ下滑,乙做加速度逐渐减小的加速运动,乙沿I下滑,任意时刻甲的速度都小于乙的速度,可知同一时刻甲的动能比乙的小,A错误,B正确;
CD.乙沿I下滑,开始时乙速度为0,到点时乙竖直方向速度为零,根据瞬时功率公式可知重力瞬时功率先增大后减小,CD错误。
故选B。
17.(2024·广东·高考真题)(多选)如图所示,探测器及其保护背罩通过弹性轻绳连接降落伞。在接近某行星表面时以的速度竖直匀速下落。此时启动“背罩分离”,探测器与背罩断开连接,背罩与降落伞保持连接。已知探测器质量为1000kg,背罩质量为50kg,该行星的质量和半径分别为地球的和。地球表面重力加速度大小取。忽略大气对探测器和背罩的阻力。下列说法正确的有( )
A.该行星表面的重力加速度大小为
B.该行星的第一宇宙速度为
C.“背罩分离”后瞬间,背罩的加速度大小为
D.“背罩分离”后瞬间,探测器所受重力对其做功的功率为30kW
【答案】AC
【详解】A.在星球表面,根据
可得
行星的质量和半径分别为地球的和。地球表面重力加速度大小取,可得该行星表面的重力加速度大小
故A正确;
B.在星球表面上空,根据万有引力提供向心力
可得星球的第一宇宙速度
行星的质量和半径分别为地球的和,可得该行星的第一宇宙速度
地球的第一宇宙速度为,所以该行星的第一宇宙速度
故B错误;
C.“背罩分离”前,探测器及其保护背罩和降落伞整体做匀速直线运动,对探测器受力分析,可知探测器与保护背罩之间的作用力
“背罩分离”后,背罩所受的合力大小为4000N,对背罩,根据牛顿第二定律
解得
故C正确;
D.“背罩分离”后瞬间探测器所受重力对其做功的功率
故D错误。
故选AC。
18.(2023·湖南·高考真题)(多选)如图,固定在竖直面内的光滑轨道ABC由直线段AB和圆弧段BC组成,两段相切于B点,AB段与水平面夹角为θ,BC段圆心为O,最高点为C,A与C的高度差等于圆弧轨道的直径2R。小球从A点以初速度v0冲上轨道,能沿轨道运动恰好到达C点,下列说法正确的是( )
A.小球从B到C的过程中,对轨道的压力逐渐增大
B.小球从A到C的过程中,重力的功率始终保持不变
C.小球的初速度
D.若小球初速度v0增大,小球有可能从B点脱离轨道
【答案】AD
【详解】A.由题知,小球能沿轨道运动恰好到达C点,则小球在C点的速度为vC = 0
则小球从C到B的过程中,有,
联立有FN= 3mgcosα-2mg
则从C到B的过程中α由0增大到θ,则cosα逐渐减小,故FN逐渐减小,而小球从B到C的过程中,对轨道的压力逐渐增大,A正确;
B.由于A到B的过程中小球的速度逐渐减小,则A到B的过程中重力的功率为P = -mgvsinθ
则A到B的过程中小球重力的功率始终减小,从B到C速度减小,速度的竖直分量减小,则重力的功率也减小,则B错误;
C.从A到C的过程中有
解得
C错误;
D.小球在B点恰好脱离轨道有
则
则若小球初速度v0增大,小球在B点的速度有可能为,故小球有可能从B点脱离轨道,D正确。
故选AD。
19.(2024·福建·高考真题)我国古代劳动人民创造了璀璨的农耕文明。图(a)为《天工开物》中描绘的利用耕牛整理田地的场景,简化的物理模型如图(b)所示,人站立的农具视为与水平地面平行的木板,两条绳子相互平行且垂直于木板边缘。已知绳子与水平地面夹角为,,。当每条绳子拉力的大小为时,人与木板沿直线匀速前进,在内前进了,求此过程中
(1)地面对木板的阻力大小;
(2)两条绳子拉力所做的总功;
(3)两条绳子拉力的总功率。
【答案】(1)450N
(2)9.0×103J
(3)600W
【详解】(1)由于木板匀速运动则有
解得
(2)根据功的定义式有
解得
(3)根据功率的定义,有
20.(2025·广西·高考真题)图甲为某智能分装系统工作原理示意图,每个散货经倾斜传送带由底端A运动到顶端B后水平抛出,撞击冲量式传感器使其输出一个脉冲信号,随后竖直掉入以与水平传送带共速度的货箱中,此系统利用传感器探测散货的质量,自动调节水平传送带的速度,实现按规格分装。倾斜传送带与水平地面夹角为,以速度匀速运行。若以相同的时间间隔将散货以几乎为0的速度放置在倾斜传送带底端A,从放置某个散货时开始计数,当放置第10个散货时,第1个散货恰好被水平抛出。散货与倾斜传送带间的动摩擦因数,到达顶端前已与传送带共速。设散货与传感器撞击时间极短,撞击后竖直方向速度不变,水平速度变为0。每个长度为d的货箱装总质量为M的一批散货。若货箱之间无间隔,重力加速度为g。分装系统稳定运行后,连续装货,某段时间传感器输出的每个脉冲信号与横轴所围面积为I如图乙,求这段时间内:
(1)单个散货的质量。
(2)水平传送带的平均传送速度大小。
(3)倾斜传送带的平均输出功率。
【答案】(1)
(2)
(3)
【详解】(1)对单个散货水平方向由动量定理
解得单个散货的质量为
(2)落入货箱中散货的个数为
则水平传送带的平均传送速度大小为
(3)设倾斜传送带的长度为L,其中散货在加速阶段,由牛顿第二定律
解得
加速时间
加速位移
设匀速时间为,其中
则匀速位移为
故传送带的长度为
加速阶段散货与传送带发生的相对位移为
在时间内传送带额外多做的功为
其中,,
联立可得倾斜传送带的平均输出功率为
21.(2025·广东·高考真题)如图所示,用开瓶器取出紧塞在瓶口的软木塞时,先将拔塞钻旋入木塞内,随后下压把手,使齿轮绕固定支架上的转轴转动,通过齿轮啮合,带动与木塞相固定的拔塞钻向上运动。从0时刻开始,顶部与瓶口齐平的木塞从静止开始向上做匀加速直线运动,木塞所受摩擦力f随位移大小x的变化关系为,其中为常量,h为圆柱形木塞的高,木塞质量为m,底面积为S,加速度为a,齿轮半径为r,重力加速度为g,瓶外气压减瓶内气压为且近似不变,瓶子始终静止在桌面上。(提示:可用图线下的“面积”表示f所做的功)求:
(1)木塞离开瓶口的瞬间,齿轮的角速度。
(2)拔塞的全过程,拔塞钻对木塞做的功W。
(3)拔塞过程中,拔塞钻对木塞作用力的瞬时功率P随时间t变化的表达式。
【答案】(1)
(2)
(3)
【详解】(1)木塞的末速度等于齿轮线速度,对木塞,根据运动学公式
根据角速度和线速度的关系
联立可得
(2)根据题意画出木塞摩擦力与运动距离的关系图如图所示
可得摩擦力对木塞所做的功为
对木塞,根据动能定理
解得
(3)设开瓶器对木塞的作用力为,对木塞,根据牛顿第二定律
速度
位移
开瓶器的功率
联立可得
(2025·上海·高考真题)质点在以某点为圆心半径为r的圆周上运动,即质点运动时其轨迹是圆周的运动叫“圆周运动”。它是一种最常见的曲线运动。例如电动机转子、车轮、皮带轮等都作圆周运动。
如图所示,在竖直平面内有一光滑圆形轨道,a为轨道最低点,c为轨道最高点,b点、d点为轨道上与圆心等高的两点,e为段的中点。一个质量为m的小物块在轨道内侧做圆周运动。
22.若物块从a点运动到c点所用时间为,则在时,物块在( )
A.A段 B.B点 C.C段 D.D点 E.E段
23.若物块在a点的速度为,经过时间t刚好到达b点,则在该过程中轨道对物块的支持力的冲量为( )
A. B. C. D.
24.若物块质量为,下图是物块的速度v与物块和圆心连线转过的夹角的关系图像。
(1)求轨道半径R;
(2)求时,物块克服重力做功的瞬时功率P。
【答案】22.E 23.D 24.(1);(2)
【解析】22.物块从a点运动到c点过程中一直做减速运动,可知沿圆弧物块a点运动到b点的平均速率大于b点运动到c点的平均速率。若物块从a点运动到c点所用时间为,则在时,物块在E段。
故选E。
23.根据动量定理,支持力在水平方向的冲量为
竖直方向上根据动量定理有
故该过程中轨道对物块的支持力的冲量为
故选D。
24.(1)由图像可知,物块的初速度为,最高点位置的速度为。由动能定理得
解得
(2)由图像可知时,物块的速度为,则物块克服重力做功的瞬时功率
25.(2025·山东·高考真题)一辆电动小车上的光伏电池,将太阳能转换成的电能全部给电动机供电,刚好维持小车以速度v匀速运动,此时电动机的效率为。已知小车的质量为m,运动过程中受到的阻力(k为常量),该光伏电池的光电转换效率为,则光伏电池单位时间内获得的太阳能为( )
A. B. C. D.
【答案】A
【详解】根据题意小车匀速运动,则有
小车的机械功率
由于电动机的效率为,则有
光伏电池的光电转换效率为,即
可得
故选A。
26.(2023·天津·高考真题)2023年我国首套高温超导电动悬浮全要素试验系统完成首次悬浮运行,实现重要技术突破。设该系统的试验列车质量为m,某次试验中列车以速率v在平直轨道上匀速行驶,刹车时牵引系统处于关闭状态,制动装置提供大小为F的制动力,列车减速直至停止。若列车行驶时始终受到大小为f的空气阻力,则( )
A.列车减速过程的加速度大小 B.列车减速过程F的冲量为mv
C.列车减速过程通过的位移大小为 D.列车匀速行驶时,牵引系统的输出功率为
【答案】C
【详解】A.根据牛顿第二定律有
可得减速运动加速度大小
故A错误;
B.根据运动学公式有
故力F的冲量为
方向与运动方向相反;故B错误;
C.根据运动学公式
可得
故C正确;
D.匀速行驶时牵引力等于空气阻力,则功率为
故D错误。
故选C。
27.(2023·山东·高考真题)质量为M的玩具动力小车在水平面上运动时,牵引力F和受到的阻力f均为恒力,如图所示,小车用一根不可伸长的轻绳拉着质量为m的物体由静止开始运动。当小车拖动物体行驶的位移为时,小车达到额定功率,轻绳从物体上脱落。物体继续滑行一段时间后停下,其总位移为。物体与地面间的动摩擦因数不变,不计空气阻力。小车的额定功率P0为( )
A. B.
C. D.
【答案】A
【详解】设物体与地面间的动摩擦因数为μ,当小车拖动物体行驶的位移为S1的过程中有
F-f-μmg = (m+M)a
v2= 2aS1
P0= Fv
轻绳从物体上脱落后
a2= μg
v2= 2a2(S2-S1)
联立有
故选A。
28.(2023·湖北·高考真题)两节动车的额定功率分别为和,在某平直铁轨上能达到的最大速度分别为和。现将它们编成动车组,设每节动车运行时受到的阻力在编组前后不变,则该动车组在此铁轨上能达到的最大速度为( )
A. B. C. D.
【答案】D
【详解】由题意可知两节动车分别有,
当将它们编组后有
联立可得
故选D。
(2024·上海·高考真题)汽车智能化
我国的汽车智能化技术发展迅猛。各类车载雷达是汽车自主感知系统的重要组成部分。汽车在检测到事故风险后,通过自主决策和自主控制及时采取措施,提高了安全性。
29.车载雷达系统可以发出激光和超声波信号,其中( )
A.仅激光是横波 B.激光与超声波都是横波
C.仅超声波是横波 D.激光与超声波都不是横波
30.一辆质量的汽车,以的速度在平直路面上匀速行驶,此过程中发动机功率,汽车受到的阻力大小为 N。当车载雷达探测到前方有障碍物时,主动刹车系统立即撤去发动机驱动力,同时施加制动力使车辆减速。在刚进入制动状态的瞬间,系统提供的制动功率,此时汽车的制动力大小为 N,加速度大小为 。(不计传动装置和热损耗造成的能量损失)
【答案】29.A 30. 600
【解析】29.车载雷达系统发出的激光是横波,超声波信号是纵波。
故选A。
30.[1]根据题意可知,汽车匀速行驶,则牵引力等于阻力,则有
其中,
解得
[2]根据题意,由可得,汽车的制动力大小为
[3]由牛顿第二定律可得,加速度大小为
考点3动能定理的理解及应用
31.(2025·浙江·高考真题)地球和哈雷彗星绕太阳运行的轨迹如图所示,彗星从a运行到b、从c运行到d的过程中,与太阳连线扫过的面积分别为和,且。彗星在近日点与太阳中心的距离约为地球公转轨道半径的0.6倍,则彗星( )
A.在近日点的速度小于地球的速度
B.从b运行到c的过程中动能先增大后减小
C.从a运行到b的时间大于从c运行到d的时间
D.在近日点加速度约为地球的加速度的0.36倍
【答案】C
【详解】A.地球绕太阳做匀速圆周运动,万有引力提供向心力
过近日点做一个以太阳为圆心的圆形轨道,卫星在该圆形轨道上的速度比彗星在椭圆轨道上近日点速度小,而比地球公转的速度大,因此哈雷彗星在近日点的速度大于地球绕太阳的公转速度,A错误;
B.从b运行到c的过程中万有引力与速度方向夹角一直为钝角,哈雷彗星速度一直减小,因此动能一直减小,B错误;
C.根据开普勒第二定律可知哈雷彗星绕太阳经过相同的时间扫过的面积相同,根据可知从a运行到b的时间大于从c运行到d的时间,C正确;
D.万有引力提供加速度
则哈雷彗星的加速度与地球的加速度比值为
D错误。
故选C。
32.(2024·江西·高考真题)两个质量相同的卫星绕月球做匀速圆周运动,半径分别为、,则动能和周期的比值为( )
A. B.
C. D.
【答案】A
【详解】两个质量相同的卫星绕月球做匀速圆周运动,则月球对卫星的万有引力提供向心力,设月球的质量为M,卫星的质量为m,则半径为r1的卫星有
半径为r2的卫星有
再根据动能,可得两卫星动能和周期的比值分别为,
故选A。
33.(2024·新疆河南·高考真题)福建舰是我国自主设计建造的首艘弹射型航空母舰。借助配重小车可以进行弹射测试,测试时配重小车被弹射器从甲板上水平弹出后,落到海面上。调整弹射装置,使小车水平离开甲板时的动能变为调整前的4倍。忽略空气阻力,则小车在海面上的落点与其离开甲板处的水平距离为调整前的( )
A.0.25倍 B.0.5倍 C.2倍 D.4倍
【答案】C
【详解】动能表达式为
由题意可知小车水平离开甲板时的动能变为调整前的4倍,则离开甲板时速度变为调整前的2倍;小车离开甲板后做平抛运动,从离开甲板到到达海面上时间不变,根据
可知小车在海面上的落点与其离开甲板处的水平距离为调整前的2倍。
故选C。
34.(2023·辽宁·高考真题)如图(a),从高处M点到地面N点有Ⅰ、Ⅱ两条光滑轨道。两相同小物块甲、乙同时从M点由静止释放,沿不同轨道滑到N点,其速率v与时间t的关系如图(b)所示。由图可知,两物块在离开M点后、到达N点前的下滑过程中( )
A.甲沿I下滑且同一时刻甲的动能比乙的大
B.甲沿Ⅱ下滑且同一时刻甲的动能比乙的小
C.乙沿I下滑且乙的重力功率一直不变
D.乙沿Ⅱ下滑且乙的重力功率一直增大
【答案】B
【详解】AB.由图乙可知,甲下滑过程中,甲做匀加速直线运动,则甲沿Ⅱ下滑,乙做加速度逐渐减小的加速运动,乙沿I下滑,任意时刻甲的速度都小于乙的速度,可知同一时刻甲的动能比乙的小,A错误,B正确;
CD.乙沿I下滑,开始时乙速度为0,到点时乙竖直方向速度为零,根据瞬时功率公式可知重力瞬时功率先增大后减小,CD错误。
故选B。
35.(2023·江苏·高考真题)滑块以一定的初速度沿粗糙斜面从底端上滑,到达最高点B后返回到底端。利用频闪仪分别对上滑和下滑过程进行拍摄,频闪照片示意图如图所示。与图乙中相比,图甲中滑块( )
A.受到的合力较小 B.经过A点的动能较小
C.在A、B之间的运动时间较短 D.在A、B之间克服摩擦力做的功较小
【答案】C
【详解】A.频闪照片时间间隔相同,图甲相邻相等时间间隔内发生的位移差大,根据匀变速直线运动的推论,可知图甲中滑块加速度大,根据牛顿第二定律可知图甲中滑块受到的合力较大,故A错误;
B.设斜面倾角为,动摩擦因数为,上滑阶段根据牛顿第二定律有
下滑阶段根据牛顿第二定律有
可知上滑阶段阶段加速度大于下滑阶段加速度,图甲为上滑阶段,从图甲中的A点到图乙中的A点,先上升后下降,重力不做功,摩擦力做负功,根据动能定理可知图甲经过A点的动能较大,故B错误;
C.由逆向思维,由于图甲中滑块加速度大,根据
可知图甲在A、B之间的运动时间较短,故C正确;
D.由于无论上滑或下滑均受到滑动摩擦力大小相等,故图甲和图乙在A、B之间克服摩擦力做的功相等,故D错误。
故选C。
36.(2023·全国乙卷·高考真题)小车在水平地面上沿轨道从左向右运动,动能一直增加。如果用带箭头的线段表示小车在轨道上相应位置处所受合力,下列四幅图可能正确的是( )
A. B.
C. D.
【答案】D
【详解】AB.小车做曲线运动,所受合外力指向曲线的凹侧,故AB错误;
CD.小车沿轨道从左向右运动,动能一直增加,故合外力与运动方向夹角为锐角,C错误,D正确。
故选D。
37.(2024·重庆·高考真题)活检针可用于活体组织取样,如图所示。取样时,活检针的针芯和针鞘被瞬间弹出后仅受阻力。针鞘质量为m,针鞘在软组织中运动距离d1后进入目标组织,继续运动d2后停下来。若两段运动中针鞘整体受到阻力均视为恒力。大小分别为F1、F2,则针鞘( )
A.被弹出时速度大小为
B.到达目标组织表面时的动能为F1d1
C.运动d2过程中,阻力做功为(F1+F2)d2
D.运动d2的过程中动量变化量大小为
【答案】A
【详解】A.根据动能定理有
解得
故A正确;
B.针鞘到达目标组织表面后,继续前进d2减速至零,有Ek = F2d2
故B错误;
C.针鞘运动d2的过程中,克服阻力做功为F2d2,故C错误;
D.针鞘运动d2的过程中,动量变化量大小
故D错误。
故选A。
38.(2023·上海·高考真题)一物块爆炸分裂为速率相同、质量不同的三个物块,对三者落地速率大小判断正确的是( )
A.质量大的落地速率大 B.质量小的落地速率大
C.三者落地速率都相同 D.无法判断
【答案】C
【详解】爆炸后的三个物块即从同一高度落地,由动能定律得
整理得
故初始速率相同的三个物块下落高度相同落地的速率也相同,故选C。
39.(2024·贵州·高考真题)(多选)如图,间距为L的两根金属导轨平行放置并固定在绝缘水平桌面上,左端接有一定值电阻R,导轨所在平面存在磁感应强度大小为B、方向竖直向下的匀强磁场。质量为m的金属棒置于导轨上,在水平拉力作用下从静止开始做匀加速直线运动,一段时间后撤去水平拉力,金属棒最终停在导轨上。已知金属棒在运动过程中,最大速度为v,加速阶段的位移与减速阶段的位移相等,金属棒始终与导轨垂直且接触良好,不计摩擦及金属棒与导轨的电阻,则( )
A.加速过程中通过金属棒的电荷量为 B.金属棒加速的时间为
C.加速过程中拉力的最大值为 D.加速过程中拉力做的功为
【答案】AB
【详解】A.设加速阶段的位移与减速阶段的位移相等为,根据
可知加速过程中通过金属棒的电荷量等于减速过程中通过金属棒的电荷量,则减速过程由动量定理可得
解得
A正确;
B.由
解得
金属棒加速的过程中,由位移公式可得
可得加速时间为
B正确;
C.金属棒在水平拉力作用下从静止开始做匀加速直线运动,加速过程中,安培力逐渐增大,加速度不变,因此拉力逐渐增大,当撤去拉力的瞬间,拉力最大,由牛顿第二定律可得
其中
联立解得
C错误;
D.加速过程中拉力对金属棒做正功,安培力对金属棒做负功,由动能定理可知,合外力的功
可得
因此加速过程中拉力做的功大于,D错误。
故选AB。
40.(2024·福建·高考真题)(多选)如图,某同学在水平地面上先后两次从点抛出沙包,分别落在正前方地面和处。沙包的两次运动轨迹处于同一竖直平面,且交于点,点正下方地面处设为点。已知两次运动轨迹的最高点离地高度均为,,,,沙包质量为,忽略空气阻力,重力加速度大小取,则沙包( )
A.第一次运动过程中上升与下降时间之比
B.第一次经点时的机械能比第二次的小
C.第一次和第二次落地前瞬间的动能之比为
D.第一次抛出时速度方向与落地前瞬间速度方向的夹角比第二次的大
【答案】BD
【详解】A.沙包从抛出到最高点的运动可视为平抛运动的“逆运动”,则可得第一次抛出上升的高度为
上升时间为
最高点距水平地面高为,故下降的时间为
故一次抛出上升时间,下降时间比值为,故A错误;
BC.两条轨迹最高点等高、沙包抛出的位置相同,故可知两次从抛出到落地的时间相等为
故可得第一次,第二次抛出时水平方向的分速度分别为,
由于两条轨迹最高点等高,故抛出时竖直方向的分速度也相等,为
由于沙包在空中运动过程中只受重力,机械能守恒,故第一次过P点比第二次机械能少
从抛出到落地瞬间根据动能定理可得
则故落地瞬间,第一次,第二次动能之比为,故B正确,C错误;
D.根据前面分析可知两次抛出时竖直方向的分速度相同,两次落地时物体在竖直方向的分速度也相同,由于第一次的水平分速度较小,物体在水平方向速度不变,如图所示,故可知第一次抛出时速度与水平方向的夹角较大,第一次落地时速度与水平方向的夹角也较大,故可知第一次抛出时速度方向与落地瞬间速度方向夹角比第二次大,故D正确。
故选BD。
41.(2024·安徽·高考真题)某同学参加户外拓展活动,遵照安全规范,坐在滑板上,从高为h的粗糙斜坡顶端由静止下滑,至底端时速度为v.已知人与滑板的总质量为m,可视为质点.重力加速度大小为g,不计空气阻力.则此过程中人与滑板克服摩擦力做的功为( )
A. B. C. D.
【答案】D
【详解】人在下滑的过程中,由动能定理可得
可得此过程中人与滑板克服摩擦力做的功为
故选D。
42.(2023·新课标卷·高考真题)无风时,雨滴受空气阻力的作用在地面附近会以恒定的速率竖直下落。一质量为m的雨滴在地面附近以速率v下落高度h的过程中,克服空气阻力做的功为(重力加速度大小为g)( )
A.0 B.mgh C. D.
【答案】B
【详解】在地面附近雨滴做匀速运动,根据动能定理得
故雨滴克服空气阻力做功为。
故选B。
43.(2025·北京·高考真题)关于飞机的运动,研究下列问题。
(1)质量为m的飞机在水平跑道上由静止开始做加速直线运动,当位移为x时速度为v。在此过程中,飞机受到的平均阻力为f,求牵引力对飞机做的功W。
(2)飞机准备起飞,在跑道起点由静止开始做匀加速直线运动。跑道上存在这样一个位置,飞机一旦超过该位置就不能放弃起飞,否则将会冲出跑道。已知跑道的长度为L,飞机加速时加速度大小为,减速时最大加速度大小为。求该位置距起点的距离d。
(3)无风时,飞机以速率u水平向前匀速飞行,相当于气流以速率u相对飞机向后运动。气流掠过飞机机翼,方向改变,沿机翼向后下方运动,如图所示。请建立合理的物理模型,论证气流对机翼竖直向上的作用力大小F与u的关系满足,并确定的值。
【答案】(1)
(2)
(3)论证见解析,
【详解】(1)根据动能定理
可得牵引力对飞机做的功
(2)加速过程,设起飞速度为,根据速度位移关系
减速过程,根据速度位移关系
联立解得
(3)在无风的情况下,飞机以速率u水平飞行时,相对飞机的气流速率也为u,并且气流掠过机翼改变方向,从而对机翼产生升力。根据升力公式,升力与气流的动量变化有关,根据动量定理
可得
又,
联立可得
又
可知
即
44.(2025·湖南·高考真题)(多选)如图,某爆炸能量测量装置由装载台和滑轨等构成,C是可以在滑轨上运动的标准测量件,其规格可以根据测量需求进行调整。滑轨安装在高度为h的水平面上。测量时,将弹药放入装载台圆筒内,两端用物块A和B封装,装载台与滑轨等高。引爆后,假设弹药释放的能量完全转化为A和B的动能。极短时间内B嵌入C中形成组合体D,D与滑轨间的动摩擦因数为。D在滑轨上运动距离后抛出,落地点距抛出点水平距离为,根据可计算出弹药释放的能量。某次测量中,A、B、C质量分别为、、,,整个过程发生在同一竖直平面内,不计空气阻力,重力加速度大小为g。则( )
A.D的初动能与爆炸后瞬间A的动能相等
B.D的初动能与其落地时的动能相等
C.弹药释放的能量为
D.弹药释放的能量为
【答案】BD
【详解】A.爆炸后,AB组成的系统动量守恒,即3mv1=mv2
B与C碰撞过程动量守恒mv2=6mv
联立解得v=0.5v1。
爆炸后瞬间A的动能
D的初动能
两者不相等,故A错误;
B.D水平滑动过程中摩擦力做功为
做平抛运动过程中重力做的功为
故D从开始运动到落地瞬间合外力做功为0,根据动能定理可知D的初动能与其落地时的动能相等,故B正确;
CD.D物块平抛过程有,
联立可得
D水平滑动过程中根据动能定理有
化简得
弹药释放的能量完全转化为A和B的动能,则爆炸过程的能量为
故C错误,D正确。
故选BD。
45.(2023·新课标卷·高考真题)(多选)一质量为1kg的物体在水平拉力的作用下,由静止开始在水平地面上沿x轴运动,出发点为x轴零点,拉力做的功W与物体坐标x的关系如图所示。物体与水平地面间的动摩擦因数为0.4,重力加速度大小取10m/s2。下列说法正确的是( )
A.在x = 1m时,拉力的功率为6W
B.在x = 4m时,物体的动能为2J
C.从x = 0运动到x = 2m,物体克服摩擦力做的功为8J
D.从x = 0运动到x = 4的过程中,物体的动量最大为2kg m/s
【答案】BC
【详解】由于拉力在水平方向,则拉力做的功为W = Fx
可看出W—x图像的斜率代表拉力F。
AB.在物体运动的过程中根据动能定理有
则x = 1m时物体的速度为v1= 2m/sx = 1m时,拉力为
则此时拉力的功率P = Fv1= 12Wx = 4m时物体的动能为Ek= 2J
A错误、B正确;
C.从x = 0运动到x = 2m,物体克服摩擦力做的功为Wf= μmgx = 8J
C正确;
D.根据W—x图像可知在0—2m的过程中F1= 6N,2—4m的过程中F2= 3N,由于物体受到的摩擦力恒为f = 4N,则物体在x = 2m处速度最大,且根据选项AB分析可知此时的速度
则从x = 0运动到x = 4的过程中,物体的动量最大为
D错误。
故选BC。
46.(2025·浙江·高考真题)某兴趣小组设计了一传送装置,其竖直截面如图所示。AB是倾角为的斜轨道,BC是以恒定速率顺时针转动的水平传送带,紧靠C端有半径为R、质量为M置于光滑水平面上的可动半圆弧轨道,水平面和传送带BC处于同一高度,各连接处平滑过渡。现有一质量为m的物块,从轨道AB上与B相距L的P点由静止下滑,经传送带末端C点滑入圆弧轨道。物块与传送带间的动摩擦因数为,其余接触面均光滑。已知,,,,,。不计空气阻力,物块可视为质点,传送带足够长。求物块
(1)滑到B点处的速度大小;
(2)从B点运动到C点过程中摩擦力对其做的功;
(3)在传送带上滑动过程中产生的滑痕长度;
(4)即将离开圆弧轨道最高点的瞬间,受到轨道的压力大小。
【答案】(1)4m/s
(2)0.9J
(3)0.2m
(4)3N
【详解】(1)滑块从P点到B点由动能定理
解得到达B点的速度
(2)物块滑上传送带后做加速运动直到与传送带共速,摩擦力对其做的功
(3)物块在传送带上加速运动的加速度为
加速到共速时用时间
在传送带上滑动过程中产生的滑痕长度
(4)从滑块开始进入圆弧槽到到达圆弧槽最高点由水平方向动量守恒和能量关系可知,
联立解得
(另一组,因不合实际舍掉)
对滑块在最高点时由牛顿第二定律
解得F=3N
47.(2025·河北·高考真题)某电磁助推装置设计如图,超级电容器经调控系统为电路提供1000A的恒定电流,水平固定的平行长直导轨处于垂直水平面的匀强磁场中,a可视为始终垂直导轨的导体棒,b为表面绝缘的无人机。初始时a静止于MM′处,b静止于a右侧某处。现将开关S接1端,a与b正碰后锁定并一起运动,损失动能全部储存为弹性势能。当a运行至NN′时将S接2端,同时解除锁定,所储势能瞬间全部转化为动能,a与b分离。已知电容器电容C为10F,导轨间距为0.5m,磁感应强度大小为1T,MM′到NN′的距离为5m,a、b质量分别为2kg、8kg,a在导轨间的电阻为0.01Ω。碰撞、分离时间极短,各部分始终接触良好,不计导轨电阻、摩擦和储能耗损,忽略电流对磁场的影响。
(1)若分离后某时刻a的速度大小为10m/s,求此时通过a的电流大小。
(2)忽略a、b所受空气阻力,当a与b的初始间距为1.25m时,求b分离后的速度大小,分析其是否为b能够获得的最大速度;并求a运动过程中电容器的电压减小量。
(3)忽略a所受空气阻力,若b所受空气阻力大小与其速度v的关系为f = kv2(k = 0.025N·s2/m2),初始位置与(2)问一致,试估算a运行至NN′时。a分离前的速度大小能否达到(2)问中分离前速度的99%,并给出结论。(0.992 = 0.980l)
【答案】(1)500A
(2)25m/s,能,40V
(3)能
【详解】(1)分离后当导体a的速度大小为10m/s时,根据法拉第电磁感应定律有
通过a的电流
解得
(2)规定水平向右为正方向,从运动至b位置过程中,由安培力提供加速度,则
a、b间初始距离
碰撞前a的速度
解得,,
a与b碰撞过程中系统动量守恒,有
储存的弹性势能为
解得,
a、b碰后一起运动至过程中
由安培力提供加速度有
位移为
分离前速度为
解得,,
a、b分离过程,由动量守恒定律有
由能量守恒定律有
解得,
在整个过程中安培力大小恒定,安培力做功大小为一定值,若a、b分离时a的速度为零,则此时b能获得最大速度,最大速度为25m/s;
上述过程中通过导体棒a的电荷量
电容器电压的减少量
解得
(3)规定水平向右为正方向,a、b碰后共同速度为,若无空气阻力,到达的速度为,其图像如图所示
若考虑阻力,则实际图像应在图中所示图像的下方,可知克服阻力做的功为
由动能定理有
解得
可知a、b分离前的速度大小能达到(2)问中分离前速度的99%。
48.(2025·福建·高考真题)如图甲,水平地面上有A、B两个物块,两物块质量均为0.2kg,A与地面动摩擦因数为,B与地面无摩擦,两物块在外力F的作用下向右前进,F与位移x的图如图乙所示,P为圆弧最低点,M为最高点,水平地面长度大于4m,重力加速度。
(1)求,F做的功;
(2)时,A与B之间的弹力;
(3)要保证B能到达M点,圆弧半径满足的条件。
【答案】(1)1.5J
(2)0.5N
(3)
【详解】(1)求,F做的功
(2)对AB整体,根据牛顿第二定律
其中
对B根据牛顿第二定律
联立解得
(3)当A、B之间的弹力为零时,A、B分离,根据(2)分析可知此时
此时
过程中,对A、B根据动能定理
根据题图可得
从点到点,根据动能定理
在点的最小速度满足
联立可得
即圆弧半径满足的条件。
49.(2025·黑吉辽蒙卷·高考真题)如图,一雪块从倾角的屋顶上的点由静止开始下滑,滑到A点后离开屋顶。O、A间距离,A点距地面的高度,雪块与屋顶的动摩擦因数。不计空气阻力,雪块质量不变,取,重力加速度大小。求:
(1)雪块从A点离开屋顶时的速度大小;
(2)雪块落地时的速度大小,及其速度方向与水平方向的夹角。
【答案】(1)5m/s
(2)8m/s,60°
【详解】(1)雪块在屋顶上运动过程中,由动能定理
代入数据解得雪块到A点速度大小为
(2)雪块离开屋顶后,做斜向下抛运动,由动能定理
代入数据解得雪块到地面速度大小
速度与水平方向夹角,满足
解得
50.(2025·广东·高考真题)如图所示,用开瓶器取出紧塞在瓶口的软木塞时,先将拔塞钻旋入木塞内,随后下压把手,使齿轮绕固定支架上的转轴转动,通过齿轮啮合,带动与木塞相固定的拔塞钻向上运动。从0时刻开始,顶部与瓶口齐平的木塞从静止开始向上做匀加速直线运动,木塞所受摩擦力f随位移大小x的变化关系为,其中为常量,h为圆柱形木塞的高,木塞质量为m,底面积为S,加速度为a,齿轮半径为r,重力加速度为g,瓶外气压减瓶内气压为且近似不变,瓶子始终静止在桌面上。(提示:可用图线下的“面积”表示f所做的功)求:
(1)木塞离开瓶口的瞬间,齿轮的角速度。
(2)拔塞的全过程,拔塞钻对木塞做的功W。
(3)拔塞过程中,拔塞钻对木塞作用力的瞬时功率P随时间t变化的表达式。
【答案】(1)
(2)
(3)
【详解】(1)木塞的末速度等于齿轮线速度,对木塞,根据运动学公式
根据角速度和线速度的关系
联立可得
(2)根据题意画出木塞摩擦力与运动距离的关系图如图所示
可得摩擦力对木塞所做的功为
对木塞,根据动能定理
解得
(3)设开瓶器对木塞的作用力为,对木塞,根据牛顿第二定律
速度
位移
开瓶器的功率
联立可得
51.(2024·海南·高考真题)某游乐项目装置简化如图,A为固定在地面上的光滑圆弧形滑梯,半径,滑梯顶点a与滑梯末端b的高度,静止在光滑水平面上的滑板B,紧靠滑梯的末端,并与其水平相切,滑板质量,一质量为的游客,从a点由静止开始下滑,在b点滑上滑板,当滑板右端运动到与其上表面等高平台的边缘时,游客恰好滑上平台,并在平台上滑行停下。游客视为质点,其与滑板及平台表面之间的动摩擦系数均为,忽略空气阻力,重力加速度,求:
(1)游客滑到b点时对滑梯的压力的大小;
(2)滑板的长度L
【答案】(1);(2)
【详解】(1)设游客滑到b点时速度为,从a到b过程,根据机械能守恒
解得
在b点根据牛顿第二定律
解得
根据牛顿第三定律得游客滑到b点时对滑梯的压力的大小为
(2)设游客恰好滑上平台时的速度为,在平台上运动过程由动能定理得
解得
根据题意当滑板右端运动到与其上表面等高平台的边缘时,游客恰好滑上平台,可知该过程游客一直做减速运动,滑板一直做加速运动,设加速度大小分别为和,得
根据运动学规律对游客
解得
该段时间内游客的位移为
滑板的位移为
根据位移关系得滑板的长度为
52.(2024·辽宁·高考真题)如图,高度的水平桌面上放置两个相同物块A、B,质量。A、B间夹一压缩量的轻弹簧,弹簧与A、B不栓接。同时由静止释放A、B,弹簧恢复原长时A恰好从桌面左端沿水平方向飞出,水平射程;B脱离弹簧后沿桌面滑行一段距离后停止。A、B均视为质点,取重力加速度。求:
(1)脱离弹簧时A、B的速度大小和;
(2)物块与桌面间的动摩擦因数μ;
(3)整个过程中,弹簧释放的弹性势能。
【答案】(1)1m/s,1m/s;(2)0.2;(3)0.12J
【详解】(1)对A物块由平抛运动知识得
代入数据解得,脱离弹簧时A的速度大小为
AB物块质量相等,同时受到大小相等方向相反的弹簧弹力及大小相等方向相反的摩擦力,则AB物块整体动量守恒,则
解得脱离弹簧时B的速度大小为
(2)对物块B由动能定理
代入数据解得,物块与桌面的动摩擦因数为
(3)弹簧的弹性势能转化为AB物块的动能及这个过程中克服摩擦力所做的功,即
其中,
解得整个过程中,弹簧释放的弹性势能
考点4机械能守恒定律
53.(2025·河南·高考真题)野外高空作业时,使用无人机给工人运送零件。如图,某次运送过程中的一段时间内,无人机向左水平飞行,零件用轻绳悬挂于无人机下方,并相对于无人机静止,轻绳与竖直方向成一定角度。忽略零件所受空气阻力,则在该段时间内( )
A.无人机做匀速运动 B.零件所受合外力为零
C.零件的惯性逐渐变大 D.零件的重力势能保持不变
【答案】D
【详解】D.无人机沿水平方向飞行,零件相对于无人机静止,也沿水平方向飞行做直线运动,故零件的高度不变,可知零件的重力势能保持不变,D正确;
AB.对零件受力分析,受重力和绳子的拉力,由于零件沿水平方向做直线运动,可知合外力沿水平方向,提供水平方向的加速度。零件水平向左做匀加速直线运动,AB错误;
C.惯性的大小只与质量有关,零件的质量不变,故零件的惯性不变,C错误。
故选D。
54.(2023·浙江·高考真题)一位游客正在体验蹦极,绑上蹦极专用的橡皮绳后从跳台纵身而下。游客从跳台下落直到最低点过程中( )
A.弹性势能减小 B.重力势能减小
C.机械能保持不变 D.绳一绷紧动能就开始减小
【答案】B
【详解】游客从跳台下落,开始阶段橡皮绳未拉直,只受重力作用做匀加速运动,下落到一定高度时橡皮绳开始绷紧,游客受重力和向上的弹力作用,弹力从零逐渐增大,游客所受合力先向下减小后向上增大,速度先增大后减小,到最低点时速度减小到零,弹力达到最大值。
A.橡皮绳绷紧后弹性势能一直增大,A错误;
B.游客高度一直降低,重力一直做正功,重力势能一直减小,B正确;
C.下落阶段橡皮绳对游客做负功,游客机械能减少,转化为弹性势能,C错误;
D.绳刚绷紧开始一段时间内,弹力小于重力,合力向下做正功,游客动能在增加;当弹力大于重力后,合力向上对游客做负功,游客动能逐渐减小,D错误。
故选B。
55.(2024·北京·高考真题)如图所示,光滑水平轨道AB与竖直面内的光滑半圆形轨道BC在B点平滑连接。一小物体将轻弹簧压缩至A点后由静止释放,物体脱离弹簧后进入半圆形轨道,恰好能够到达最高点C。下列说法正确的是( )
A.物体在C点所受合力为零
B.物体在C点的速度为零
C.物体在C点的向心加速度等于重力加速度
D.物体在A点时弹簧的弹性势能等于物体在C点的动能
【答案】C
【详解】AB.物体恰好能到达最高点C,则物体在最高点只受重力,且重力全部用来提供向心力,设半圆轨道的半径为r,由牛顿第二定律得
解得物体在C点的速度
AB错误;
C.由牛顿第二定律得
解得物体在C点的向心加速度
C正确;
D.由能量守恒定律知,物体在A点时弹簧的弹性势能等于物体在C点时的动能和重力势能之和,D错误。
故选C。
56.(2024·浙江·高考真题)如图所示,质量为m的足球从水平地面上位置1被踢出后落在位置3,在空中达到最高点2的高度为h,则足球( )
A.从1到2动能减少 B.从1到2重力势能增加
C.从2到3动能增加 D.从2到3机械能不变
【答案】B
【详解】AB.由足球的运动轨迹可知,足球在空中运动时一定受到空气阻力作用,则从从1到2重力势能增加,则1到2动能减少量大于,A错误,B正确;
CD.从2到3由于空气阻力作用,则机械能减小,重力势能减小mgh,则动能增加小于,选项CD错误。
故选B。
57.(2023·浙江·高考真题)一位游客正在体验蹦极,绑上蹦极专用的橡皮绳后从跳台纵身而下。游客从跳台下落直到最低点过程中( )
A.弹性势能减小 B.重力势能减小
C.机械能保持不变 D.绳一绷紧动能就开始减小
【答案】B
【详解】游客从跳台下落,开始阶段橡皮绳未拉直,只受重力作用做匀加速运动,下落到一定高度时橡皮绳开始绷紧,游客受重力和向上的弹力作用,弹力从零逐渐增大,游客所受合力先向下减小后向上增大,速度先增大后减小,到最低点时速度减小到零,弹力达到最大值。
A.橡皮绳绷紧后弹性势能一直增大,A错误;
B.游客高度一直降低,重力一直做正功,重力势能一直减小,B正确;
C.下落阶段橡皮绳对游客做负功,游客机械能减少,转化为弹性势能,C错误;
D.绳刚绷紧开始一段时间内,弹力小于重力,合力向下做正功,游客动能在增加;当弹力大于重力后,合力向上对游客做负功,游客动能逐渐减小,D错误。
故选B。
58.(2024·浙江·高考真题)如图所示,质量为m的足球从水平地面上位置1被踢出后落在位置3,在空中达到最高点2的高度为h,则足球( )
A.从1到2动能减少 B.从1到2重力势能增加
C.从2到3动能增加 D.从2到3机械能不变
【答案】B
【详解】AB.由足球的运动轨迹可知,足球在空中运动时一定受到空气阻力作用,则从从1到2重力势能增加,则1到2动能减少量大于,A错误,B正确;
CD.从2到3由于空气阻力作用,则机械能减小,重力势能减小mgh,则动能增加小于,选项CD错误。
故选B。
59.(2023·全国甲卷·高考真题)一同学将铅球水平推出,不计空气阻力和转动的影响,铅球在平抛运动过程中( )
A.机械能一直增加 B.加速度保持不变
C.速度大小保持不变 D.被推出后瞬间动能最大
【答案】B
【详解】A.铅球做平抛运动,仅受重力,故机械能守恒,A错误;
B.铅球的加速度恒为重力加速度保持不变,B正确;
CD.铅球做平抛运动,水平方向速度不变,竖直方向做匀加速直线运动,根据运动的合成可知铅球速度变大,则动能越来越大,CD错误。
故选B。
60.(2025·全国卷·高考真题)如图,撑杆跳高运动中,运动员经过助跑、撑杆起跳,最终越过横杆。若运动员起跳前助跑速度为10m/s,则理论上运动员助跑获得的动能可使其重心提升的最大高度为(重力加速度取10m/s2)( )
A.4m B.5m C.6m D.7m
【答案】B
【详解】在理论上:当运动员在最高点速度为零时,重心提升高度最大,以地面为零势能面,根据机械能守恒定律有
可得其理论的最大高度
故选B。
61.(2024·福建·高考真题)(多选)如图,某同学在水平地面上先后两次从点抛出沙包,分别落在正前方地面和处。沙包的两次运动轨迹处于同一竖直平面,且交于点,点正下方地面处设为点。已知两次运动轨迹的最高点离地高度均为,,,,沙包质量为,忽略空气阻力,重力加速度大小取,则沙包( )
A.第一次运动过程中上升与下降时间之比
B.第一次经点时的机械能比第二次的小
C.第一次和第二次落地前瞬间的动能之比为
D.第一次抛出时速度方向与落地前瞬间速度方向的夹角比第二次的大
【答案】BD
【详解】A.沙包从抛出到最高点的运动可视为平抛运动的“逆运动”,则可得第一次抛出上升的高度为
上升时间为
最高点距水平地面高为,故下降的时间为
故一次抛出上升时间,下降时间比值为,故A错误;
BC.两条轨迹最高点等高、沙包抛出的位置相同,故可知两次从抛出到落地的时间相等为
故可得第一次,第二次抛出时水平方向的分速度分别为,
由于两条轨迹最高点等高,故抛出时竖直方向的分速度也相等,为
由于沙包在空中运动过程中只受重力,机械能守恒,故第一次过P点比第二次机械能少
从抛出到落地瞬间根据动能定理可得
则故落地瞬间,第一次,第二次动能之比为,故B正确,C错误;
D.根据前面分析可知两次抛出时竖直方向的分速度相同,两次落地时物体在竖直方向的分速度也相同,由于第一次的水平分速度较小,物体在水平方向速度不变,如图所示,故可知第一次抛出时速度与水平方向的夹角较大,第一次落地时速度与水平方向的夹角也较大,故可知第一次抛出时速度方向与落地瞬间速度方向夹角比第二次大,故D正确。
故选BD。
62.(2025·安徽·高考真题)如图,M、N为固定在竖直平面内同一高度的两根细钉,间距。一根长为的轻绳一端系在M上,另一端竖直悬挂质量的小球,小球与水平地面接触但无压力。时,小球以水平向右的初速度开始在竖直平面内做圆周运动。小球牵引着绳子绕过N、M,运动到M正下方与M相距L的位置时,绳子刚好被拉断,小球开始做平抛运动。小球可视为质点,绳子不可伸长,不计空气阻力,重力加速度g取。
(1)求绳子被拉断时小球的速度大小,及绳子所受的最大拉力大小;
(2)求小球做平抛运动时抛出点到落地点的水平距离;
(3)若在时,只改变小球的初速度大小,使小球能通过N的正上方且绳子不松弛,求初速度的最小值。
【答案】(1),
(2)4m
(3)
【详解】(1)小球从最下端以速度v0抛出到运动到M正下方距离为L的位置时,根据机械能守恒定律
在该位置时根据牛顿第二定律
解得,
(2)小球做平抛运动时,
解得x=4m
(3)若小球经过N点正上方绳子恰不松弛,则满足
从最低点到该位置由动能定理
解得
63.(2025·海南·高考真题)足够长的传送带固定在竖直平面内,半径,圆心角的圆弧轨道与平台平滑连接,平台与顺时针匀速转动的水平传送带平滑连接,工件A从圆弧顶点无初速度下滑,在平台与B碰成一整体,B随后滑上传送带,已知,,A、B可视为质点,AB与传送带间的动摩擦因数恒定,在传送带上运动的过程中,因摩擦生热,忽略轨道及平台的摩擦,
(1)A滑到圆弧最低点时受的支持力;
(2)A与B整个碰撞过程中损失的机械能;
(3)传送带的速度大小。
【答案】(1),方向竖直向上;
(2)
(3)或
【详解】(1)A从开始到滑到圆弧最低点间,根据机械能守恒
解得
在最低点根据牛顿第二定律
解得,方向竖直向上;
(2)根据题意AB碰后成一整体,根据动量守恒
解得
故A与B整个碰撞过程中损失的机械能为
(3)第一种情况,当传送带速度小于时,AB滑上传送带后先减速后匀速运动,设AB与传送带间的动摩擦因数为,对AB根据牛顿第二定律
设经过时间后AB与传送带共速,可得
该段时间内AB运动的位移为
传送带运动的位移为
故可得
联立解得,另一解大于舍去;
第二种情况,当传送带速度大于时,AB滑上传送带后先加速后匀速运动,设经过时间后AB与传送带共速,同理可得
该段时间内AB运动的位移为
传送带运动的位移为
故可得
解得,另一解小于舍去。
64.(2024·山东·高考真题)如图所示,质量均为m的甲、乙两同学,分别坐在水平放置的轻木板上,木板通过一根原长为l的轻质弹性绳连接,连接点等高且间距为d(dA. B.
C. D.
【答案】B
【详解】当甲所坐木板刚要离开原位置时,对甲及其所坐木板整体有
解得弹性绳的伸长量
则此时弹性绳的弹性势能为
从开始拉动乙所坐木板到甲所坐木板刚要离开原位置的过程,乙所坐木板的位移为
则由功能关系可知该过程F所做的功
故选B。
65.(2024·全国甲卷·高考真题)如图,一光滑大圆环固定在竖直平面内,质量为m的小环套在大圆环上,小环从静止开始由大圆环顶端经Q点自由下滑至其底部,Q为竖直线与大圆环的切点。则小环下滑过程中对大圆环的作用力大小( )
A.在Q点最大 B.在Q点最小 C.先减小后增大 D.先增大后减小
【答案】C
【详解】方法一(分析法):设大圆环半径为,小环在大圆环上某处(点)与圆环的作用力恰好为零,如图所示
设图中夹角为,从大圆环顶端到点过程,根据机械能守恒定律
在点,根据牛顿第二定律
联立解得
从大圆环顶端到点过程,小环速度较小,小环重力沿着大圆环圆心方向的分力大于小环所需的向心力,所以大圆环对小环的弹力背离圆心,不断减小,从点到最低点过程,小环速度变大,小环重力和大圆环对小环的弹力合力提供向心力,所以大圆环对小环的弹力逐渐变大,根据牛顿第三定律可知小环下滑过程中对大圆环的作用力大小先减小后增大。
方法二(数学法):设大圆环半径为,小环在大圆环上某处时,设该处与圆心的连线与竖直向上的夹角为,根据机械能守恒定律
在该处根据牛顿第二定律
联立可得
则大圆环对小环作用力的大小
根据数学知识可知的大小在时最小,结合牛顿第三定律可知小环下滑过程中对大圆环的作用力大小先减小后增大。
故选C。
66.(2024·江苏·高考真题)如图所示,物块B分别通过轻弹簧、细线与水平面上的物体A左右端相连,整个系统保持静止。已知所有接触面均光滑,弹簧处于伸长状态。剪断细线后( )
A.弹簧恢复原长时,A的动能达到最大
B.弹簧压缩最大时,A的动量达到最大
C.弹簧恢复原长过程中,系统的动量增加
D.弹簧恢复原长过程中,系统的机械能增加
【答案】A
【详解】对整个系统分析可知合外力为0,A和B组成的系统动量守恒,得
设弹簧的初始弹性势能为,整个系统只有弹簧弹力做功,机械能守恒,当弹簧恢复原长时得
联立得
故可知弹簧恢复原长时物体A速度最大,此时物体A的动量最大,动能最大。对于系统来说动量一直为零,系统机械能不变。
故选A。
67.(2025·陕晋青宁卷·高考真题)(多选)如图,与水平面成夹角且固定于O、M两点的硬直杆上套着一质量为的滑块,弹性轻绳一端固定于O点,另一端跨过固定在Q处的光滑定滑轮与位于直杆上P点的滑块拴接,弹性轻绳原长为OQ,PQ为且垂直于OM。现将滑块无初速度释放,假设最大静摩擦力与滑动摩擦力相等。滑块与杆之间的动摩擦因数为0.16,弹性轻绳上弹力F的大小与其伸长量x满足。,g取,。则滑块( )
A.与杆之间的滑动摩擦力大小始终为
B.下滑与上滑过程中所受滑动摩擦力的冲量相同
C.从释放到静止的位移大小为
D.从释放到静止克服滑动摩擦力做功为
【答案】AC
【详解】A.根据题意,设滑块下滑后弹性轻绳与PQ间夹角为时,对滑块进行受力分析,如图所示
在垂直杆方向有
由胡克定律结合几何关系有
联立解得
可知,滑块与杆之间的弹力不变,则滑块与杆之间的滑动摩擦力大小始终为
故A正确;
B.下滑与上滑过程中所受滑动摩擦力的方向不同,冲量是矢量,则下滑与上滑过程中所受滑动摩擦力的冲量不相同,故B错误;
C.设滑块从释放到静止运动的位移为,滑块开始向下做加速度减小的减速运动,当沿着杆方向合力为0时,滑块速度最大,之后滑块继续向下做加速度增大的减速运动,当速度为为0时,有
由几何关系可得
此时
则滑块会继续向上滑动,做加速度减小的加速运动。当滑块速度再次为0时,有
解得
此时
此时
则滑块静止,故从释放到静止,滑块的位移为,故C正确;
D.从释放到静止,设克服滑动摩擦力做功为,由能量守恒定律有
解得
故D错误。
故选AC。
68.(2025·云南·高考真题)(多选)如图所示,倾角为的固定斜面,其顶端固定一劲度系数为k的轻质弹簧,弹簧处于原长时下端位于O点。质量为m的滑块Q(视为质点)与斜面间的动摩擦因数。过程I:Q以速度从斜面底端P点沿斜面向上运动恰好能滑至O点;过程Ⅱ:将Q连接在弹簧的下端并拉至P点由静止释放,Q通过M点(图中未画出)时速度最大,过O点后能继续上滑。弹簧始终在弹性限度内,假设最大静摩擦力等于滑动摩擦力,忽略空气阻力,重力加速度为g。则( )
A.P、M两点之间的距离为
B.过程Ⅱ中,Q在从P点单向运动到O点的过程中损失的机械能为
C.过程Ⅱ中,Q从P点沿斜面向上运动的最大位移为
D.连接在弹簧下端的Q无论从斜面上何处释放,最终一定静止在OM(含O、M点)之间
【答案】CD
【详解】A.设的距离为,过程I,根据动能定理有
设的距离为,过程Ⅱ中,当Q速度最大时,根据平衡条件
P、M两点之间的距离
联立可得
故A错误;
B.根据功能关系,可知过程Ⅱ中,Q在从P点单向运动到O点的过程中Q和弹簧组成的系统损失的机械能为
结合
可得
但在过程Ⅱ中单独对于Q而言机械能是增加的,故B错误;
C.设过程Ⅱ中,Q从P点沿斜面向上运动的最大位移,根据能量守恒定律
结合
解得
故C正确;
D.无论Q从何处释放,Q在斜面上运动过程中,弹簧与Q初始时的势能变为摩擦热,当在点时,满足
当在点时,满足
所以在OM(含O、M点)之间速度为零时,Q将静止,故D正确。
故选CD。
69.(2025·全国卷·高考真题)如图,物块P固定在水平面上,其上表面有半径为R的圆弧轨道。P右端与薄板Q连在一起,圆弧轨道与Q上表面平滑连接。一轻弹簧的右端固定在Q上,另一端自由。质量为m的小球自圆弧顶端A点上方的B点自由下落,落到A点后沿圆弧轨道下滑,小球与弹簧接触后,当速度减小至刚接触时的时弹簧的弹性势能为2mgR,此时断开P和Q的连接,Q从静止开始向右滑动。g为重力加速度大小,忽略空气阻力,圆弧轨道及Q的上、下表面均光滑,弹簧长度的变化始终在弹性限度内。
(1)求小球从落入圆弧轨道至离开圆弧轨道,重力对其做的功;
(2)求小球与弹簧刚接触时速度的大小及B、A两点间的距离;
(3)欲使P和Q断开后,弹簧的最大弹性势能等于2.2mgR,Q的质量应为多大?
(4)欲使P和Q断开后,Q的最终动能最大,Q的质量应为多大?
【答案】(1)
(2),
(3)
(4)
【详解】(1)小球从落入圆弧轨道至离开圆弧轨道,重力对其做的功为
(2)设小球与弹簧刚接触时速度的大小为v0,由机械能守恒定律可知,其中
同时有
联立解得,
(3)弹簧达到最大弹性势能时,小球与Q共速,设Q的质量为M,根据动量守恒定律和机械能守恒定律有,,其中
联立解得
(4)对Q和小球整体根据机械能守恒可知要使Q的最终动能最大,需满足小球的速度刚好为零时,此时弹簧刚好恢复原长;设此时Q的质量为M′,Q的最大速度为vm,根据动量守恒和机械能守恒有,
解得
70.(2025·山东·高考真题)如图所示,内有弯曲光滑轨道的方形物体置于光滑水平面上,P、Q分别为轨道的两个端点且位于同一高度,P处轨道的切线沿水平方向,Q处轨道的切线沿竖直方向。小物块a、b用轻弹簧连接置于光滑水平面上,b被锁定。一质量的小球自Q点正上方处自由下落,无能量损失地滑入轨道,并从P点水平抛出,恰好击中a,与a粘在一起且不弹起。当弹簧拉力达到时,b解除锁定开始运动。已知a的质量,b的质量,方形物体的质量,重力加速度大小,弹簧的劲度系数,整个过程弹簧均在弹性限度内,弹性势能表达式(x为弹簧的形变量),所有过程不计空气阻力。求:
(1)小球到达P点时,小球及方形物体相对于地面的速度大小、;
(2)弹簧弹性势能最大时,b的速度大小及弹性势能的最大值。
【答案】(1),水平向左,,水平向右
(2),水平向左,
【详解】(1)根据题意可知,小球从开始下落到处过程中,水平方向上动量守恒,则有
由能量守恒定律有
联立解得,
即小球速度为,方向水平向左,大物块速度为,方向水平向右。
(2)由于小球落在物块a正上方,并与其粘连,小球竖直方向速度变为0,小球和物块水平方向上动量守恒,则有
解得
设当弹簧形变量为时物块的固定解除,此时小球和物块的速度为,根据胡克定律
系统机械能守恒
联立解得,
固定解除之后,小球、物块和物块组成的系统动量守恒,当三者共速时,弹簧的弹性势能最大,由动量守恒定律有
解得,方向水平向左。
由能量守恒定律可得,最大弹性势能为
71.(2024·福建·高考真题)如图,木板A放置在光滑水平桌面上,通过两根相同的水平轻弹簧M、N与桌面上的两个固定挡板相连。小物块B放在A的最左端,通过一条跨过轻质定滑轮的轻绳与带正电的小球C相连,轻绳绝缘且不可伸长,B与滑轮间的绳子与桌面平行。桌面右侧存在一竖直向上的匀强电场,A、B、C均静止,M、N处于原长状态,轻绳处于自然伸直状态。时撤去电场,C向下加速运动,下降后开始匀速运动,C开始做匀速运动瞬间弹簧N的弹性势能为。已知A、B、C的质量分别为、、,小球C的带电量为,重力加速度大小取,最大静摩擦力等于滑动摩擦力,弹簧始终处在弹性限度内,轻绳与滑轮间的摩擦力不计。
(1)求匀强电场的场强大小;
(2)求A与B间的滑动摩擦因数及C做匀速运动时的速度大小;
(3)若时电场方向改为竖直向下,当B与A即将发生相对滑动瞬间撤去电场,A、B继续向右运动,一段时间后,A从右向左运动。求A第一次从右向左运动过程中最大速度的大小。(整个过程B未与A脱离,C未与地面相碰)
【答案】(1)
(2);
(3)
【详解】(1)撤去电场前,A、B、C均静止,M、N处于原长状态,对A、B整体分析可知,此时绳中拉力为0,对C根据共点力平衡条件有
解得
(2)C开始做匀速直线运动后,对C和B根据共点力平衡条件分别有,
其中
解得
C开始匀速运动瞬间,A、B刚好发生相对滑动,此时A、B、C三者速度大小相等,M、N两弹簧的弹性势能相同,C下降的过程中,对A、B、C及弹簧M、N组成的系统,由能量守恒定律有
解得
(3)没有电场时,C开始匀速运动瞬间,A、B刚好发生相对滑动,所以此时A的加速度为零,对A根据共点力平衡有
当电场方向改为竖直向下,设B与A即将发生相对滑动时,C下降高度为,对A根据牛顿第二定律可得
对B、C根据牛顿第二定律可得
撤去电场后,由第(2)问的分析可知A、B在C下降时开始相对滑动,在C下降的过程中,对A、B、C及弹簧M、N组成的系统,由能量守恒定律有
此时A的速度是其从左向右运动过程中的最大速度,此后A做简谐运动,所以A第一次从右向左运动过程中的最大速度为
联立解得
72.(2024·海南·高考真题)某游乐项目装置简化如图,A为固定在地面上的光滑圆弧形滑梯,半径,滑梯顶点a与滑梯末端b的高度,静止在光滑水平面上的滑板B,紧靠滑梯的末端,并与其水平相切,滑板质量,一质量为的游客,从a点由静止开始下滑,在b点滑上滑板,当滑板右端运动到与其上表面等高平台的边缘时,游客恰好滑上平台,并在平台上滑行停下。游客视为质点,其与滑板及平台表面之间的动摩擦系数均为,忽略空气阻力,重力加速度,求:
(1)游客滑到b点时对滑梯的压力的大小;
(2)滑板的长度L
【答案】(1);(2)
【详解】(1)设游客滑到b点时速度为,从a到b过程,根据机械能守恒
解得
在b点根据牛顿第二定律
解得
根据牛顿第三定律得游客滑到b点时对滑梯的压力的大小为
(2)设游客恰好滑上平台时的速度为,在平台上运动过程由动能定理得
解得
根据题意当滑板右端运动到与其上表面等高平台的边缘时,游客恰好滑上平台,可知该过程游客一直做减速运动,滑板一直做加速运动,设加速度大小分别为和,得
根据运动学规律对游客
解得
该段时间内游客的位移为
滑板的位移为
根据位移关系得滑板的长度为
73.(2024·山东·高考真题)如图甲所示,质量为M的轨道静止在光滑水平面上,轨道水平部分的上表面粗糙,竖直半圆形部分的表面光滑,两部分在P点平滑连接,Q为轨道的最高点。质量为m的小物块静置在轨道水平部分上,与水平轨道间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力。已知轨道半圆形部分的半径,重力加速度大小。
(1)若轨道固定,小物块以一定的初速度沿轨道运动到Q点时,受到轨道的弹力大小等于3mg,求小物块在Q点的速度大小v;
(2)若轨道不固定,给轨道施加水平向左的推力F,小物块处在轨道水平部分时,轨道加速度a与F对应关系如图乙所示。
(i)求μ和m;
(ii)初始时,小物块静置在轨道最左端,给轨道施加水平向左的推力,当小物块到P点时撤去F,小物块从Q点离开轨道时相对地的速度大小为7m/s。求轨道水平部分的长度L。
【答案】(1);(2)(i),;(3)
【详解】(1)根据题意可知小物块在Q点由合力提供向心力有
代入数据解得
(2)(i)根据题意可知当F≤4N时,小物块与轨道是一起向左加速,根据牛顿第二定律可知
根据图乙有
当外力时,轨道与小物块有相对滑动,则对轨道有
结合题图乙有
可知
截距
联立以上各式可得,,
(ii)由图乙可知,当时,轨道的加速度为,小物块的加速度为
当小物块运动到P点时,经过t0时间,则轨道有
小物块有
在小物块到P点到从Q点离开轨道的过程中系统机械能守恒有
水平方向动量守恒,以水平向左的正方向,则有
其中,小物块离开Q点时的速度,为此时轨道的速度。联立解得
(舍去)
根据运动学公式有
代入数据解得
74.(2024·湖北·高考真题)如图所示,水平传送带以5m/s的速度顺时针匀速转动,传送带左右两端的距离为。传送带右端的正上方有一悬点O,用长为、不可伸长的轻绳悬挂一质量为0.2kg的小球,小球与传送带上表面平齐但不接触。在O点右侧的P点固定一钉子,P点与O点等高。将质量为0.1kg的小物块无初速轻放在传送带左端,小物块运动到右端与小球正碰,碰撞时间极短,碰后瞬间小物块的速度大小为、方向水平向左。小球碰后绕O点做圆周运动,当轻绳被钉子挡住后,小球继续绕P点向上运动。已知小物块与传送带间的动摩擦因数为0.5,重力加速度大小。
(1)求小物块与小球碰撞前瞬间,小物块的速度大小;
(2)求小物块与小球碰撞过程中,两者构成的系统损失的总动能;
(3)若小球运动到P点正上方,绳子不松弛,求P点到O点的最小距离。
【答案】(1);(2);(3)
【详解】(1)根据题意,小物块在传送带上,由牛顿第二定律有
解得
由运动学公式可得,小物块与传送带共速时运动的距离为
可知,小物块运动到传送带右端前与传送带共速,即小物块与小球碰撞前瞬间,小物块的速度大小等于传送带的速度大小。
(2)小物块运动到右端与小球正碰,碰撞时间极短,小物块与小球组成的系统动量守恒,以向右为正方向,由动量守恒定律有
其中,
解得
小物块与小球碰撞过程中,两者构成的系统损失的总动能为
解得
(3)若小球运动到P点正上方,绳子恰好不松弛,设此时P点到O点的距离为,小球在P点正上方的速度为,在P点正上方,由牛顿第二定律有
小球从点正下方到P点正上方过程中,由机械能守恒定律有
联立解得
即P点到O点的最小距离为。
75.(2024·辽宁·高考真题)如图,高度的水平桌面上放置两个相同物块A、B,质量。A、B间夹一压缩量的轻弹簧,弹簧与A、B不栓接。同时由静止释放A、B,弹簧恢复原长时A恰好从桌面左端沿水平方向飞出,水平射程;B脱离弹簧后沿桌面滑行一段距离后停止。A、B均视为质点,取重力加速度。求:
(1)脱离弹簧时A、B的速度大小和;
(2)物块与桌面间的动摩擦因数μ;
(3)整个过程中,弹簧释放的弹性势能。
【答案】(1)1m/s,1m/s;(2)0.2;(3)0.12J
【详解】(1)对A物块由平抛运动知识得,
代入数据解得,脱离弹簧时A的速度大小为
AB物块质量相等,同时受到大小相等方向相反的弹簧弹力及大小相等方向相反的摩擦力,则AB物块整体动量守恒,则
解得脱离弹簧时B的速度大小为
(2)对物块B由动能定理
代入数据解得,物块与桌面的动摩擦因数为
(3)弹簧的弹性势能转化为AB物块的动能及这个过程中克服摩擦力所做的功,即
其中,
解得整个过程中,弹簧释放的弹性势能
76.(2024·浙江·高考真题)某固定装置的竖直截面如图所示,由倾角的直轨道,半径的圆弧轨道,长度、倾角为的直轨道,半径为R、圆心角为的圆弧管道组成,轨道间平滑连接。在轨道末端F的右侧光滑水平面上紧靠着质量滑块b,其上表面与轨道末端F所在的水平面平齐。质量的小物块a从轨道上高度为h静止释放,经圆弧轨道滑上轨道,轨道由特殊材料制成,小物块a向上运动时动摩擦因数,向下运动时动摩擦因数,且最大静摩擦力等于滑动摩擦力。当小物块a在滑块b上滑动时动摩擦因数恒为,小物块a运动到滑块右侧的竖直挡板能发生完全弹性碰撞。(其它轨道均光滑,小物块视为质点,不计空气阻力,,)
(1)若,求小物块
①第一次经过C点的向心加速度大小;
②在上经过的总路程;
③在上向上运动时间和向下运动时间之比。
(2)若,滑块至少多长才能使小物块不脱离滑块。
【答案】(1)①16m/s2;②2m;③1∶2;(2)0.2m
【详解】(1)①对小物块a从A到第一次经过C的过程,根据机械能守恒定律有
第一次经过C点的向心加速度大小为
②小物块a在DE上时,因为
所以小物块a每次在DE上升至最高点后一定会下滑,之后经过若干次在DE上的滑动使机械能损失,最终小物块a将在B、D间往复运动,且易知小物块每次在DE上向上运动和向下运动的距离相等,设其在上经过的总路程为s,根据功能关系有
解得
③根据牛顿第二定律可知小物块a在DE上向上运动和向下运动的加速度大小分别为
将小物块a在DE上的若干次运动等效看作是一次完整的上滑和下滑,则根据运动学公式有
解得
(2)对小物块a从A到F的过程,根据动能定理有
解得
设滑块长度为l时,小物块恰好不脱离滑块,且此时二者达到共同速度v,根据动量守恒定律和能量守恒定律有
解得
77.(2023·河北·高考真题)如图,质量为的薄木板静置于光滑水平地面上,半径为的竖直光滑圆弧轨道固定在地面,轨道底端与木板等高,轨道上端点和圆心连线与水平面成角.质量为的小物块以的初速度从木板左端水平向右滑行,与木板间的动摩擦因数为0.5.当到达木板右端时,木板恰好与轨道底端相碰并被锁定,同时沿圆弧切线方向滑上轨道.待离开轨道后,可随时解除木板锁定,解除锁定时木板的速度与碰撞前瞬间大小相等、方向相反.已知木板长度为取取.
(1)求木板与轨道底端碰撞前瞬间,物块和木板的速度大小;
(2)求物块到达圆弧轨道最高点时受到轨道的弹力大小及离开轨道后距地面的最大高度;
(3)物块运动到最大高度时会炸裂成质量比为的物块和物块,总质量不变,同时系统动能增加,其中一块沿原速度方向运动.为保证之一落在木板上,求从物块离开轨道到解除木板锁定的时间范围.
【答案】(1),;(2),;(3)或
【详解】(1)设物块的初速度为,木板与轨道底部碰撞前,物块和木板的速度分别为和,物块和木板的质量分别为和,物块与木板间的动摩擦因数为,木板长度为,由动量守恒定律和功能关系有
由题意分析,联立式得
(2)设圆弧轨道半径为,物块到圆弧轨道最高点时斜抛速度为,轨道对物块的弹力为.物块从轨道最低点到最高点,根据动能定理有
物块到达圆弧轨道最高点时,根据牛顿第二定律有
联立式,得
设物块拋出时速度的水平和竖直分量分别为和
斜抛过程物块上升时间
该段时间物块向左运动距离为.
物块距离地面最大高度.
(3)物块从最高点落地时间
设向左为正方向,物块在最高点炸裂为,设质量和速度分别为和、,设,系统动能增加.根据动量守恒定律和能量守恒定律得
解得或.
设从物块离开轨道到解除木板锁定的时间范围:
(a)若,炸裂后落地过程中的水平位移为
炸裂后落地过程中的水平位移为
木板右端到轨道底端的距离为
运动轨迹分析如下
为了保证之一落在木板上,需要满足下列条件之一
Ⅰ.若仅落在木板上,应满足
且
解得
Ⅱ.若仅落在木板上,应满足
且
不等式无解;
(b)若,炸裂后落地过程中水平位移为0,炸裂后落地过程中水平位移为
木板右端到轨道底端的距离为
运动轨迹分析如下
为了保证之一落在木板上,需要满足下列条件之一
Ⅲ.若仅落在木板上,应满足
且
解得
Ⅳ.若仅落在木板上,应满足
且
解得.
综合分析(a)(b)两种情况,为保证之一一定落在木板上,满足的条件为
或
78.(2023·北京·高考真题)如图所示,质量为m的小球A用一不可伸长的轻绳悬挂在O点,在O点正下方的光滑桌面上有一个与A完全相同的静止小球B,B距O点的距离等于绳长L。现将A拉至某一高度,由静止释放,A以速度v在水平方向和B发生正碰并粘在一起。重力加速度为g。求:
(1)A释放时距桌面的高度H;
(2)碰撞前瞬间绳子的拉力大小F;
(3)碰撞过程中系统损失的机械能。
【答案】(1);(2);(3)
【详解】(1)A释放到与B碰撞前,根据动能定理得
解得
(2)碰前瞬间,对A由牛顿第二定律得
解得
(3)A、B碰撞过程中,根据动量守恒定律得
解得
则碰撞过程中损失的机械能为
79.(2023·辽宁·高考真题)某大型水陆两栖飞机具有水面滑行汲水和空中投水等功能。某次演练中,该飞机在水面上由静止开始匀加速直线滑行并汲水,速度达到v =80m/s时离开水面,该过程滑行距离L=1600m、汲水质量m=1.0×10 kg。离开水面后,飞机攀升高度h=100m时速度达到v =100m/s,之后保持水平匀速飞行,待接近目标时开始空中投水。取重力加速度g=10m/s 。求:
(1)飞机在水面滑行阶段的加速度a的大小及滑行时间t;
(2)整个攀升阶段,飞机汲取的水的机械能增加量ΔE。
【答案】(1),;(2)
【详解】(1)飞机做从静止开始做匀加速直线运动,平均速度为,则
解得飞机滑行的时间为
飞机滑行的加速度为
(2)飞机从水面至处,水的机械能包含水的动能和重力势能,则机械能变化量为
80.(2023·全国甲卷·高考真题)如图,光滑水平桌面上有一轻质弹簧,其一端固定在墙上。用质量为m的小球压弹簧的另一端,使弹簧的弹性势能为。释放后,小球在弹簧作用下从静止开始在桌面上运动,与弹簧分离后,从桌面水平飞出。小球与水平地面碰撞后瞬间,其平行于地面的速度分量与碰撞前瞬间相等;垂直于地面的速度分量大小变为碰撞前瞬间的。小球与地面碰撞后,弹起的最大高度为h。重力加速度大小为g,忽略空气阻力。求
(1)小球离开桌面时的速度大小;
(2)小球第一次落地点距桌面上其飞出点的水平距离。
【答案】(1);(2)
【详解】(1)由小球和弹簧组成的系统机械能守恒可知
得小球离开桌面时速度大小为
(2)离开桌面后由平抛运动规律可得
第一次碰撞前速度的竖直分量为,由题可知
离开桌面后由平抛运/ 让教学更有效 2026年高考 | 物理学科
专题06 功和能(原卷版)
……………………………………………………………………………………
目录
TOC \o "1-3" \h \z \u 一、考情统计 1
二、应试策略 2
三、真题汇编 2
考点1 功与变力做功 2
考点2功率与机车启动 8
考点3动能定理的理解及应用 16
考点4机械能守恒定律 29
考点5功能关系 48
考点6能量守恒定律 49
考点7动力学和能量观点的综合应用 50
……………………………………………………………………………………
一、考情统计
考点 2025年 2024年 2023年
考点1 功与变力做功 2025 福建、2025 广东、 2024 海南、2024 重庆、2024 福建、 2023 北京、2023 江苏、2023 新课标卷、2023 广东、2023 湖北、
考点2功率与机车启动 2025 广西、2025 广东、2025 上海、2025 山东、 2024 贵州、2024 浙江、2024 安徽、2024 江西、2024 广东、2024 福建、2024 上海 2023 山东、2023 辽宁、2023 湖南、2023 天津、2023 山东、2023 湖北、
考点3动能定理的理解及应用 2025 浙江、2025 北京、2025 湖南、2025 浙江、2025 河北、2025 福建、2025 黑吉辽蒙卷、2025 广东 2024 江西、2024 新疆河南、2024 重庆、2024 贵州、2024 福建、2024 安徽、2024 海南、2024 辽宁 2023 辽宁、2023 江苏、2023 全国乙卷、2023 上海、2023 新课标卷、2023 新课标卷
考点4机械能守恒定律 2025 河南、2025 全国卷、2025 安徽、2025 海南、2025 陕晋青宁卷、2025 云南、2025 全国卷、2025 山东、 2024 北京、2024 浙江、2024 浙江、2024 福建、2024 山东、2024 全国甲卷、2024 江苏、2024 福建、2024 海南、2024 山东、2024 湖北、2024 辽宁、2024 浙江、2023 浙江、2023 重庆 2023 浙江、2023 浙江、2023 全国甲卷、2023 河北、2023 北京、2023 辽宁、2023 全国甲卷、2024 全国甲卷
考点5功能关系 2025 湖南 2024 浙江
考点6能量守恒定律 2025 浙江、2025 山东 2024 浙江、2024 山东、2024 广西
考点7动力学和能量观点的综合应用 2025 福建、2025 云南 2024 辽宁、2024 浙江、2024 新疆河南、2024 北京、2024 贵州、2024 湖北、2024 北京 2023 全国乙卷、2023 海南、2023 全国乙卷、2023 广东、
二、应试策略
1.命题热度角度:“功、功率和机械能”是高考物理的经典核心考点,近年来命题热度居高不下。题型覆盖选择题、实验题与计算题。命题呈现出三大趋势:一是强化 实际情境融合 ,如以新能源汽车、机械吊装等生产生活场景为背景,考查功和功率的估算;二是注重 功能关系的综合应用 ,常结合平抛运动、圆周运动等模型,通过动能定理、机械能守恒定律解决多过程问题;三是 创新设问方式 ,例如引入图像分析(如F-s图、P-t图)要求定量计算或定性判断。特别提醒,机械能守恒与曲线运动的结合题、摩擦力做功与内能转化的探究题,已成为高频难点。
2.备考策略: 复习本章时, 需立足三点: 概念深化 、 模型构建 与 应用迁移 。首先,精确区分“功的正负与能量转化方向”“瞬时功率与平均功率的计算区别”等易混淆概念,建议通过典型错题归类梳理本质差异。其次,重点掌握五大模型:恒力做功模型、机车启动两类模型、机械能守恒的单体与多体模型、功能关系在弹簧问题中的应用模型、非匀变速运动中动能定理的灵活使用。最后,强化实际应用能力,每周至少完成2道综合计算题,注重书写规范性与分步得分策略。真题训练建议以近五年全国卷为主,拓展至新高考省份的创新题。
三、真题汇编
考点1 功与变力做功
1.(2024·海南·高考真题)神舟十七号载人飞船返回舱于2024年4月30日在东风着陆场成功着陆,在飞船返回至离地面十几公里时打开主伞飞船快速减速,返回舱速度大大减小,在减速过程中( )
A.返回舱处于超重状态 B.返回舱处于失重状态
C.主伞的拉力不做功 D.重力对返回舱做负功
2.(2024·重庆·高考真题)活检针可用于活体组织取样,如图所示。取样时,活检针的针芯和针鞘被瞬间弹出后仅受阻力。针鞘质量为m,针鞘在软组织中运动距离d1后进入目标组织,继续运动d2后停下来。若两段运动中针鞘整体受到阻力均视为恒力。大小分别为F1、F2,则针鞘( )
A.被弹出时速度大小为
B.到达目标组织表面时的动能为F1d1
C.运动d2过程中,阻力做功为(F1+F2)d2
D.运动d2的过程中动量变化量大小为
3.(2023·北京·高考真题)如图所示,一物体在力F作用下沿水平桌面做匀加速直线运动。已知物体质量为m,加速度大小为a,物体和桌面之间的动摩擦因数为,重力加速度为g,在物体移动距离为x的过程中( )
A.摩擦力做功大小与F方向无关 B.合力做功大小与F方向有关
C.F为水平方向时,F做功为 D.F做功的最小值为
4.(2023·江苏·高考真题)滑块以一定的初速度沿粗糙斜面从底端上滑,到达最高点B后返回到底端。利用频闪仪分别对上滑和下滑过程进行拍摄,频闪照片示意图如图所示。与图乙中相比,图甲中滑块( )
A.受到的合力较小 B.经过A点的动能较小
C.在A、B之间的运动时间较短 D.在A、B之间克服摩擦力做的功较小
5.(2023·新课标卷·高考真题)(多选)一质量为1kg的物体在水平拉力的作用下,由静止开始在水平地面上沿x轴运动,出发点为x轴零点,拉力做的功W与物体坐标x的关系如图所示。物体与水平地面间的动摩擦因数为0.4,重力加速度大小取10m/s2。下列说法正确的是( )
A.在x = 1m时,拉力的功率为6W
B.在x = 4m时,物体的动能为2J
C.从x = 0运动到x = 2m,物体克服摩擦力做的功为8J
D.从x = 0运动到x = 4的过程中,物体的动量最大为2kg m/s
6.(2024·福建·高考真题)我国古代劳动人民创造了璀璨的农耕文明。图(a)为《天工开物》中描绘的利用耕牛整理田地的场景,简化的物理模型如图(b)所示,人站立的农具视为与水平地面平行的木板,两条绳子相互平行且垂直于木板边缘。已知绳子与水平地面夹角为,,。当每条绳子拉力的大小为时,人与木板沿直线匀速前进,在内前进了,求此过程中
(1)地面对木板的阻力大小;
(2)两条绳子拉力所做的总功;
(3)两条绳子拉力的总功率。
7.(2023·广东·高考真题)(多选)人们用滑道从高处向低处运送货物.如图所示,可看作质点的货物从圆弧滑道顶端点静止释放,沿滑道运动到圆弧末端点时速度大小为。已知货物质量为,滑道高度为,且过点的切线水平,重力加速度取。关于货物从点运动到点的过程,下列说法正确的有( )
A.重力做的功为 B.克服阻力做的功为
C.经过点时向心加速度大小为 D.经过点时对轨道的压力大小为
8.(2023·湖北·高考真题)(多选)如图所示,原长为l的轻质弹簧,一端固定在O点,另一端与一质量为m的小球相连。小球套在竖直固定的粗糙杆上,与杆之间的动摩擦因数为0.5。杆上M、N两点与O点的距离均为l,P点到O点的距离为,OP与杆垂直。当小球置于杆上P点时恰好能保持静止。设最大静摩擦力等于滑动摩擦力,重力加速度大小为g。小球以某一初速度从M点向下运动到N点,在此过程中,弹簧始终在弹性限度内。下列说法正确的是( )
A.弹簧的劲度系数为
B.小球在P点下方处的加速度大小为
C.从M点到N点的运动过程中,小球受到的摩擦力先变小再变大
D.从M点到P点和从P点到N点的运动过程中,小球受到的摩擦力做功相同
9.(2025·福建·高考真题)如图甲,水平地面上有A、B两个物块,两物块质量均为0.2kg,A与地面动摩擦因数为,B与地面无摩擦,两物块在外力F的作用下向右前进,F与位移x的图如图乙所示,P为圆弧最低点,M为最高点,水平地面长度大于4m,重力加速度。
(1)求,F做的功;
(2)时,A与B之间的弹力;
(3)要保证B能到达M点,圆弧半径满足的条件。
10.(2025·广东·高考真题)如图所示,用开瓶器取出紧塞在瓶口的软木塞时,先将拔塞钻旋入木塞内,随后下压把手,使齿轮绕固定支架上的转轴转动,通过齿轮啮合,带动与木塞相固定的拔塞钻向上运动。从0时刻开始,顶部与瓶口齐平的木塞从静止开始向上做匀加速直线运动,木塞所受摩擦力f随位移大小x的变化关系为,其中为常量,h为圆柱形木塞的高,木塞质量为m,底面积为S,加速度为a,齿轮半径为r,重力加速度为g,瓶外气压减瓶内气压为且近似不变,瓶子始终静止在桌面上。(提示:可用图线下的“面积”表示f所做的功)求:
(1)木塞离开瓶口的瞬间,齿轮的角速度。
(2)拔塞的全过程,拔塞钻对木塞做的功W。
(3)拔塞过程中,拔塞钻对木塞作用力的瞬时功率P随时间t变化的表达式。
考点2功率与机车启动
11.(2024·贵州·高考真题)质量为的物块静置于光滑水平地面上,设物块静止时的位置为x轴零点。现给物块施加一沿x轴正方向的水平力F,其大小随位置x变化的关系如图所示,则物块运动到处,F做功的瞬时功率为( )
A. B. C. D.
12.(2024·浙江·高考真题)一个音乐喷泉喷头出水口的横截面积为,喷水速度约为10m/s,水的密度为kg/m3,则该喷头喷水的功率约为( )
A.10W B.20W C.100W D.200W
13.(2024·安徽·高考真题)在某地区的干旱季节,人们常用水泵从深水井中抽水灌溉农田,简化模型如图所示。水井中的水面距离水平地面的高度为H。出水口距水平地面的高度为h,与落地点的水平距离约为l。假设抽水过程中H保持不变,水泵输出能量的倍转化为水被抽到出水口处增加的机械能。已知水的密度为,水管内径的横截面积为S,重力加速度大小为g,不计空气阻力。则水泵的输出功率约为( )
A. B.
C. D.
14.(2024·江西·高考真题)庐山瀑布“飞流直下三千尺,疑是银河落九天”瀑布高150m,水流量10m3/s,假设利用瀑布来发电,能量转化效率为70%,则发电功率为( )
A.109W B.107W C.105W D.103W
15.(2023·山东·高考真题)《天工开物》中记载了古人借助水力使用高转筒车往稻田里引水的场景。引水过程简化如下:两个半径均为R的水轮,以角速度ω匀速转动。水筒在筒车上均匀排布,单位长度上有n个,与水轮间无相对滑动。每个水筒离开水面时装有质量为m的水,其中的60%被输送到高出水面H处灌入稻田。当地的重力加速度为g,则筒车对灌入稻田的水做功的功率为( )
A. B. C. D.nmgωRH
16.(2023·辽宁·高考真题)如图(a),从高处M点到地面N点有Ⅰ、Ⅱ两条光滑轨道。两相同小物块甲、乙同时从M点由静止释放,沿不同轨道滑到N点,其速率v与时间t的关系如图(b)所示。由图可知,两物块在离开M点后、到达N点前的下滑过程中( )
A.甲沿I下滑且同一时刻甲的动能比乙的大
B.甲沿Ⅱ下滑且同一时刻甲的动能比乙的小
C.乙沿I下滑且乙的重力功率一直不变
D.乙沿Ⅱ下滑且乙的重力功率一直增大
17.(2024·广东·高考真题)(多选)如图所示,探测器及其保护背罩通过弹性轻绳连接降落伞。在接近某行星表面时以的速度竖直匀速下落。此时启动“背罩分离”,探测器与背罩断开连接,背罩与降落伞保持连接。已知探测器质量为1000kg,背罩质量为50kg,该行星的质量和半径分别为地球的和。地球表面重力加速度大小取。忽略大气对探测器和背罩的阻力。下列说法正确的有( )
A.该行星表面的重力加速度大小为
B.该行星的第一宇宙速度为
C.“背罩分离”后瞬间,背罩的加速度大小为
D.“背罩分离”后瞬间,探测器所受重力对其做功的功率为30kW
18.(2023·湖南·高考真题)(多选)如图,固定在竖直面内的光滑轨道ABC由直线段AB和圆弧段BC组成,两段相切于B点,AB段与水平面夹角为θ,BC段圆心为O,最高点为C,A与C的高度差等于圆弧轨道的直径2R。小球从A点以初速度v0冲上轨道,能沿轨道运动恰好到达C点,下列说法正确的是( )
A.小球从B到C的过程中,对轨道的压力逐渐增大
B.小球从A到C的过程中,重力的功率始终保持不变
C.小球的初速度
D.若小球初速度v0增大,小球有可能从B点脱离轨道
19.(2024·福建·高考真题)我国古代劳动人民创造了璀璨的农耕文明。图(a)为《天工开物》中描绘的利用耕牛整理田地的场景,简化的物理模型如图(b)所示,人站立的农具视为与水平地面平行的木板,两条绳子相互平行且垂直于木板边缘。已知绳子与水平地面夹角为,,。当每条绳子拉力的大小为时,人与木板沿直线匀速前进,在内前进了,求此过程中
(1)地面对木板的阻力大小;
(2)两条绳子拉力所做的总功;
(3)两条绳子拉力的总功率。
20.(2025·广西·高考真题)图甲为某智能分装系统工作原理示意图,每个散货经倾斜传送带由底端A运动到顶端B后水平抛出,撞击冲量式传感器使其输出一个脉冲信号,随后竖直掉入以与水平传送带共速度的货箱中,此系统利用传感器探测散货的质量,自动调节水平传送带的速度,实现按规格分装。倾斜传送带与水平地面夹角为,以速度匀速运行。若以相同的时间间隔将散货以几乎为0的速度放置在倾斜传送带底端A,从放置某个散货时开始计数,当放置第10个散货时,第1个散货恰好被水平抛出。散货与倾斜传送带间的动摩擦因数,到达顶端前已与传送带共速。设散货与传感器撞击时间极短,撞击后竖直方向速度不变,水平速度变为0。每个长度为d的货箱装总质量为M的一批散货。若货箱之间无间隔,重力加速度为g。分装系统稳定运行后,连续装货,某段时间传感器输出的每个脉冲信号与横轴所围面积为I如图乙,求这段时间内:
(1)单个散货的质量。
(2)水平传送带的平均传送速度大小。
(3)倾斜传送带的平均输出功率。
21.(2025·广东·高考真题)如图所示,用开瓶器取出紧塞在瓶口的软木塞时,先将拔塞钻旋入木塞内,随后下压把手,使齿轮绕固定支架上的转轴转动,通过齿轮啮合,带动与木塞相固定的拔塞钻向上运动。从0时刻开始,顶部与瓶口齐平的木塞从静止开始向上做匀加速直线运动,木塞所受摩擦力f随位移大小x的变化关系为,其中为常量,h为圆柱形木塞的高,木塞质量为m,底面积为S,加速度为a,齿轮半径为r,重力加速度为g,瓶外气压减瓶内气压为且近似不变,瓶子始终静止在桌面上。(提示:可用图线下的“面积”表示f所做的功)求:
(1)木塞离开瓶口的瞬间,齿轮的角速度。
(2)拔塞的全过程,拔塞钻对木塞做的功W。
(3)拔塞过程中,拔塞钻对木塞作用力的瞬时功率P随时间t变化的表达式。
(2025·上海·高考真题)质点在以某点为圆心半径为r的圆周上运动,即质点运动时其轨迹是圆周的运动叫“圆周运动”。它是一种最常见的曲线运动。例如电动机转子、车轮、皮带轮等都作圆周运动。
如图所示,在竖直平面内有一光滑圆形轨道,a为轨道最低点,c为轨道最高点,b点、d点为轨道上与圆心等高的两点,e为段的中点。一个质量为m的小物块在轨道内侧做圆周运动。
22.若物块从a点运动到c点所用时间为,则在时,物块在( )
A.A段 B.B点 C.C段 D.D点 E.E段
23.若物块在a点的速度为,经过时间t刚好到达b点,则在该过程中轨道对物块的支持力的冲量为( )
A. B. C. D.
24.若物块质量为,下图是物块的速度v与物块和圆心连线转过的夹角的关系图像。
(1)求轨道半径R;
25.(2025·山东·高考真题)一辆电动小车上的光伏电池,将太阳能转换成的电能全部给电动机供电,刚好维持小车以速度v匀速运动,此时电动机的效率为。已知小车的质量为m,运动过程中受到的阻力(k为常量),该光伏电池的光电转换效率为,则光伏电池单位时间内获得的太阳能为( )
A. B. C. D.
26.(2023·天津·高考真题)2023年我国首套高温超导电动悬浮全要素试验系统完成首次悬浮运行,实现重要技术突破。设该系统的试验列车质量为m,某次试验中列车以速率v在平直轨道上匀速行驶,刹车时牵引系统处于关闭状态,制动装置提供大小为F的制动力,列车减速直至停止。若列车行驶时始终受到大小为f的空气阻力,则( )
A.列车减速过程的加速度大小 B.列车减速过程F的冲量为mv
C.列车减速过程通过的位移大小为 D.列车匀速行驶时,牵引系统的输出功率为
27.(2023·山东·高考真题)质量为M的玩具动力小车在水平面上运动时,牵引力F和受到的阻力f均为恒力,如图所示,小车用一根不可伸长的轻绳拉着质量为m的物体由静止开始运动。当小车拖动物体行驶的位移为时,小车达到额定功率,轻绳从物体上脱落。物体继续滑行一段时间后停下,其总位移为。物体与地面间的动摩擦因数不变,不计空气阻力。小车的额定功率P0为( )
A. B.
C. D.
28.(2023·湖北·高考真题)两节动车的额定功率分别为和,在某平直铁轨上能达到的最大速度分别为和。现将它们编成动车组,设每节动车运行时受到的阻力在编组前后不变,则该动车组在此铁轨上能达到的最大速度为( )
A. B. C. D.
(2024·上海·高考真题)汽车智能化
我国的汽车智能化技术发展迅猛。各类车载雷达是汽车自主感知系统的重要组成部分。汽车在检测到事故风险后,通过自主决策和自主控制及时采取措施,提高了安全性。
29.车载雷达系统可以发出激光和超声波信号,其中( )
A.仅激光是横波 B.激光与超声波都是横波
C.仅超声波是横波 D.激光与超声波都不是横波
30.一辆质量的汽车,以的速度在平直路面上匀速行驶,此过程中发动机功率,汽车受到的阻力大小为 N。当车载雷达探测到前方有障碍物时,主动刹车系统立即撤去发动机驱动力,同时施加制动力使车辆减速。在刚进入制动状态的瞬间,系统提供的制动功率,此时汽车的制动力大小为 N,加速度大小为 。(不计传动装置和热损耗造成的能量损失)
考点3动能定理的理解及应用
31.(2025·浙江·高考真题)地球和哈雷彗星绕太阳运行的轨迹如图所示,彗星从a运行到b、从c运行到d的过程中,与太阳连线扫过的面积分别为和,且。彗星在近日点与太阳中心的距离约为地球公转轨道半径的0.6倍,则彗星( )
A.在近日点的速度小于地球的速度
B.从b运行到c的过程中动能先增大后减小
C.从a运行到b的时间大于从c运行到d的时间
D.在近日点加速度约为地球的加速度的0.36倍
32.(2024·江西·高考真题)两个质量相同的卫星绕月球做匀速圆周运动,半径分别为、,则动能和周期的比值为( )
A. B.
C. D.
33.(2024·新疆河南·高考真题)福建舰是我国自主设计建造的首艘弹射型航空母舰。借助配重小车可以进行弹射测试,测试时配重小车被弹射器从甲板上水平弹出后,落到海面上。调整弹射装置,使小车水平离开甲板时的动能变为调整前的4倍。忽略空气阻力,则小车在海面上的落点与其离开甲板处的水平距离为调整前的( )
A.0.25倍 B.0.5倍 C.2倍 D.4倍
34.(2023·辽宁·高考真题)如图(a),从高处M点到地面N点有Ⅰ、Ⅱ两条光滑轨道。两相同小物块甲、乙同时从M点由静止释放,沿不同轨道滑到N点,其速率v与时间t的关系如图(b)所示。由图可知,两物块在离开M点后、到达N点前的下滑过程中( )
A.甲沿I下滑且同一时刻甲的动能比乙的大
B.甲沿Ⅱ下滑且同一时刻甲的动能比乙的小
C.乙沿I下滑且乙的重力功率一直不变
D.乙沿Ⅱ下滑且乙的重力功率一直增大
35.(2023·江苏·高考真题)滑块以一定的初速度沿粗糙斜面从底端上滑,到达最高点B后返回到底端。利用频闪仪分别对上滑和下滑过程进行拍摄,频闪照片示意图如图所示。与图乙中相比,图甲中滑块( )
A.受到的合力较小 B.经过A点的动能较小
C.在A、B之间的运动时间较短 D.在A、B之间克服摩擦力做的功较小
36.(2023·全国乙卷·高考真题)小车在水平地面上沿轨道从左向右运动,动能一直增加。如果用带箭头的线段表示小车在轨道上相应位置处所受合力,下列四幅图可能正确的是( )
A. B.
C. D.
37.(2024·重庆·高考真题)活检针可用于活体组织取样,如图所示。取样时,活检针的针芯和针鞘被瞬间弹出后仅受阻力。针鞘质量为m,针鞘在软组织中运动距离d1后进入目标组织,继续运动d2后停下来。若两段运动中针鞘整体受到阻力均视为恒力。大小分别为F1、F2,则针鞘( )
A.被弹出时速度大小为
B.到达目标组织表面时的动能为F1d1
C.运动d2过程中,阻力做功为(F1+F2)d2
D.运动d2的过程中动量变化量大小为
38.(2023·上海·高考真题)一物块爆炸分裂为速率相同、质量不同的三个物块,对三者落地速率大小判断正确的是( )
A.质量大的落地速率大 B.质量小的落地速率大
C.三者落地速率都相同 D.无法判断
39.(2024·贵州·高考真题)(多选)如图,间距为L的两根金属导轨平行放置并固定在绝缘水平桌面上,左端接有一定值电阻R,导轨所在平面存在磁感应强度大小为B、方向竖直向下的匀强磁场。质量为m的金属棒置于导轨上,在水平拉力作用下从静止开始做匀加速直线运动,一段时间后撤去水平拉力,金属棒最终停在导轨上。已知金属棒在运动过程中,最大速度为v,加速阶段的位移与减速阶段的位移相等,金属棒始终与导轨垂直且接触良好,不计摩擦及金属棒与导轨的电阻,则( )
A.加速过程中通过金属棒的电荷量为 B.金属棒加速的时间为
C.加速过程中拉力的最大值为 D.加速过程中拉力做的功为
40.(2024·福建·高考真题)(多选)如图,某同学在水平地面上先后两次从点抛出沙包,分别落在正前方地面和处。沙包的两次运动轨迹处于同一竖直平面,且交于点,点正下方地面处设为点。已知两次运动轨迹的最高点离地高度均为,,,,沙包质量为,忽略空气阻力,重力加速度大小取,则沙包( )
A.第一次运动过程中上升与下降时间之比
B.第一次经点时的机械能比第二次的小
C.第一次和第二次落地前瞬间的动能之比为
D.第一次抛出时速度方向与落地前瞬间速度方向的夹角比第二次的大
41.(2024·安徽·高考真题)某同学参加户外拓展活动,遵照安全规范,坐在滑板上,从高为h的粗糙斜坡顶端由静止下滑,至底端时速度为v.已知人与滑板的总质量为m,可视为质点.重力加速度大小为g,不计空气阻力.则此过程中人与滑板克服摩擦力做的功为( )
A. B. C. D.
42.(2023·新课标卷·高考真题)无风时,雨滴受空气阻力的作用在地面附近会以恒定的速率竖直下落。一质量为m的雨滴在地面附近以速率v下落高度h的过程中,克服空气阻力做的功为(重力加速度大小为g)( )
A.0 B.mgh C. D.
43.(2025·北京·高考真题)关于飞机的运动,研究下列问题。
(1)质量为m的飞机在水平跑道上由静止开始做加速直线运动,当位移为x时速度为v。在此过程中,飞机受到的平均阻力为f,求牵引力对飞机做的功W。
(2)飞机准备起飞,在跑道起点由静止开始做匀加速直线运动。跑道上存在这样一个位置,飞机一旦超过该位置就不能放弃起飞,否则将会冲出跑道。已知跑道的长度为L,飞机加速时加速度大小为,减速时最大加速度大小为。求该位置距起点的距离d。
(3)无风时,飞机以速率u水平向前匀速飞行,相当于气流以速率u相对飞机向后运动。气流掠过飞机机翼,方向改变,沿机翼向后下方运动,如图所示。请建立合理的物理模型,论证气流对机翼竖直向上的作用力大小F与u的关系满足,并确定的值。
44.(2025·湖南·高考真题)(多选)如图,某爆炸能量测量装置由装载台和滑轨等构成,C是可以在滑轨上运动的标准测量件,其规格可以根据测量需求进行调整。滑轨安装在高度为h的水平面上。测量时,将弹药放入装载台圆筒内,两端用物块A和B封装,装载台与滑轨等高。引爆后,假设弹药释放的能量完全转化为A和B的动能。极短时间内B嵌入C中形成组合体D,D与滑轨间的动摩擦因数为。D在滑轨上运动距离后抛出,落地点距抛出点水平距离为,根据可计算出弹药释放的能量。某次测量中,A、B、C质量分别为、、,,整个过程发生在同一竖直平面内,不计空气阻力,重力加速度大小为g。则( )
A.D的初动能与爆炸后瞬间A的动能相等
B.D的初动能与其落地时的动能相等
C.弹药释放的能量为
D.弹药释放的能量为
45.(2023·新课标卷·高考真题)(多选)一质量为1kg的物体在水平拉力的作用下,由静止开始在水平地面上沿x轴运动,出发点为x轴零点,拉力做的功W与物体坐标x的关系如图所示。物体与水平地面间的动摩擦因数为0.4,重力加速度大小取10m/s2。下列说法正确的是( )
A.在x = 1m时,拉力的功率为6W
B.在x = 4m时,物体的动能为2J
C.从x = 0运动到x = 2m,物体克服摩擦力做的功为8J
D.从x = 0运动到x = 4的过程中,物体的动量最大为2kg m/s
46.(2025·浙江·高考真题)某兴趣小组设计了一传送装置,其竖直截面如图所示。AB是倾角为的斜轨道,BC是以恒定速率顺时针转动的水平传送带,紧靠C端有半径为R、质量为M置于光滑水平面上的可动半圆弧轨道,水平面和传送带BC处于同一高度,各连接处平滑过渡。现有一质量为m的物块,从轨道AB上与B相距L的P点由静止下滑,经传送带末端C点滑入圆弧轨道。物块与传送带间的动摩擦因数为,其余接触面均光滑。已知,,,,,。不计空气阻力,物块可视为质点,传送带足够长。求物块
(1)滑到B点处的速度大小;
(2)从B点运动到C点过程中摩擦力对其做的功;
(3)在传送带上滑动过程中产生的滑痕长度;
(4)即将离开圆弧轨道最高点的瞬间,受到轨道的压力大小。
47.(2025·河北·高考真题)某电磁助推装置设计如图,超级电容器经调控系统为电路提供1000A的恒定电流,水平固定的平行长直导轨处于垂直水平面的匀强磁场中,a可视为始终垂直导轨的导体棒,b为表面绝缘的无人机。初始时a静止于MM′处,b静止于a右侧某处。现将开关S接1端,a与b正碰后锁定并一起运动,损失动能全部储存为弹性势能。当a运行至NN′时将S接2端,同时解除锁定,所储势能瞬间全部转化为动能,a与b分离。已知电容器电容C为10F,导轨间距为0.5m,磁感应强度大小为1T,MM′到NN′的距离为5m,a、b质量分别为2kg、8kg,a在导轨间的电阻为0.01Ω。碰撞、分离时间极短,各部分始终接触良好,不计导轨电阻、摩擦和储能耗损,忽略电流对磁场的影响。
(1)若分离后某时刻a的速度大小为10m/s,求此时通过a的电流大小。
(2)忽略a、b所受空气阻力,当a与b的初始间距为1.25m时,求b分离后的速度大小,分析其是否为b能够获得的最大速度;并求a运动过程中电容器的电压减小量。
(3)忽略a所受空气阻力,若b所受空气阻力大小与其速度v的关系为f = kv2(k = 0.025N·s2/m2),初始位置与(2)问一致,试估算a运行至NN′时。a分离前的速度大小能否达到(2)问中分离前速度的99%,并给出结论。(0.992 = 0.980l)
48.(2025·福建·高考真题)如图甲,水平地面上有A、B两个物块,两物块质量均为0.2kg,A与地面动摩擦因数为,B与地面无摩擦,两物块在外力F的作用下向右前进,F与位移x的图如图乙所示,P为圆弧最低点,M为最高点,水平地面长度大于4m,重力加速度。
(1)求,F做的功;
(2)时,A与B之间的弹力;
(3)要保证B能到达M点,圆弧半径满足的条件。
49.(2025·黑吉辽蒙卷·高考真题)如图,一雪块从倾角的屋顶上的点由静止开始下滑,滑到A点后离开屋顶。O、A间距离,A点距地面的高度,雪块与屋顶的动摩擦因数。不计空气阻力,雪块质量不变,取,重力加速度大小。求:
(1)雪块从A点离开屋顶时的速度大小;
(2)雪块落地时的速度大小,及其速度方向与水平方向的夹角。
50.(2025·广东·高考真题)如图所示,用开瓶器取出紧塞在瓶口的软木塞时,先将拔塞钻旋入木塞内,随后下压把手,使齿轮绕固定支架上的转轴转动,通过齿轮啮合,带动与木塞相固定的拔塞钻向上运动。从0时刻开始,顶部与瓶口齐平的木塞从静止开始向上做匀加速直线运动,木塞所受摩擦力f随位移大小x的变化关系为,其中为常量,h为圆柱形木塞的高,木塞质量为m,底面积为S,加速度为a,齿轮半径为r,重力加速度为g,瓶外气压减瓶内气压为且近似不变,瓶子始终静止在桌面上。(提示:可用图线下的“面积”表示f所做的功)求:
(1)木塞离开瓶口的瞬间,齿轮的角速度。
(2)拔塞的全过程,拔塞钻对木塞做的功W。
(3)拔塞过程中,拔塞钻对木塞作用力的瞬时功率P随时间t变化的表达式。
51.(2024·海南·高考真题)某游乐项目装置简化如图,A为固定在地面上的光滑圆弧形滑梯,半径,滑梯顶点a与滑梯末端b的高度,静止在光滑水平面上的滑板B,紧靠滑梯的末端,并与其水平相切,滑板质量,一质量为的游客,从a点由静止开始下滑,在b点滑上滑板,当滑板右端运动到与其上表面等高平台的边缘时,游客恰好滑上平台,并在平台上滑行停下。游客视为质点,其与滑板及平台表面之间的动摩擦系数均为,忽略空气阻力,重力加速度,求:
(1)游客滑到b点时对滑梯的压力的大小;
(2)滑板的长度L
52.(2024·辽宁·高考真题)如图,高度的水平桌面上放置两个相同物块A、B,质量。A、B间夹一压缩量的轻弹簧,弹簧与A、B不栓接。同时由静止释放A、B,弹簧恢复原长时A恰好从桌面左端沿水平方向飞出,水平射程;B脱离弹簧后沿桌面滑行一段距离后停止。A、B均视为质点,取重力加速度。求:
(1)脱离弹簧时A、B的速度大小和;
(2)物块与桌面间的动摩擦因数μ;
(3)整个过程中,弹簧释放的弹性势能。
考点4机械能守恒定律
53.(2025·河南·高考真题)野外高空作业时,使用无人机给工人运送零件。如图,某次运送过程中的一段时间内,无人机向左水平飞行,零件用轻绳悬挂于无人机下方,并相对于无人机静止,轻绳与竖直方向成一定角度。忽略零件所受空气阻力,则在该段时间内( )
A.无人机做匀速运动 B.零件所受合外力为零
C.零件的惯性逐渐变大 D.零件的重力势能保持不变
54.(2023·浙江·高考真题)一位游客正在体验蹦极,绑上蹦极专用的橡皮绳后从跳台纵身而下。游客从跳台下落直到最低点过程中( )
A.弹性势能减小 B.重力势能减小
C.机械能保持不变 D.绳一绷紧动能就开始减小
55.(2024·北京·高考真题)如图所示,光滑水平轨道AB与竖直面内的光滑半圆形轨道BC在B点平滑连接。一小物体将轻弹簧压缩至A点后由静止释放,物体脱离弹簧后进入半圆形轨道,恰好能够到达最高点C。下列说法正确的是( )
A.物体在C点所受合力为零
B.物体在C点的速度为零
C.物体在C点的向心加速度等于重力加速度
D.物体在A点时弹簧的弹性势能等于物体在C点的动能
56.(2024·浙江·高考真题)如图所示,质量为m的足球从水平地面上位置1被踢出后落在位置3,在空中达到最高点2的高度为h,则足球( )
A.从1到2动能减少 B.从1到2重力势能增加
C.从2到3动能增加 D.从2到3机械能不变
57.(2023·浙江·高考真题)一位游客正在体验蹦极,绑上蹦极专用的橡皮绳后从跳台纵身而下。游客从跳台下落直到最低点过程中( )
A.弹性势能减小 B.重力势能减小
C.机械能保持不变 D.绳一绷紧动能就开始减小
58.(2024·浙江·高考真题)如图所示,质量为m的足球从水平地面上位置1被踢出后落在位置3,在空中达到最高点2的高度为h,则足球( )
A.从1到2动能减少 B.从1到2重力势能增加
C.从2到3动能增加 D.从2到3机械能不变
59.(2023·全国甲卷·高考真题)一同学将铅球水平推出,不计空气阻力和转动的影响,铅球在平抛运动过程中( )
A.机械能一直增加 B.加速度保持不变
C.速度大小保持不变 D.被推出后瞬间动能最大
60.(2025·全国卷·高考真题)如图,撑杆跳高运动中,运动员经过助跑、撑杆起跳,最终越过横杆。若运动员起跳前助跑速度为10m/s,则理论上运动员助跑获得的动能可使其重心提升的最大高度为(重力加速度取10m/s2)( )
A.4m B.5m C.6m D.7m
61.(2024·福建·高考真题)(多选)如图,某同学在水平地面上先后两次从点抛出沙包,分别落在正前方地面和处。沙包的两次运动轨迹处于同一竖直平面,且交于点,点正下方地面处设为点。已知两次运动轨迹的最高点离地高度均为,,,,沙包质量为,忽略空气阻力,重力加速度大小取,则沙包( )
A.第一次运动过程中上升与下降时间之比
B.第一次经点时的机械能比第二次的小
C.第一次和第二次落地前瞬间的动能之比为
D.第一次抛出时速度方向与落地前瞬间速度方向的夹角比第二次的大
62.(2025·安徽·高考真题)如图,M、N为固定在竖直平面内同一高度的两根细钉,间距。一根长为的轻绳一端系在M上,另一端竖直悬挂质量的小球,小球与水平地面接触但无压力。时,小球以水平向右的初速度开始在竖直平面内做圆周运动。小球牵引着绳子绕过N、M,运动到M正下方与M相距L的位置时,绳子刚好被拉断,小球开始做平抛运动。小球可视为质点,绳子不可伸长,不计空气阻力,重力加速度g取。
(1)求绳子被拉断时小球的速度大小,及绳子所受的最大拉力大小;
(2)求小球做平抛运动时抛出点到落地点的水平距离;
(3)若在时,只改变小球的初速度大小,使小球能通过N的正上方且绳子不松弛,求初速度的最小值。
63.(2025·海南·高考真题)足够长的传送带固定在竖直平面内,半径,圆心角的圆弧轨道与平台平滑连接,平台与顺时针匀速转动的水平传送带平滑连接,工件A从圆弧顶点无初速度下滑,在平台与B碰成一整体,B随后滑上传送带,已知,,A、B可视为质点,AB与传送带间的动摩擦因数恒定,在传送带上运动的过程中,因摩擦生热,忽略轨道及平台的摩擦,
(1)A滑到圆弧最低点时受的支持力;
(2)A与B整个碰撞过程中损失的机械能;
(3)传送带的速度大小。
64.(2024·山东·高考真题)如图所示,质量均为m的甲、乙两同学,分别坐在水平放置的轻木板上,木板通过一根原长为l的轻质弹性绳连接,连接点等高且间距为d(dA. B.
C. D.
65.(2024·全国甲卷·高考真题)如图,一光滑大圆环固定在竖直平面内,质量为m的小环套在大圆环上,小环从静止开始由大圆环顶端经Q点自由下滑至其底部,Q为竖直线与大圆环的切点。则小环下滑过程中对大圆环的作用力大小( )
A.在Q点最大 B.在Q点最小 C.先减小后增大 D.先增大后减小
66.(2024·江苏·高考真题)如图所示,物块B分别通过轻弹簧、细线与水平面上的物体A左右端相连,整个系统保持静止。已知所有接触面均光滑,弹簧处于伸长状态。剪断细线后( )
A.弹簧恢复原长时,A的动能达到最大
B.弹簧压缩最大时,A的动量达到最大
C.弹簧恢复原长过程中,系统的动量增加
D.弹簧恢复原长过程中,系统的机械能增加
67.(2025·陕晋青宁卷·高考真题)(多选)如图,与水平面成夹角且固定于O、M两点的硬直杆上套着一质量为的滑块,弹性轻绳一端固定于O点,另一端跨过固定在Q处的光滑定滑轮与位于直杆上P点的滑块拴接,弹性轻绳原长为OQ,PQ为且垂直于OM。现将滑块无初速度释放,假设最大静摩擦力与滑动摩擦力相等。滑块与杆之间的动摩擦因数为0.16,弹性轻绳上弹力F的大小与其伸长量x满足。,g取,。则滑块( )
A.与杆之间的滑动摩擦力大小始终为
B.下滑与上滑过程中所受滑动摩擦力的冲量相同
C.从释放到静止的位移大小为
D.从释放到静止克服滑动摩擦力做功为
68.(2025·云南·高考真题)(多选)如图所示,倾角为的固定斜面,其顶端固定一劲度系数为k的轻质弹簧,弹簧处于原长时下端位于O点。质量为m的滑块Q(视为质点)与斜面间的动摩擦因数。过程I:Q以速度从斜面底端P点沿斜面向上运动恰好能滑至O点;过程Ⅱ:将Q连接在弹簧的下端并拉至P点由静止释放,Q通过M点(图中未画出)时速度最大,过O点后能继续上滑。弹簧始终在弹性限度内,假设最大静摩擦力等于滑动摩擦力,忽略空气阻力,重力加速度为g。则( )
A.P、M两点之间的距离为
B.过程Ⅱ中,Q在从P点单向运动到O点的过程中损失的机械能为
C.过程Ⅱ中,Q从P点沿斜面向上运动的最大位移为
D.连接在弹簧下端的Q无论从斜面上何处释放,最终一定静止在OM(含O、M点)之间
69.(2025·全国卷·高考真题)如图,物块P固定在水平面上,其上表面有半径为R的圆弧轨道。P右端与薄板Q连在一起,圆弧轨道与Q上表面平滑连接。一轻弹簧的右端固定在Q上,另一端自由。质量为m的小球自圆弧顶端A点上方的B点自由下落,落到A点后沿圆弧轨道下滑,小球与弹簧接触后,当速度减小至刚接触时的时弹簧的弹性势能为2mgR,此时断开P和Q的连接,Q从静止开始向右滑动。g为重力加速度大小,忽略空气阻力,圆弧轨道及Q的上、下表面均光滑,弹簧长度的变化始终在弹性限度内。
(1)求小球从落入圆弧轨道至离开圆弧轨道,重力对其做的功;
(2)求小球与弹簧刚接触时速度的大小及B、A两点间的距离;
(3)欲使P和Q断开后,弹簧的最大弹性势能等于2.2mgR,Q的质量应为多大?
(4)欲使P和Q断开后,Q的最终动能最大,Q的质量应为多大?
70.(2025·山东·高考真题)如图所示,内有弯曲光滑轨道的方形物体置于光滑水平面上,P、Q分别为轨道的两个端点且位于同一高度,P处轨道的切线沿水平方向,Q处轨道的切线沿竖直方向。小物块a、b用轻弹簧连接置于光滑水平面上,b被锁定。一质量的小球自Q点正上方处自由下落,无能量损失地滑入轨道,并从P点水平抛出,恰好击中a,与a粘在一起且不弹起。当弹簧拉力达到时,b解除锁定开始运动。已知a的质量,b的质量,方形物体的质量,重力加速度大小,弹簧的劲度系数,整个过程弹簧均在弹性限度内,弹性势能表达式(x为弹簧的形变量),所有过程不计空气阻力。求:
(1)小球到达P点时,小球及方形物体相对于地面的速度大小、;
(2)弹簧弹性势能最大时,b的速度大小及弹性势能的最大值。
71.(2024·福建·高考真题)如图,木板A放置在光滑水平桌面上,通过两根相同的水平轻弹簧M、N与桌面上的两个固定挡板相连。小物块B放在A的最左端,通过一条跨过轻质定滑轮的轻绳与带正电的小球C相连,轻绳绝缘且不可伸长,B与滑轮间的绳子与桌面平行。桌面右侧存在一竖直向上的匀强电场,A、B、C均静止,M、N处于原长状态,轻绳处于自然伸直状态。时撤去电场,C向下加速运动,下降后开始匀速运动,C开始做匀速运动瞬间弹簧N的弹性势能为。已知A、B、C的质量分别为、、,小球C的带电量为,重力加速度大小取,最大静摩擦力等于滑动摩擦力,弹簧始终处在弹性限度内,轻绳与滑轮间的摩擦力不计。
(1)求匀强电场的场强大小;
(2)求A与B间的滑动摩擦因数及C做匀速运动时的速度大小;
(3)若时电场方向改为竖直向下,当B与A即将发生相对滑动瞬间撤去电场,A、B继续向右运动,一段时间后,A从右向左运动。求A第一次从右向左运动过程中最大速度的大小。(整个过程B未与A脱离,C未与地面相碰)
72.(2024·海南·高考真题)某游乐项目装置简化如图,A为固定在地面上的光滑圆弧形滑梯,半径,滑梯顶点a与滑梯末端b的高度,静止在光滑水平面上的滑板B,紧靠滑梯的末端,并与其水平相切,滑板质量,一质量为的游客,从a点由静止开始下滑,在b点滑上滑板,当滑板右端运动到与其上表面等高平台的边缘时,游客恰好滑上平台,并在平台上滑行停下。游客视为质点,其与滑板及平台表面之间的动摩擦系数均为,忽略空气阻力,重力加速度,求:
(1)游客滑到b点时对滑梯的压力的大小;
(2)滑板的长度L
73.(2024·山东·高考真题)如图甲所示,质量为M的轨道静止在光滑水平面上,轨道水平部分的上表面粗糙,竖直半圆形部分的表面光滑,两部分在P点平滑连接,Q为轨道的最高点。质量为m的小物块静置在轨道水平部分上,与水平轨道间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力。已知轨道半圆形部分的半径,重力加速度大小。
(1)若轨道固定,小物块以一定的初速度沿轨道运动到Q点时,受到轨道的弹力大小等于3mg,求小物块在Q点的速度大小v;
(2)若轨道不固定,给轨道施加水平向左的推力F,小物块处在轨道水平部分时,轨道加速度a与F对应关系如图乙所示。
(i)求μ和m;
(ii)初始时,小物块静置在轨道最左端,给轨道施加水平向左的推力,当小物块到P点时撤去F,小物块从Q点离开轨道时相对地的速度大小为7m/s。求轨道水平部分的长度L。
74.(2024·湖北·高考真题)如图所示,水平传送带以5m/s的速度顺时针匀速转动,传送带左右两端的距离为。传送带右端的正上方有一悬点O,用长为、不可伸长的轻绳悬挂一质量为0.2kg的小球,小球与传送带上表面平齐但不接触。在O点右侧的P点固定一钉子,P点与O点等高。将质量为0.1kg的小物块无初速轻放在传送带左端,小物块运动到右端与小球正碰,碰撞时间极短,碰后瞬间小物块的速度大小为、方向水平向左。小球碰后绕O点做圆周运动,当轻绳被钉子挡住后,小球继续绕P点向上运动。已知小物块与传送带间的动摩擦因数为0.5,重力加速度大小。
(1)求小物块与小球碰撞前瞬间,小物块的速度大小;
(2)求小物块与小球碰撞过程中,两者构成的系统损失的总动能;
(3)若小球运动到P点正上方,绳子不松弛,求P点到O点的最小距离。
75.(2024·辽宁·高考真题)如图,高度的水平桌面上放置两个相同物块A、B,质量。A、B间夹一压缩量的轻弹簧,弹簧与A、B不栓接。同时由静止释放A、B,弹簧恢复原长时A恰好从桌面左端沿水平方向飞出,水平射程;B脱离弹簧后沿桌面滑行一段距离后停止。A、B均视为质点,取重力加速度。求:
(1)脱离弹簧时A、B的速度大小和;
(2)物块与桌面间的动摩擦因数μ;
(3)整个过程中,弹簧释放的弹性势能。
76.(2024·浙江·高考真题)某固定装置的竖直截面如图所示,由倾角的直轨道,半径的圆弧轨道,长度、倾角为的直轨道,半径为R、圆心角为的圆弧管道组成,轨道间平滑连接。在轨道末端F的右侧光滑水平面上紧靠着质量滑块b,其上表面与轨道末端F所在的水平面平齐。质量的小物块a从轨道上高度为h静止释放,经圆弧轨道滑上轨道,轨道由特殊材料制成,小物块a向上运动时动摩擦因数,向下运动时动摩擦因数,且最大静摩擦力等于滑动摩擦力。当小物块a在滑块b上滑动时动摩擦因数恒为,小物块a运动到滑块右侧的竖直挡板能发生完全弹性碰撞。(其它轨道均光滑,小物块视为质点,不计空气阻力,,)
(1)若,求小物块
①第一次经过C点的向心加速度大小;
②在上经过的总路程;
③在上向上运动时间和向下运动时间之比。
(2)若,滑块至少多长才能使小物块不脱离滑块。
77.(2023·河北·高考真题)如图,质量为的薄木板静置于光滑水平地面上,半径为的竖直光滑圆弧轨道固定在地面,轨道底端与木板等高,轨道上端点和圆心连线与水平面成角.质量为的小物块以的初速度从木板左端水平向右滑行,与木板间的动摩擦因数为0.5.当到达木板右端时,木板恰好与轨道底端相碰并被锁定,同时沿圆弧切线方向滑上轨道.待离开轨道后,可随时解除木板锁定,解除锁定时木板的速度与碰撞前瞬间大小相等、方向相反.已知木板长度为取取.
(1)求木板与轨道底端碰撞前瞬间,物块和木板的速度大小;
(2)求物块到达圆弧轨道最高点时受到轨道的弹力大小及离开轨道后距地面的最大高度;
(3)物块运动到最大高度时会炸裂成质量比为的物块和物块,总质量不变,同时系统动能增加,其中一块沿原速度方向运动.为保证之一落在木板上,求从物块离开轨道到解除木板锁定的时间范围.
78.(2023·北京·高考真题)如图所示,质量为m的小球A用一不可伸长的轻绳悬挂在O点,在O点正下方的光滑桌面上有一个与A完全相同的静止小球B,B距O点的距离等于绳长L。现将A拉至某一高度,由静止释放,A以速度v在水平方向和B发生正碰并粘在一起。重力加速度为g。求:
(1)A释放时距桌面的高度H;
(2)碰撞前瞬间绳子的拉力大小F;
(3)碰撞过程中系统损失的机械能。
79.(2023·辽宁·高考真题)某大型水陆两栖飞机具有水面滑行汲水和空中投水等功能。某次演练中,该飞机在水面上由静止开始匀加速直线滑行并汲水,速度达到v =80m/s时离开水面,该过程滑行距离L=1600m、汲水质量m=1.0×10 kg。离开水面后,飞机攀升高度h=100m时速度达到v =100m/s,之后保持水平匀速飞行,待接近目标时开始空中投水。取重力加速度g=10m/s 。求:
(1)飞机在水面滑行阶段的加速度a的大小及滑行时间t;
(2)整个攀升阶段,飞机汲取的水的机械能增加量ΔE。
80.(2023·全国甲卷·高考真题)如图,光滑水平桌面上有一轻质弹簧,其一端固定在墙上。用质量为m的小球压弹簧的另一端,使弹簧的弹性势能为。释放后,小球在弹簧作用下从静止开始在桌面上运动,与弹簧分离后,从桌面水平飞出。小球与水平地面碰撞后瞬间,其平行于地面的速度分量与碰撞前瞬间相等;垂直于地面的速度分量大小变为碰撞前瞬间的。小球与地面碰撞后,弹起的最大高度为h。重力加速度大小为g,忽略空气阻力。求
(1)小球离开桌面时的速度大小;
(2)小球第一次落地点距桌面上其飞出点的水平距离。
81.(2023·浙江·高考真题)铅球被水平推出后的运动过程中,不计空气阻力,下列关于铅球在空中运动时的加速度大小a、速度大小v、动能Ek和机械能E随运动时间t的变化关系中,正确的是( )
A. B.
C. D.
82.(2024·全国甲卷·高考真题)(多选)蹦床运动中,体重为的运动员在时刚好落到蹦床上,对蹦床作用力大小F与时间t的关系如图所示。假设运动过程中运动员身体始终保持竖直,在其不与蹦床接触时蹦床水平。忽略空气阻力,重力加速度大小取。下列说法正确的是( )
A.时,运动员的重力势能最大
B.时,运动员的速度大小为
C.时,运动员恰好运动到最大高度处
D.运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为
83.(2023·重庆·高考真题)(多选)某实验小组测得在竖直方向飞行的无人机飞行高度y随时间t的变化曲线如图所示,E、F、M、N为曲线上的点,EF、MN段可视为两段直线,其方程分别为和。无人机及其载物的总质量为2kg,取竖直向上为正方向。则( )
A.EF段无人机的速度大小为4m/s
B.FM段无人机的货物处于失重状态
C.FN段无人机和装载物总动量变化量大小为4kg m/s
D.MN段无人机机械能守恒
考点5功能关系
84.(2024·浙江·高考真题)如图所示,质量为m的足球从水平地面上位置1被踢出后落在位置3,在空中达到最高点2的高度为h,则足球( )
A.从1到2动能减少 B.从1到2重力势能增加
C.从2到3动能增加 D.从2到3机械能不变
85.(2025·湖南·高考真题)(多选)如图,某爆炸能量测量装置由装载台和滑轨等构成,C是可以在滑轨上运动的标准测量件,其规格可以根据测量需求进行调整。滑轨安装在高度为h的水平面上。测量时,将弹药放入装载台圆筒内,两端用物块A和B封装,装载台与滑轨等高。引爆后,假设弹药释放的能量完全转化为A和B的动能。极短时间内B嵌入C中形成组合体D,D与滑轨间的动摩擦因数为。D在滑轨上运动距离后抛出,落地点距抛出点水平距离为,根据可计算出弹药释放的能量。某次测量中,A、B、C质量分别为、、,,整个过程发生在同一竖直平面内,不计空气阻力,重力加速度大小为g。则( )
A.D的初动能与爆炸后瞬间A的动能相等
B.D的初动能与其落地时的动能相等
C.弹药释放的能量为
D.弹药释放的能量为
考点6能量守恒定律
86.(2025·浙江·高考真题)如图所示,风光互补环保路灯的主要构件有:风力发电机,单晶硅太阳能板,额定电压容量的储能电池,功率的LED灯。已知该路灯平均每天照明;标准煤完全燃烧可发电2.8度,排放二氧化碳。则( )
A.风力发电机的输出功率与风速的平方成正比
B.太阳能板上接收到的辐射能全部转换成电能
C.该路灯正常运行6年,可减少二氧化碳排放量约
D.储能电池充满电后,即使连续一周无风且阴雨,路灯也能正常工作
87.(2025·山东·高考真题)一辆电动小车上的光伏电池,将太阳能转换成的电能全部给电动机供电,刚好维持小车以速度v匀速运动,此时电动机的效率为。已知小车的质量为m,运动过程中受到的阻力(k为常量),该光伏电池的光电转换效率为,则光伏电池单位时间内获得的太阳能为( )
A. B. C. D.
89.(2024·山东·高考真题)如图所示,质量均为m的甲、乙两同学,分别坐在水平放置的轻木板上,木板通过一根原长为l的轻质弹性绳连接,连接点等高且间距为d(dA. B.
C. D.
90.(2024·广西·高考真题)(多选)如图,坚硬的水平地面上放置一木料,木料上有一个竖直方向的方孔,方孔各侧壁完全相同。木栓材质坚硬,形状为正四棱台,上下底面均为正方形,四个侧面完全相同且与上底面的夹角均为。木栓质量为m,与方孔侧壁的动摩擦因数为。将木栓对准方孔,接触但无挤压,锤子以极短时间撞击木栓后反弹,锤子对木栓冲量为I,方向竖直向下。木栓在竖直方向前进了的位移,未到达方孔底部。若进入的过程方孔侧壁发生弹性形变,弹力呈线性变化,最大静摩擦力约等于滑动摩擦力,则( )
A.进入过程,木料对木栓的合力的冲量为
B.进入过程,木料对木栓的平均阻力大小约为
C.进入过程,木料和木栓的机械能共损失了
D.木栓前进后木料对木栓一个侧面的最大静摩擦力大小约为
考点7动力学和能量观点的综合应用
“滑块—木板”模型
91.(2023·全国乙卷·高考真题)(多选)如图,一质量为M、长为l的木板静止在光滑水平桌面上,另一质量为m的小物块(可视为质点)从木板上的左端以速度v0开始运动。已知物块与木板间的滑动摩擦力大小为f,当物块从木板右端离开时( )
A.木板的动能一定等于fl B.木板的动能一定小于fl
C.物块的动能一定大于 D.物块的动能一定小于
92.(2024·辽宁·高考真题)(多选)一足够长木板置于水平地面上,二者间的动摩擦因数为μ。时,木板在水平恒力作用下,由静止开始向右运动。某时刻,一小物块以与木板等大、反向的速度从右端滑上木板。已知到的时间内,木板速度v随时间t变化的图像如图所示,其中g为重力加速度大小。时刻,小物块与木板的速度相同。下列说法正确的是( )
A.小物块在时刻滑上木板 B.小物块和木板间动摩擦因数为2μ
C.小物块与木板的质量比为3︰4 D.之后小物块和木板一起做匀速运动
93.(2024·浙江·高考真题)一弹射游戏装置竖直截面如图所示,固定的光滑水平直轨道AB、半径为R的光滑螺旋圆形轨道BCD、光滑水平直轨道DE平滑连接。长为L、质量为M的平板紧靠长为d的固定凹槽EFGH侧壁EF放置,平板上表面与DEH齐平。将一质量为m的小滑块从A端弹射,经过轨道BCD后滑上平板并带动平板一起运动,平板到达HG即被锁定。已知R=0.5 m,d=4.4 m,L=1.8 m,M=m=0.1 kg,平板与滑块间的动摩擦因数μ1=0.6、与凹槽水平底面FG间的动摩擦因数为μ2。滑块视为质点,不计空气阻力,最大静摩擦力等于滑动摩擦力,重力加速度。
(1)滑块恰好能通过圆形轨道最高点C时,求滑块离开弹簧时速度v0的大小;
(2)若μ2=0,滑块恰好过C点后,求平板加速至与滑块共速时系统损耗的机械能;
(3)若μ2=0.1,滑块能到达H点,求其离开弹簧时的最大速度vm。
94.(2024·新疆河南·高考真题)如图,一长度的均匀薄板初始时静止在一光滑平台上,薄板的右端与平台的边缘O对齐。薄板上的一小物块从薄板的左端以某一初速度向右滑动,当薄板运动的距离时,物块从薄板右端水平飞出;当物块落到地面时,薄板中心恰好运动到O点。已知物块与薄板的质量相等。它们之间的动摩擦因数,重力加速度大小。求
(1)物块初速度大小及其在薄板上运动的时间;
(2)平台距地面的高度。
95.(2023·海南·高考真题)如图所示,有一固定的光滑圆弧轨道,半径,一质量为的小滑块B从轨道顶端滑下,在其冲上长木板C左端时,给木板一个与小滑块相同的初速度,已知,B、C间动摩擦因数,C与地面间的动摩擦因数,C右端有一个挡板,C长为。
求:
(1)滑到的底端时对的压力是多大?
(2)若未与右端挡板碰撞,当与地面保持相对静止时,间因摩擦产生的热量是多少?
(3)在时,B与C右端挡板发生碰撞,且碰后粘在一起,求从滑上到最终停止所用的时间。
传送带模型
96.(2024·北京·高考真题)水平传送带匀速运动,将一物体无初速度地放置在传送带上,最终物体随传送带一起匀速运动。下列说法正确的是( )
A.刚开始物体相对传送带向前运动
B.物体匀速运动过程中,受到静摩擦力
C.物体加速运动过程中,摩擦力对物体做负功
D.传送带运动速度越大,物体加速运动的时间越长
97.(2025·福建·高考真题)(多选)传送带转动的速度大小恒为1m/s,顺时针转动。两个物块A、B,A、B用一根轻弹簧连接,开始弹簧处于原长,A的质量为1kg,B的质量为2kg,A与传送带的动摩擦因数为0.5,B与传送带的动摩擦因数为0.25。t=0时,将两物块放置在传送带上,给A一个向右的初速度v0=2m/s,B的速度为零,弹簧自然伸长。在t=t0时,A与传送带第一次共速,此时弹簧弹性势能Ep=0.75J,传送带足够长,A可在传送带上留下痕迹,重力加速度,则( )
A.在t=时,B的加速度大小大于A的加速度大小
B.t=t0时,B的速度为0.5m/s
C.t=t0时,弹簧的压缩量为0.2m
D.0﹣t0过程中,A与传送带的痕迹小于0.05m
98.(2024·贵州·高考真题)如图,半径为的四分之一光滑圆轨道固定在竖直平面内,其末端与水平地面相切于P点,的长度。一长为的水平传送带以恒定速率逆时针转动,其右端与地面在M点无缝对接。物块a从圆轨道顶端由静止释放,沿轨道下滑至P点,再向左做直线运动至M点与静止的物块b发生弹性正碰,碰撞时间极短。碰撞后b向左运动到达传送带的左端N时,瞬间给b一水平向右的冲量I,其大小为。以后每隔给b一相同的瞬时冲量I,直到b离开传送带。已知a的质量为的质量为,它们均可视为质点。a、b与地面及传送带间的动摩擦因数均为,取重力加速度大小。求:
(1)a运动到圆轨道底端时轨道对它的支持力大小;
(2)b从M运动到N的时间;
(3)b从N运动到M的过程中与传送带摩擦产生的热量。
99.(2024·湖北·高考真题)如图所示,水平传送带以5m/s的速度顺时针匀速转动,传送带左右两端的距离为。传送带右端的正上方有一悬点O,用长为、不可伸长的轻绳悬挂一质量为0.2kg的小球,小球与传送带上表面平齐但不接触。在O点右侧的P点固定一钉子,P点与O点等高。将质量为0.1kg的小物块无初速轻放在传送带左端,小物块运动到右端与小球正碰,碰撞时间极短,碰后瞬间小物块的速度大小为、方向水平向左。小球碰后绕O点做圆周运动,当轻绳被钉子挡住后,小球继续绕P点向上运动。已知小物块与传送带间的动摩擦因数为0.5,重力加速度大小。
(1)求小物块与小球碰撞前瞬间,小物块的速度大小;
(2)求小物块与小球碰撞过程中,两者构成的系统损失的总动能;
(3)若小球运动到P点正上方,绳子不松弛,求P点到O点的最小距离。
用动力学和能量观点分析多运动组合问题
100.(2024·北京·高考真题)将小球竖直向上抛出,小球从抛出到落回原处的过程中,若所受空气阻力大小与速度大小成正比,则下列说法正确的是( )
A.上升和下落两过程的时间相等
B.上升和下落两过程损失的机械能相等
C.上升过程合力的冲量大于下落过程合力的冲量
D.上升过程的加速度始终小于下落过程的加速度
101.(2023·全国乙卷·高考真题)一同学将排球自O点垫起,排球竖直向上运动,随后下落回到O点。设排球在运动过程中所受空气阻力大小和速度大小成正比。则该排球( )
A.上升时间等于下落时间 B.被垫起后瞬间的速度最大
C.达到最高点时加速度为零 D.下落过程中做匀加速运动
102.(2025·云南·高考真题)如图所示,质量为m的滑块(视为质点)与水平面上MN段的动摩擦因数为,与其余部分的动摩擦因数为,且。第一次,滑块从I位置以速度向右滑动,通过MN段后停在水平面上的某一位置,整个运动过程中,滑块的位移大小为,所用时间为;第二次,滑块从Ⅱ位置以相同速度向右滑动,通过MN段后停在水平面上的另一位置,整个运动过程中,滑块的位移大小为,所用时间为。忽略空气阻力,则( )
A. B. C. D.
103.(2023·广东·高考真题)如图为某药品自动传送系统的示意图.该系统由水平传送带、竖直螺旋滑槽和与滑槽平滑连接的平台组成,滑槽高为,平台高为。药品盒A、B依次被轻放在以速度匀速运动的传送带上,在与传送带达到共速后,从点进入滑槽,A刚好滑到平台最右端点停下,随后滑下的B以的速度与A发生正碰,碰撞时间极短,碰撞后A、B恰好落在桌面上圆盘内直径的两端。已知A、B的质量分别为和,碰撞过程中损失的能量为碰撞前瞬间总动能的。与传送带间的动摩擦因数为,重力加速度为g,AB在滑至N点之前不发生碰撞,忽略空气阻力和圆盘的高度,将药品盒视为质点。求:
(1)A在传送带上由静止加速到与传送带共速所用的时间;
(2)B从点滑至点的过程中克服阻力做的功;
(3)圆盘的圆心到平台右端点的水平距离.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)