(进阶篇)2025-2026学年上学期小学数学西师大版六年级第一至四单元期中练习卷
学校:___________姓名:___________班级:___________考号:___________
一、选择题
1.用如图的圆规画一个圆,画出圆的周长是( )cm。
A.3.14 B.6.28 C.12.56 D.25.12
2.下面图形中,阴影部分是扇形的是( )。
A. B. C. D.
3.面粉是大米重量的,( )的重量是单位“1”。
A.面粉 B.大米 C.无法确定
4.一个环形,外圆半径4厘米,内圆直径6厘米,求环形的面积,可列式为( )。
A.3.14×62-3.14×42
B.3.14×[42-(6÷2)2]
C.3.14×42+3.14×(6÷2)2
5.一个不为0的数除以,所得的商是原来的( )倍。
A.100 B. C.10
6.用下面的方法可以测量没有标出圆心的圆的直径,主要是因为( )。
A.圆的大小是由直径决定的 B.一个圆内有无数条直径
C.圆是轴对称图形 D.直径是圆内最长的线段
7.有四种纸杯,分别能装升、升、升、升。玲玲把一瓶2升的果汁倒入了其中的一种纸杯中,大约到了4杯,玲玲用的是( )升的纸杯。
A. B. C. D.
8.如图,一张可折叠圆桌,直径是。餐桌折叠后会成为一个正方形,被折叠部分的面积是( )。
A.113.04 B.30.96 C.41.04 D.65.04
9.如图,已知两个正方形的边长相等,观察两个图形中的阴影部分。下列说法正确的是( )。
A.周长相等,面积不相等。 B.周长和面积都相等。
C.周长不相等,面积相等。 D.周长和面积都不相等。
10.毕达哥拉斯认为:一切平面图形中最美的是圆。为了研究圆,乐乐将一张圆形纸片平均剪成若干份(如图),拼成近似的长方形,且长方形的长约是3π厘米,下面说法正确的是( )。
A.圆的半径约是3厘米 B.圆的周长约是9π厘米 C.圆的面积约是6π平方厘米
二、填空题
11.看图填一填。
圆的半径是( )分米,梯形的上底长是( )分米。
圆的半径是( )厘米,长方形的长是( )厘米。
长方形的宽是( )厘米,长方形的长是( )厘米。
12.( )=( )( )( )。
13.把一张圆形纸对折2次后展开,每份是这张纸的( )。
14.求4个的和是多少,列乘法算式为( ),计算结果是( )。
15.16米的是( )米,50比40多( )(填分数)。
16.如果a÷=b÷=c÷,并且a,b,c都大于零,把a、b、c按从大到小的顺序排列起来是( )。
17.找规律填空。
(1)1,,,( ),( ),。
(2),,,,( ),( )。
18.一块长为45厘米,宽为35厘米的长方形铁皮,从上面剪下直径是10厘米的圆,最多能剪( )个。
19.小明读一本书,第一天读了一部分,已读的和未读的页数比是1∶5,第二天读了30页,这时已读的和未读的页数比是5∶7,这本书有( )页。
三、判断题
20.把一个圆形木板沿着直径锯成两个半圆,其中一个半圆的周长是圆形木板周长的一半。( )
21.一个圆的半径缩小到原来的,则它的面积也缩小到原来的。( )
22.已知a×=b÷(a,b≠0),则a>b。( )
23.如果甲数比乙数多乙数的(均不为0),那么乙数就比甲数少乙数的。( )
四、计算题
24.直接写出得数。
25.解方程。
26.已知AB=BC=CD=5厘米,求阴影部分的面积。(单位:厘米)
五、改错题
27.我会诊断。
(1)化简比。
0.2公顷∶平方米
诊断结论: 订正:
错因分析:
(2)求比值。
千克∶千克
诊断结论: 订正:
错因分析:
六、解答题
28.2023年10月8日,杭州亚运会迎来闭幕。始于秋分,终于寒露。走过一个完整的节气,我们收获了荣耀,刷新了历史。也见证了热爱与拼搏。本届亚运会所有481个小项共产生:金牌482枚,银牌480枚,铜牌631枚。中国体育代表团共收获金牌201枚,银牌数量占银牌总数的,铜牌71枚,取得亚运会参赛历史最好成绩。请你算一算中国共获得多少枚银牌?
29.“苏绣”起源于苏州,为四大名绣之一,是国家级非物质文化遗产。妈妈想绣一幅寓意为家和万事兴的苏绣,如果每天绣,一周能绣完吗?
30.如图,一只看守犬被拴在一个建筑物的墙角处,建筑物的底面是一个长5米、宽4米的长方形,绳子长6米,看守犬活动的范围是多少平方米?
31.初代的“复兴号”载客车厢只有576个座位,为了满足人们对美好生活的需求,我国又成功研制了加长版“复兴号”。某列加长版“复兴号”一共设置了1179个座位,其中商务座18个,其余的是一等座与二等座,数量比是1∶8,这列加长版“复兴号”设置的一等座和二等座各有多少个座位?
32.转化思想是解决问题的重要思想,它是将未知问题转化为已知知识和方法来解决问题的一种策略,割补是解决图形问题的重要方法,我们推导平行四边形、梯形、圆等图形的面积时都有用到,请用已学知识和方法来解决下面的问题吧。
如图1,若AD=8厘米,BC=16厘米,求阴影部分的面积。
先在图2中画一画,涂一涂,再计算。若未使用转化、割补可直接计算。
《(进阶篇)2025-2026学年上学期小学数学西师大版六年级第一至四单元期中练习卷》参考答案
题号 1 2 3 4 5 6 7 8 9 10
答案 C B B B C D D C C A
1.C
【分析】圆规两脚之间的距离表示圆的半径的长,根据圆的周长计算公式:,代入公式,计算即可。
【详解】
(cm)
所以画出圆的周长是12.56cm。
故答案为:C
2.B
【分析】扇形是由圆心角的两条半径和圆心角所对的弧围成的图形,据此判断。
【详解】根据分析可知:
A.该图形两条线段不经过圆心,不是半径,所以不是扇形,该选项错误;
B.该图形是由圆心角的两条半径和圆心角所对的弧围成的图形,是扇形,该选项正确;
C.该图形两条线段不经过圆心,不是半径,所以不是扇形,该选项错误;
D.该图形两条线段不经过圆心,不是半径,所以不是扇形,该选项错误;
故答案为:B
3.B
【分析】一般“的”字之前的物体是单位“1”;或者理解为平均分的是谁谁就是单位“1”。据此解答即可。
【详解】由分析可知:
面粉是大米重量的,大米的重量是单位“1”。
故答案为:B
4.B
【分析】内圆直径6厘米,则内圆半径为(6÷2)厘米,环形的面积=外圆的面积-内圆的面积,,把题中数据代入公式即可。
【详解】分析可知,一个环形,外圆半径4厘米,内圆直径6厘米,求环形的面积,可列式为3.14×[42-(6÷2)2]。
故答案为:B
5.C
【分析】分数除法的法则:一个不为0的数除以分数,等于这个数乘分数的倒数,据此解答。
【详解】例如:6÷=6×10=60
60÷6=10,60是6的10倍。
因此一个不为0的数除以,所得的商是原来的10倍。
故答案为:C
6.D
【分析】圆的直径是圆中过圆心的最长线段。
【详解】根据分析可知,题目中找直径的根据是,直径是圆内最长的线段。
【点睛】考查圆的特点,重点是知道圆的直径是圆内最长的线段。
7.D
【分析】将四个纸杯各自的容积乘4得到这四种纸杯都倒4杯后的果汁的大约容积,再与2升比较,最接近的就是玲玲选用的纸杯,据此解答。
【详解】(升)
(升)
(升)
(升)
因为,,,,,只有大于2,因此玲玲用的是升的纸杯。
故答案为:D
【点睛】本题考查分数与整数的乘法和分数的通分及分数的大小比较。
8.C
【分析】根据题意可知,被折叠部分的面积=圆的面积-正方形的面积。圆的直径是12dm;正方形分成两个底是圆的直径,高是圆的半径的三角形面积,则正方形面积=圆的直径×圆的半径,据此代入数据,即可求出被折叠部分面积。
【详解】3.14×(12÷2)2-12×(12÷2)
=3.14×62-12×6
=3.14×36-72
=113.04-72
=41.04(dm2)
一张可折叠圆桌,直径是12dm。餐桌折叠后会成为一个正方形,被折叠部分的面积是41.04dm2。
故答案为:C
9.C
【分析】由题图可知第一个图的阴影部分周长=圆的周长+正方形的边长×2,阴影部分面积=正方形的面积-圆的面积;第二个图的阴影部分周长=圆的周长,阴影部分面积=正方形的面积-圆的面积,由此做出选择即可。
【详解】因为第一个图的阴影部分周长=圆的周长+正方形的边长×2,阴影部分面积=正方形的面积-圆的面积;第二个图的阴影部分周长=圆的周长,阴影部分面积=正方形的面积-圆的面积,所以两个图形周长不相等、面积相等。
故答案为:C
10.A
【分析】圆剪拼成长方形后,长方形的长等于圆周长的一半。圆的周长公式:。求圆的半径:长方形的长=圆周长的一半=,已知长是厘米,所以,解得半径厘米。据此逐项计算判断。
【详解】长方形的长=圆周长的一半=,已知长是厘米,所以。
解:
A.圆的半径约是3厘米,正确;
B.圆的周长(厘米),不是厘米,错误;
C.圆的面积(平方厘米),不是平方厘米,错误。
故答案为:A
【点睛】解题关键是抓住 “圆剪拼成长方形后,长方形的长等于圆周长的一半()” 这一关系,结合已知的长方形长,求出圆的半径,再验证选项。
11. 6 12 4 12 2 3.6
【分析】第一幅图:梯形的高=圆的半径=6分米,梯形的上底=圆的直径=圆的半径×2;
第二幅图:长方形的长=3×圆的半径,长方形的宽=圆的直径=2×圆的半径=8厘米;
第三幅图:长方形的宽=大圆的直径=2×大圆的半径,长方形的长=大圆的直径+小圆的直径,据此分析填空即可。
【详解】6×2=12(分米)
圆的半径是6分米,梯形的上底是12分米。
8÷2=4(厘米),4×3=12(厘米)
圆的半径是4厘米,长方形的长是12厘米。
1×2=2(厘米)
0.8×2+1×2
=1.6+2
=3.6(厘米)
长方形的宽是2厘米,长方形的长是3.6厘米。
12. 2
【分析】因为两个因数相乘的积都等于1,所以括号里要填的数就是已知因数的倒数;据此填空即可解答。
【详解】4×=1
×=1
×=1
0.5×2=1
所以,=2
13.
【分析】把这张圆形纸对折1次,这张圆形纸被平均分成了2份,每份是这张纸的;对折2次,这张圆形纸被平均分成了4份,每份是这张纸的。
【详解】把一张圆形纸对折2次后展开,每份是这张纸的。
【点睛】本题是考查分数的意义.把单位“1”平均分成若干份,用分数表示,分母是分成的份数,分子是要表示的份数.关键是明白对折2次,这张纸被平均分成了几份。
14.
【分析】根据乘法意义,乘法是表示求几个相同加数的和的简便运算,题目是4个相加,所以是,再用分数乘法计算出结果。
【详解】根据乘法意义,4个的和:,可以表示为;计算结果为。
因此,求4个的和是多少,列乘法算式为,计算结果是。
15. 12
【分析】求一个数的几分之几是多少,用乘法计算,用16乘;求一个数比另一个数多或少几分之几,用差除以另一个数,用(50-40)的差除以40。
【详解】(米)
因此16米的是12米,50比40多。
16.b>c>a
【分析】根据商的变化规律可知:当商相同时,除数越大被除数越大,据此可比较a÷=b÷=c÷算式中除数的大小即可。
【详解】=1
因商相等,除数>1>,所以被除数b>c>a。
【点睛】本题主要考查了学生对商的变化规律:当商相同时,除数越大被除数越大这一规律解答问题的能力。
17.(1)
(2)
【分析】(1)观察各分数可知,分子不变,分母1、4、9、36分别为12、22、32、62,所以第4个空的分母为42,第5个空的分母为52,据此解答。
(2)观察各分数可知,前两个分数的乘积等于第三个数,据此解答。
【详解】(1)第4个空的分母为42=16,即分数为;
第5个空的分母为52=25,即分数为。
(2)第5个空:×=
第6个空:×=
【点睛】解决本题关键是找出数之间的规律,再根据规律求解。
18.12
【分析】先算出长和宽里分别包含几个圆的直径,长为45厘米,45÷10=4.5个,圆的个数是整数,所以长边最多剪4个圆;宽为35厘米,35÷10=3.5个,圆的个数是整数,所以宽边最多剪4个圆。最后将长边能剪的个数乘宽边能剪的个数,即可求出最多能剪多少个圆,据此解答。
【详解】45÷10=4(个)……5(厘米)
35÷10=3(个)……5(厘米)
4×3=12(个)
即最多能剪12个。
19.120
【分析】把这本书的总页数看作单位“1”,第一天读了一部分,已读的和未读的页数比是1∶5,即已读的页数占总页数的;第二天读了30页,这时已读的和未读的页数比是5∶7,即已读的页数占总页数的;
那么第二天读的30页占总页数的(-),单位“1”未知,用第二天读的页数除以(-),即可求出这本书的总页数。
【详解】30÷(-)
=30÷(-)
=30÷(-)
=30÷
=30×4
=120(页)
这本书有120页。
20.×
【分析】半圆的周长为圆的周长的一半加上这个圆的直径,根据圆的周长即可判定正确与否。
【详解】设圆形木板的半径为,直径为,圆形木板的周长为,其一半为,半圆的周长为圆周长的一半加上直径,即,因为,所以半圆的周长不等于圆周长的一半。
故答案为:×
21.√
【分析】假设这个圆的半径为2,半径缩小到原来的后,半径为2×=1,再根据圆的面积公式:S=πr2,据此分别求出变化前后圆的面积,再用变化后的面积除以变化前的面积即可判断。
【详解】假设这个圆的半径为2,则,半径缩小到原来的后
半径为:2×=1
原来圆的面积:3.14×22
=3.14×4
=12.56
变化后圆的面积:
3.14×12
=3.14×1
=3.14
3.14÷12.56=
则它的面积也缩小到原来的。原题说法正确。
故答案为:√
22.√
【分析】除以一个数(0除外)等于乘这个数的倒数,已知a×=b÷(a,b≠0),即a×=b×(a,b≠0)。
乘积相等的算式中(积不为0),一个乘数越大,对应的另一个乘数就越小。据此判断。
【详解】由a×=b÷得a×=b×(a,b≠0)。
因为<,所以a>b。原题结论正确。
故答案为:√
23.√
【分析】甲数比乙数多乙数的(均不为0),假设乙数为5,求一个数的几分之几是多少,用乘法计算,乙数的即为5×=1,所以甲数为5+1=6;乙数比甲数少6-5=1,求一个数是另一个数的几分之几,用除法计算,所以乙数比甲数少乙数的1÷5=。据此判断。
【详解】假设乙数为5。
5+5×
=5+1
=6
(6-5)÷5
=1÷5
=
因此,如果甲数比乙数多乙数的(均不为0),那么乙数就比甲数少乙数的。原题说法正确。
故答案为:√
【点睛】本题关键在于找准单位“1”。甲数比乙数多乙数的,单位“1”是乙数;乙数就比甲数少乙数的,单位“1”是乙数,而非甲数。
24.;9;9;;
0;;4;
【详解】略
25.;
【分析】根据等式的性质2,方程两边同时除以进行解答;
根据等式的性质2,方程两边先同时乘,再同时除以进行解答。
【详解】
解:
解:
26.58.875平方厘米
【分析】阴影部分的面积可以看作由一个以AB为半径的圆的面积减去一个以AB为直径的圆的面积,根据圆的面积S=πr2,代入相应数值计算,据此解答。
【详解】
(平方厘米)
阴影部分的面积是58.875平方厘米。
27.(1)×;错在没有先将比的前项和后项的单位统一,再化简;8000∶1;
(2)×;没有计算出比值;4
【分析】(1)错在没有先将比的前项和后项的单位统一再化简,带单位的两个量的比进行化简时,先统一单位,再化简。把公顷换算成平方米,1公顷=10000平方米,然后根据比的基本性质进行化简即可。
(2)没有计算出比值,在两个数的比中,比的前向除以后项所得的商叫做比值,比值通常用分数表示,也可以用小数或整数表示,(千克∶千克)的比值就是÷的商。
【详解】(1)诊断结论:×
错因分析:错在没有先将比的前项和后项的单位统一,再化简。
订正:0.2公顷∶平方米
=2000平方米∶平方米
=2000∶
=(2000×4)∶(×4)
=8000∶1
(2)诊断结论:×
错因分析:没有计算出比值。
订正:千克∶千克
28.111枚
【分析】将银牌总数看作单位“1”,中国获得的银牌数量占银牌总数的,银牌总数×中国获得的银牌数量对应分率=中国获得的银牌数量,据此列式解答。
【详解】(枚)
答:中国共获得111枚银牌。
29.
不能绣完。
【分析】根据题意,妈妈每天绣,用每天绣的分率乘一周的天数可计算出妈妈一周绣的苏绣占比,再与整数1进行比较,从而判断能否绣完。
【详解】一周有7天,
答:妈妈一周不能绣完这幅苏绣。
30.
88.705平方米
【分析】看守犬被拴在长方形建筑物的墙角,绳子长6米,建筑物长5米、宽4米。看守犬的活动范围可分为三部分:
以绳长6米为半径,圆心角为270°(360°-90°=270°)的扇形,根据圆的面积公式计算出圆的面积,再乘计算出扇形的面积;
当绳子绕过建筑物的宽(4米)后,剩余绳长为6-4=2米,此时有一个以2米为半径,圆心角为90°的扇形,根据圆的面积公式计算出圆的面积,再乘计算出扇形的面积;
当绳子绕过建筑物的长(5米)后,剩余绳长为6-5=1米,此时有一个以1米为半径,圆心角为90°的扇形,根据圆的面积公式计算出圆的面积,再乘计算出扇形的面积;
最后将三部分相加,即为看守犬活动范围的面积。
【详解】3.14×62×
=3.14×36×
=113.04×
=84.78(平方米)
3.14×(6-4)2×
=3.14×22×
=3.14×4×
=12.56×
=3.14(平方米)
3.14×(6-5)2×
=3.14×12×
=3.14×1×
=0.785(平方米)
84.78+3.14+0.785
=87.92+0.785
=88.705(平方米)
答:看守犬活动的范围是88.705平方米。
31.一等座129个,二等座1032个
【分析】根据题意,用1179减去18可以求出一等座与二等座的数量之和。一等座与二等座数量比是1∶8,则一等座的数量占一等座与二等座数量之和的,二等座的数量占一等座与二等座数量之和的,用求得的一等座与二等座数量之和分别乘这两个分数,即可求出一等座和二等座各有多少个座位。
【详解】1179-18=1161(个)
一等座:1161×
=1161×
=129(个)
二等座:1161×
=1161×
=1032(个)
答:一等座有129个座位,二等座有1032个座位。
32.作图见详解;32平方厘米
【分析】将上边两块阴影部分可以割补到下边,拼成2个三角形,左边三角形的底和高都等于圆的半径,右边三角形的底=BC-圆的半径,右边三角形的高=圆的半径,根据三角形面积=底×高÷2,分别求出两个三角形的面积,相加即可。
【详解】
如图:
8÷2=4(厘米)
4×4÷2+(16-4)×4÷2
=8+12×4÷2
=8+24
=32(平方厘米)
答:阴影部分的面积是32平方厘米。
【点睛】熟练运用转化思想,通过图形的割补将阴影部分的面积转化成两个三角形的面积和是解决本题的关键。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)