(共33张PPT)
北师大版(新教材)数学八年级下册培优备课课件
3.2图形的旋转(第三课时)
中心对称
第三章 图形的平移与旋转
授课教师: .
班 级: .
时 间: 2026.01.08.
学习目标
理解中心对称的定义及性质,会识别中心对称图形.
会运用中心对称及中心对称图形的性质解决实际问题.
1.从A旋转到B,旋转中心
是 旋转角是多少度呢
2.从A旋转到C呢
3.从A旋转到D呢
O
A
B
C
D
活动一:
导入新知
桌上有四张牌,将其中一张牌旋转180°后,你很快能猜出是哪一张吗?
活动二:
导入新知
重 合
思考:观察下列图形的运动,说一说它们有什么共同点.
旋转角为180°
O
A
O
D
B
C
探究新知
知识点 1
中心对称的概念及性质
1.下列图形中,成中心对称的是( )
返回
A
2.如图,△ABE与△DCF成中心对称,则对称中心是( )
A.点M
B.点P
C.点Q
D.点N
A
返回
如果把一个图形绕着某一点旋转180 ,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做它们的对称中心.
探究新知
中心对称的定义
填一填:
如图,△OAB与△OCD关于点O中心对称 ,则____是对称中心,点A与_____是对称点, 点B与____是对称点.
O
B
C
A
D
O
C
D
探究新知
1.中心对称是一种特殊的旋转.其旋转角是180 °.
2.中心对称是两个图形之间一种特殊的位置关系.
探究新知
结论
3.如图,△ABC与△DEF成中心对称,点O是对称中心,则下列结论不一定正确的是( )
A.点A,D是对应点
B.∠ACB=∠DEF
C.BO=EO
D.AB∥DE
B
返回
4.如图,△DEC与△ABC关于点C成中心对称,AB=3,AC=2,∠CAB=90°,则AE的长为________。
5
返回
如图,旋转三角尺,画出△ABC关于点O中心对称的△A′B′C′ .
A′
C
A
B
B′
C′
O
●
探究新知
做一做:
找一找:
下图中△A′B′C′与△ABC关于点O是成中心对称,你能从图中找到哪些等量关系
A′
B′
C′
A
B
C
O
(1)OA=OA′、OB=OB′、 OC=OC′
(2)△ABC≌△A′B′C′
探究新知
1.成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分.(即对称点与对称中心三点共线)
2.中心对称的两个图形是全等形.
中心对称的性质
结论
探究新知
例2 在平面直角坐标系中,点P(1,1),N(2,0),△MNP和△M1N1P1的顶点都在格点上,△MNP与△M1N1P1关于某一点中心对称,则对称中心的坐标为__________.
(2,1)
探究新知
方法点拨:
确定对称中心的两种方法
1.连接一对对称点,该线段的中点即为对称中心.
2.连接两对对称点,交点即为对称中心.
(1)线段
(2)平行四边形
A
B
思考:将下面的图形绕O点旋转,你有什么发现?
O
O
共同点:
①都绕一点旋转了180度;
②都与原图形完全重合.
探究新知
知识点 2
中心对称图形
把一个图形绕某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.
中心对称图形的定义
中心对称图形是指一个图形.
注意:
结论
探究新知
O
B
A
C
D
5.(8分)如图,在边长为1的小正方形组成的网格中建立平面直角坐标系,小正方形的顶点为格点,△ABC与△EFG的顶点都在格点上。
(1)作△A1B1C1,使△A1B1C1与△ABC关于
原点O成中心对称;
解:如图,△A1B1C1即为所求。
(2)已知△ABC与△EFG关于点P成中心对称,请在图中画出点P的位置,并写出点P的坐标。
解:如图,连接AE,BF,CG相
交于点P,则点P即为所求。
点P的坐标为(-3,-1)。
返回
联系 区别
中心 对称 如果把中心对称的两个图形看成一个图形,那么它就是一个中心对称图形,如果把一个中心对称图形沿着过对称中心的直线分成两个图形,这两个图形成中心对称
两个图形之间的对称关系
中心对称图形
一个图形所具有的特性
中心对称与中心对称图形的联系与区别:
探究新知
6.[烟台中考]2025年4月24日,神舟二十号载人飞船成功发射,以壮丽升空将第10个中国航天日从纪念变为庆祝。下列航天图案是中心对称图形的是( )
D
返回
7.[扬州中考]窗棂是中国传统木构建筑的重要元素,既散发着古典之韵,又展现了几何之美。下列窗棂图案中,是轴对称图形但不是中心对称图形的是( )
C
返回
8.如图所示的图形是中心对称图形,则其对称中心是( )
A.点C
B.点D
C.线段BC的中点
D.线段FC的中点
D
返回
9.围棋起源于中国,古代称为“弈”。如图是两位同学的部分对弈图,轮到白方落子。若白方落子后的对弈图是中心对称图形,则白方落子的位置只可能
是下列位置中的( )
A.① B.②
C.③ D.④
A
返回
10.已知点P1(a-1,1)和P2(2,b-1)关于原点对称,则(a+b)2 026的值为( )
A.1 B.0 C.-1 D.(-3)2 026
A
返回
11.如图,已知△ABC与△CDA关于点O成中心对称,连接BD,过点O任作直线分别交AD,BC于点M,N,下列结论:①点M和点N,点B和点D分别关于点O对称;②直线BD必经过点O;③四边形ABCD是中心对称图形;④四边形DMOC和四边形BNOA的面积相等;⑤△AOM和△CON成中心对称。其中正确的有( )
A.2个 B.3个
C.4个 D.5个
D
返回
12.如图,直线a,b垂直且相交于点O,曲线C,C′关于点O成中心对称,点A的对称点是点A′,AB⊥a于点B,A′D⊥b于点D。若OB=3,OD=2,则阴影部分的面积之和为________。
6
返回
13.如图,BO是等腰三角形ABC的底边中线,若AC=2,AB=4,△PQC与△BOC关于点C成中心对称,连接AP,则AP的长是________。
返回
14.(8分)图①、图②均是6×6的正方形网格,每个小正方形的顶点称为格点,小正方形的边长均为1,点A,B,C,D均在格点上,在图①、图②中,只用无刻度的直尺,在给定的网格中按要求画图,
所画图形的顶点均在格点
上,不要求写出画法。
(1)在图①中以线段AB为边画一个四边形ABEF,使四边形ABEF既是轴对称图形又是中心对称图形;
解:如图①所示,四边形ABEF
即为所求。(答案不唯一)
(2)在图②中以线段CD为边画一个四边形CDGH,使四边形CDGH只是中心对称图形。
解:如图②所示,四边形CDGH
即为所求。(答案不唯一)
返回
中心对称和
中心对称图形
概念
如果把一个图形绕着某一点旋转180 ,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.
性质
对应点的连线经过对称中心,且被对称中心平分
作图
应用1:作中心对称图形;
应用2:找出对称中心.
中心对称
中心对称图形
定义
绕着内部一点旋转180°能与本身重合的图形
课堂小结