本系列资料系2010中考第一轮复习精品资料,每一篇内容分为三个版块:内容解读、考点剖析、真题训练,精选近几年各地中考题,适合全层次初三学生系统复习初中数学知识。
冲刺2010第一轮复习
第四讲 一元二次方程
内容解读
中考中对于一元二次方程的要求主要包括一元二次方程的概念,会用配方法、公式法、因式分解法解一元二次方程,以及用一元二次方程的知识解决实际问题。中考中对于这部分的考查形式多样,注重学生对于方程思想、转化思想等思想方法的考查,对于学生分析问题和解决问题的能力要求也比较高。
考点剖析
1、一元二次方程的概念
例1:(2009山西)请你写出一个有一根为1的一元二次方程: .
答案:答案不唯一,如
例2:(2009威海)若关于的一元二次方程的一个根是,则另一个根是______.
答案:1
2、解一元二次方程
例3:(2009武汉)解方程:.
答案:解:,
,
.
例4:(2009山西)解方程:
答案:解:移项,得配方,得
∴∴
(注:此题还可用公式法,分解因式法求解)
3、根的判别式
例5:(2007芜湖)已知关于x 的一元二次方程 有两个不相等的实数根,则m的取值范围是( )
A. m>-1 B. m<-2 C.m ≥0 D.m<0
答案:A
4、一元二次方程与二次函数
例6:(2007南昌)已知二次函数的部分图象如图所示,则关于的一元二次方程的解为 .
答案:,;
5、一元二次方程的应用
例7:(2008河北)某县为发展教育事业,加强了对教育经费的投入,2007年投入3 000万元,预计2009年投入5 000万元.设教育经费的年平均增长率为,根据题意,下面所列方程正确的是( )
A. B.
C. D.
答案:A
例8:(2008南京)某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为.在温室内,沿前侧内墙保留3m宽的空地,其它三侧内墙各保留1m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是?
答案:解法一:设矩形温室的宽为,则长为.
根据题意,得
.
解这个方程,得
(不合题意,舍去),.
所以,.
答:当矩形温室的长为28m,宽为14m时,蔬菜种植区域的面积是.
解法二:设矩形温室的长为,则宽为.根据题意,得
.
解这个方程,得
(不合题意,舍去),.
所以,.
答:当矩形温室的长为28m,宽为14m时,蔬菜种植区域的面积是.
真题训练
1、(2009长沙)已知关于的方程的一个根为,则实数的值为( )
A.1 B. C.2 D.
2、(2009荆州)用配方法解一元二次方程时可配方得( )
A. B. C. D.
3、(2007成都)下列关于的一元二次方程中,有两个不相等的实数根的方程是( )
A. B.
C. D.
4、(2008济南)关于x的一元二次方程的一个根为2,则a的值是( )
A.1 B. C. D.
5、(2008武汉)下列命题:
①若,则;
②若,则一元二次方程有两个不相等的实数根;
③若,则一元二次方程有两个不相等的实数根;
④若,则二次函数的图像与坐标轴的公共点的个数是2或3.
其中正确的是( )
A.只有①②③ B.只有①③④ C.只有①④ D. 只有②③④.
6、(2009青海)在一幅长为80cm,宽为50cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图5所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为cm,那么满足的方程是( )
A. B.
C. D.
7、(2009十堰)方程(x+2)(x-1)=0的解为 .
8、(2009上海)如果关于的方程(为常数)有两个相等的实数根,那么 .
9、(2009江苏)某县2008年农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100元.设人均年收入的平均增长率为,则可列方程 .
10、(2009包头)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm2.
11、(2008温州)我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.
①x2-3x+1=0;②(x-1)2=3;③x2-3x=0;④x2-2x=4.
12、(2009绵阳)已知关于x的一元二次方程x2 + 2(k-1)x + k2-1 = 0有两个不相等的实数根.
(1)求实数k的取值范围;
(2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.
13、(2009江津)已知a、b、c分别是△ABC的三边,其中a=1,c=4,且关于x的方程有两个相等的实数根,试判断△ABC的形状。
14、(2009常德)常德市工业走廊南起汉寿县太子庙镇,北至桃源县盘塘镇创元工业园.在这一走廊内的工业企业2008年完成工业总产值440亿元,如果要在2010年达到743.6亿元,那么2008年到2010年的工业总产值年平均增长率是多少?《常德工业走廊建设发展规划纲要(草案)》确定2012年走廊内工业总产值要达到1200亿元,若继续保持上面的增长率,该目标是否可以完成?
15、(2008庆阳)如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了多少元钱?
冲刺2010第一轮复习
第四讲 一元二次方程
参考答案
真题训练
1、A 2、B 3、D 4、D 5、B 6、B
7、x=-2,x=1或
8、
9、
10、或
11、①;②;③,;④.
12、(1)△= [ 2(k—1)] 2-4(k2-1)
= 4k2-8k + 4-4k2 + 4 =-8k + 8.
∵ 原方程有两个不相等的实数根,
∴ -8k + 8>0,解得 k<1,即实数k的取值范围是 k<1.
(2)假设0是方程的一个根,则代入得 02 + 2(k-1)· 0 + k2-1 = 0,
解得 k =-1 或 k = 1(舍去).
即当 k =-1时,0就为原方程的一个根.
此时,原方程变为 x2-4x = 0,解得 x1 = 0,x2 = 4,所以它的另一个根是4.
13、解:∵方程有两个相等的实数根
∴△=
∴
∵
∴
∴△ABC为等腰三角形
14、设2008年到2010年的年平均增长率为 x ,则
化简得 : , (舍去)
答:2008年到2010年的工业总产值年平均增长率为 30%,若继续保持上面的增长率,
在2012年将达到1200亿元的目标.
15、设这种箱子底部宽为米,则长为米,
依题意,得.
解得(舍),.
∴ 这种箱子底部长为米、宽为米.
由长方体展开图知,要购买矩形铁皮面积为(米).
∴ 做一个这样的箱子要花元钱.
1米
1米
前
侧
空
地
蔬菜种植区域
PAGE
6