首页
初中语文
初中数学
初中英语
初中科学
初中历史与社会(人文地理)
初中物理
初中化学
初中历史
初中道德与法治(政治)
初中地理
初中生物
初中音乐
初中美术
初中体育
初中信息技术
资源详情
初中数学
湘教版(2024)
八年级上册
第4章 一元一次不等式(组)
4.2 不等式的基本性质
4.2 不等式的基本性质 教案(共2课时)
文档属性
名称
4.2 不等式的基本性质 教案(共2课时)
格式
zip
文件大小
15.6KB
资源类型
教案
版本资源
湘教版
科目
数学
更新时间
2016-10-20 15:55:17
点击下载
图片预览
1
2
文档简介
4.2 不等式的基本性质 教案
第一课时
教学目的
知识与技能:通过操作,分析得出不等式的基本性质1.
情感态度与价值观:培养学生的分析能力.训练学生的动手能力,提高综合分析解题能力.转化的数学思想.通过本节的学习,进一步渗透化归的数学美.
教学重点:不等式的概念和基本性质1.
教学难点:简单的不等式变形.
教学过程
一、创设问题情景,回顾不等式概念
回答问题:
(1)水果店的小王从水果批发市场购进100千克梨和84千克苹果,你能用“>”或“<”连接梨和苹果的进货量吗?
(2)几天后,小王卖出梨和苹果各a千克,你能用“>”或“<”连接梨和苹果的剩余量吗?
教师提示:(1)100________84;(2)100-a________84-a
学生活动:学生在练习本上完成上述问题,并展开讨论.
二、想一想,认识不等式的基本性质1
1、提出问题:在不等式5>3的两边同时加上或减去2,在横线上填“>”或“<”号.
5+2________3+2;5-2________3-2
2、学生活动:
(1)自己写一个不等式,在它的两边同时加上、减去同一个数,看看有什么结果?
(2)讨论交流,大胆说出自己的“发现”.
3、教师活动:(1)让学生多次尝试;(2)参与学生讨论;(3)归纳指出:
不等式的两边同时加上(或都减去)同一个数或同一个代数式,不等号的方向不变.用字母表示:若a>b,则a+c>b+c用a-c>b-c.
三、做一做,进行简单的不等式变形
1、提出问题:
例1:用“>”或“<”填空
(1)已知a>b,a+3________b+3;(2)已知a>b,a-5________b-5.
学生活动:学生独立完成此题.
说明:解此题的理论依据就是根据不等式的性质1进行变形.
2.例2:把下列不等式化为x>a或x
(1)x+6>5;(2)3x>2x+2.
学生活动:学生尝试将这个不等式变形.
师生共同分析解答.
解:(1)不等式的两边都减去6,得:
x+6-6>5-6
即x>-1.
(2)不等式两边都减去2x,得:
3x-2x>2x+2-2x
即x>2.
教师指出:像例2那样,把不等式的某一项变号后移到另一边.称为移项,这与解一元一次方程中的移项相类似.
四、随堂练习
P135练习1,2.
课堂小结
1、不等式的概念和基本性质1;移项.
2.简单不等式的变形.
第2课时
教学目标
知识与技能:在具体情景中,进一步感受不等式是刻画现实世界的有效模型.
过程与方法:掌握不等式的性质2、3.并能运用这些性质将不等式进行变形.
情感态度与价值观:培养学生的分析能力.训练学生的动手能力,提高综合分析解题能力、转化的数学思想.通过本节的学习,进一步渗透化归的数学美.
教学重点
不等式的基本性质.
教学难点
对不等式的基本性质3的理解.
教学过程
一、创设情境引入
1、提出问题
(1)如果梨的价格是每千克3元,苹果的价格是每千克4元.梨和苹果各买10千克.买哪种水果花钱较多?买0.5千克呢?
(2)在不等式12>9的两边同时乘(或除以)-2.不等号片向如何变化?
用“>”或“<”号填它:
教师提示:
(1)3×10________4×10;3÷2________4÷2.
(2)12×(-2)________9×(-2);12÷(-2)________9÷(-2).
学生活动:学生通过计算完成上述问题,并展开讨论.
教师活动:引导学生分析(1))3<4.而3×10<4×10,3÷2<4÷2这说明了什么?10和3是一个什么数?(2)12>9,而12×(-2)<9×(-2),12÷(-2)<9÷(-2),这说明了什么?-2是一个什么数?
学生活动:
(1)仿照不等式基本性质1说出不等式的其他两个性质.
(2)自已写一个不等式分别在它的两边都乘(或除以)同一个正数或负数,看看是否有相同的结论?
2、教师归纳
不等式还有下面的基本性质:
(1)不等式的两边都乘(或除以)同一个正数,不等号的方向不变.
即:如果a>b.c>0,那么ac>bc.且
(2)不等式的两边都乘以(或除以)同一个负数.不等号的方向改变.
即:如果a>b.c<0,那么ac
二、做一做
1、用“>”或“<”号填空.
(1)已知a>b,则3a________3b.
(2)巳知a>b,则-a________-b.
(3)已知a>b,则-a+2________-b+2.
学生活动:根据不等式的基丰性质完成此题.
2.提出问题:小明在不等式-1<0的两边都乘-1,得1<0!错在哪里?
学生活动:分小组讨论.并把结论与同伴交流.
师生共同分析;错在不等式-1<0的两边都乘-1时,不等号的方向没有改变,正确的结果应是1>0.
三、随堂练习
P137练习1、2题.
课堂小结
1、不等式的基本性质;
2、运用不等式的基本性质对不等式进行变形.
点击下载
同课章节目录
第1章 分式
1.1 分式
1.2 分式的乘法与除法
1.3 整数指数幂
1.4 分式的加法和减法
1.5 可化为一元一次方程的分式方程
第2章 三角形
2.1 三角形
2.2 命题与证明
2.3 等腰三角形
2.4 线段的垂直平分线
2.5 全等三角形
2.6 用尺规作三角形
第3章 实数
3.1 平方根
3.2 立方根
3.3 实数
第4章 一元一次不等式(组)
4.1 不等式
4.2 不等式的基本性质
4.3 一元一次不等式的解法
4.4 一元一次不等式的应用
4.5 一元一次不等式组
第5章 二次根式
5.1 二次根式
5.2 二次根式的乘法和除法
5.3 二次根式的加法和减法
点击下载
VIP下载