19.2.3 最简二次根式-课件(共27张PPT)-人教版(新教材)数学八年级下册

文档属性

名称 19.2.3 最简二次根式-课件(共27张PPT)-人教版(新教材)数学八年级下册
格式 pptx
文件大小 7.0MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2025-12-23 07:51:26

图片预览

文档简介

(共27张PPT)
人教版(新教材)数学八年级下册
第十九章 二次根式
19.2.3 最简二次根式
1
复习引入
2
新知讲解
3
典例讲解
5
课堂检测
4
新知讲解
6
变式训练
7
中考考法
8
小结梳理
学习目录
1. 理解最简二次根式的概念,会根据最简二次根式被开方数的两个条件判别二次根式是不是最简二次根式; (重点)
2. 会将非最简二次根式化为最简二次根式;(难点)
3. 通过对化简二次根式方法的探讨,体会比较与分析的思维方法和“求简”、抓“本质”的数学思考方法,培养思维的严谨性.
广播电视塔越高,从塔顶发射出的电磁波传播得越远,从而能收听收看到电视节目的区域就越广.
广播电视塔高 h (单位:km) 与广播电视节目
信号的传播半径 r (单位:km) 之间存在近似
关系 ,其中 R 是地球半径,
R≈6 400 km. 如果两个电视塔的高分别
是 h1 km, h2 km,那么它们的传播半径
之比是 . 如何化简这个式子呢?
问题1:观察各小题的最后结果,这些式子中的二次根式,有什么特点?
(1) 被开方数不含分母;
(2) 被开方数中不含能开得尽平方的因数或因式.
注意:在二次根式的运算中,一般要把最后结果化为最简二次根式,并且分母中不含二次根式.
我们把满足上述两个条件的二次根式,叫作最简二次根式.
(1) 被开方数不含分母;
(2) 被开方数中不含能开得尽平方的因数或因式.
【知识要点】
例1 下列各式是最简二次根式的是 ( )
A.
B.
C.
D.
A
【练一练】1. 在下列各式中,哪些是最简二次根式?哪些不是?对不是最简二次根式的进行化简.
解:只有 (3) 是最简二次根式,
解:(1)
解法1
例2 计算:
(1) ;
(2) ;
(3) .
你还能想出其他的方法吗?
总结:当分母中含有二次根式时,可以利用分式的基本性质,分子、分母同乘一个适当的因式,化去分母中的根号,即进行分母有理化.
解法2
(2)
(3)
小结:在二次根式的运算中,一般要把最后结果化成最简二次根式.
例2 计算:
(1) ;
(2) ;
(3) .
【练一练】2. 化简:
解:
通过上面的学习,同学们来化简一下新课导入中的问题吧!
例3 高空抛物现象被称为“悬在城市上空的痛”.据报道:一个 30 g 的鸡蛋从 18 楼抛下来就可以砸破行人的头骨,从 25 楼抛下可以使人当场死亡.据研究从高空抛物时间 t 和高度 h 近似的满足公式 . 从 100 米高空抛物到落地所需时间 t2 是从 50 米高空抛物到落地所需时间 t1 的多少倍?
解:由题意得
返回
A
【点拨】最简二次根式的两个特点:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.
返回
D
返回
1(答案不唯一)
返回
返回
返回
D
返回
D
3
返回
返回
最简二次根式
分母有理化
特点
相关概念
① 被开方数不含分母
②被开方数不含能开得尽方的因数(或因式)
谢谢观看!
同课章节目录