中小学教育资源及组卷应用平台
第二章相交线与平行线单元培优题2025-2026学年北师大数学七年级下册
一.选择题(共5小题)
1.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是( )
A.平行 B.垂直
C.平行或垂直 D.无法确定
2.如图,AB∥EF,设∠C=90°,那么x、y和z的关系是( )
A.y=x+z B.x+y﹣z=90°
C.x+y+z=180° D.y+z﹣x=90°
3.如图,AB∥CD,∠ABE∠EBF,∠DCE∠ECF,设∠ABE=α,∠E=β,∠F=γ,则α,β,γ的数量关系是( )
A.4β﹣α+γ=360° B.3β﹣α+γ=360°
C.4β﹣α﹣γ=360° D.3β﹣2α﹣γ=360°
4.如图,AB∥CD,F为AB上一点,FD∥EH,且FE平分∠AFG,过点F作FG⊥EH于点G,且∠AFG=2∠D,则下列结论:①∠D=30°;②2∠D+∠EHC=90°;③FD平分∠HFB;④FH平分∠GFD.其中正确结论的个数是( )
A.1个 B.2个 C.3个 D.4个
5.如图,CD∥AB,BC平分∠ACD,CF平分∠ACG,点G、C、D共线,点B、E、A、F共线,∠BAC=40°,∠1=∠2,则下列结论:①CB⊥CF;②∠1=70°;③∠3=2∠4;④∠ACE=2∠4.其中正确的是( )
A.①②③ B.①②④ C.②③④ D.①②③④
二.填空题(共6小题)
6.如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是 .
7.一平面内,三条直线两两相交,最多有3个交点;4条直线两两相交,最多有6个交点;5条直线两两相交,最多有10个交点;8条直线两两相交,最多有 个交点.
8.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C.其中正确的有 .(填序号)
9.如图,AB∥CD,,,DQ,BQ分别平分∠GDE和∠HBE,则∠DFB,∠DQB满足的数量关系为: .
10.【动手操作】如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°.将直角三角板MON绕点O旋转一周,当直线OM与直线OC互相垂直时,∠AOM的度数是 .
11.将一条两边互相平行的纸带沿EF折叠,如图(1),AD∥BC,ED'∥FC',设∠AED'=x°
(1)∠EFB= .(用含x的代数式表示)
(2)若将图1继续沿BF折叠成图(2),∠EFC″= .(用含x的代数式表示).
三.解答题(共16小题)
12.已知,如图,EF⊥AC于F,DB⊥AC于M,∠1=∠2,∠3=∠C,求证:AB∥MN.
13.已知,AB∥CD,试解决下列问题:
(1)如图1,∠1+∠2= ;
(2)如图2,∠1+∠2+∠3= ;
(3)如图3,∠1+∠2+∠3+∠4= ;
(4)如图4,试探究∠1+∠2+∠3+∠4+…+∠n= .
14.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.
小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.
(1)按小明的思路,易求得∠APC的度数为 度;
(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由;
(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出∠APC与α、β之间的数量关系.
15.已知,直线AB∥DC,点P为平面上一点,连接AP与CP.
(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC.
(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC之间的数量关系,并说明理由.
(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC有何数量关系?并说明理由.
16.已知AM∥CN,点B为平面内一点,AB⊥BC于B.
(1)如图1,直接写出∠A和∠C之间的数量关系 ;
(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;
(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.
17.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F
(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为 ;
(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;
(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.
18.“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.
(1)填空:∠BAN= °;
(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?
(3)如图2,若两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作∠ACD交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.
19.已知一个角的两边与另一个角的两边分别平行,请结合图,探索这两个角之间的关系,并说明理由.
(1)如图①,AB∥CD,BE∥DF,∠1与∠2的关系是 ;
证明:
(2)如图②,AB∥CD,BE∥DF,∠1与∠2的关系是 ;
证明:
(3)经过上述证明,我们可得出结论,如果一个角的两边与另一个角的两边分别平行,那么这两个角 ;
(4)若这两个角的两边分别平行,且一个角比另一个角的3倍少60°,则这两个角分别是多少度?
解:
20.当光线经过镜面反射时,入射光线、反射光线与镜面所夹的角对应相等例如:在图①、图②中,都有∠1=∠2,∠3=∠4.设镜子AB与BC的夹角∠ABC=α.
(1)如图①,若α=90°,判断入射光线EF与反射光线GH的位置关系,并说明理由.
(2)如图②,若90°<α<180°,入射光线EF与反射光线GH的夹角∠FMH=β.探索α与β的数量关系,并说明理由.
(3)如图③,若α=120°,设镜子CD与BC的夹角∠BCD=γ(90°<γ<180°),入射光线EF与镜面AB的夹角∠1=m(0°<m<90°),已知入射光线EF从镜面AB开始反射,经过n(n为正整数,且n≤3)次反射,当第n次反射光线与入射光线EF平行时,请直接写出γ的度数.(可用含有m的代数式表示)
21.如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF
(1)求∠EOB的度数;
(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.
(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.
22.如图,AB∥CD,定点E,F分别在直线AB,CD上,在平行线AB,CD之间有一动点P,满足0°<∠EPF<180°.
(1)试问∠AEP,∠EPF,∠PFC满足怎样的数量关系?
解:由于点P是平行线AB,CD之间有一动点,因此需要对点P的位置进行分类讨论:如图1,当P点在EF的左侧时,∠AEP,∠EPF,∠PFC满足数量关系为 ,如图2,当P点在EF的右侧时,∠AEP,∠EPF,∠PFC满足数量关系为 .
(2)如图3,QE,QF分别平分∠PEB和∠PFD,且点P在EF左侧.
①若∠EPF=60°,则∠EQF= .
②猜想∠EPF与∠EQF的数量关系,并说明理由;
③如图4,若∠BEQ与∠DFQ的角平分线交于点Q1,∠BEQ1与∠DFQ1的角平分线交于点Q2,∠BEQ2,与∠DFQ2的角平分线交于点Q3;此次类推,则∠EPF与∠EQ2018F满足怎样的数量关系?(直接写出结果)
23.已知AB∥CD,点M、N分别是AB、CD上两点,点G在AB、CD之间,连接MG、NG.
(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;
(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG=40°,求∠MGN+∠MPN的度数;
(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=102°,求∠AME的度数.(直接写出结果)
24.将△ABC纸片沿DE折叠,其中∠B=∠C.
(1)如图1,点C落在BC边上的点F处,AB与DF是否平行?请说明理由;
(2)如图2,点C落在四边形ABCD内部的点G处,探索∠B与∠1+∠2之间的数量关系,并说明理由.
25.问题情境
在综合与实践课上,老师让同学们以“两条平行线AB,CD和一块含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”为主题开展数学活动.
操作发现
(1)如图(1),小明把三角尺的60°角的顶点G放在CD上,若∠2=2∠1,求∠1的度数;
(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF与∠FGC之间的数量关系;
结论应用
(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG=α,则∠CFG等于 (用含α的式子表示).
26.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=110°.将一直角三角板的直角顶点放在点O处(∠OMN=30°),一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.求∠BON的度数.
(2)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为 (直接写出结果).
(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC的数量关系,并说明理由.
27.已知M、N分别为直线AB,直线CD上的点,且AB∥CD,E在AB,CD之间.
(1)如图1,求证:∠BME+∠DNE=∠MEN;
(2)如图2,P是CD上一点,连PM,作MQ∥EN,若∠QMP=∠BME.
试探究∠E与∠AMP的数量关系,并说明理由;
(3)在(2)的条件下,作NG⊥CD交PM于G,若MP平分∠QME,NF平分∠ENG,若∠MGN=m°,∠MFN=n°,直接写出m与n的数量关系 .
2026年北师大版七年级下册第二章相交线与平行线单元培优题
参考答案与试题解析
一.选择题(共5小题)
题号 1 2 3 4 5
答案 A B A B A
一.选择题(共5小题)
1.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是( )
A.平行 B.垂直
C.平行或垂直 D.无法确定
【分析】如果一条直线垂直于两平行线中的一条,那么它与另一条一定也垂直.再根据“垂直于同一条直线的两直线平行”,可知L1与L8的位置关系是平行.
【解答】解:∵l2∥l3,l3⊥l4,l4∥l5,l5⊥l6,l6∥l7,l7⊥l8,
∴l2⊥l4,l4⊥l6,l6⊥l8,
∴l2⊥l8.
∵l1⊥l2,
∴l1∥l8.
故选:A.
【点评】灵活运用“垂直于同一条直线的两直线平行”是解决此类问题的关键.
2.如图,AB∥EF,设∠C=90°,那么x、y和z的关系是( )
A.y=x+z B.x+y﹣z=90°
C.x+y+z=180° D.y+z﹣x=90°
【分析】过C作CM∥AB,延长CD交EF于N,根据三角形外角性质求出∠CNE=y﹣z,根据平行线性质得出∠1=x,∠2=∠CNE,代入求出即可.
【解答】解:过C作CM∥AB,延长CD交EF于N,
则∠CDE=∠E+∠CNE,
即∠CNE=y﹣z
∵CM∥AB,AB∥EF,
∴CM∥AB∥EF,
∴∠ABC=x=∠1,∠2=∠CNE,
∵∠BCD=90°,
∴∠1+∠2=90°,
∴x+y﹣z=90°.
故选:B.
【点评】本题考查了平行线的性质和三角形外角性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,题目比较好,难度适中.
3.如图,AB∥CD,∠ABE∠EBF,∠DCE∠ECF,设∠ABE=α,∠E=β,∠F=γ,则α,β,γ的数量关系是( )
A.4β﹣α+γ=360° B.3β﹣α+γ=360°
C.4β﹣α﹣γ=360° D.3β﹣2α﹣γ=360°
【分析】过E作EN∥AB,过F作FQ∥AB,根据已知条件得出∠ABF=3α,∠DCF=4∠ECD,求出AB∥EN∥CD,AB∥FQ∥CD,根据平行线的性质得出∠ABE=∠BEN=α,∠ECD=∠CEN,∠ABF+∠BFQ=180°,∠DCF+∠CFQ=180°,求出α+∠ECD=β,3α+γ+4∠DCE=360°,再求出答案即可.
【解答】解:过E作EN∥AB,过F作FQ∥AB,
∵∠ABE∠EBF,∠DCE∠ECF,∠ABE=α,
∴∠ABF=3α,∠DCF=4∠ECD,
∵AB∥CD,
∴AB∥EN∥CD,AB∥FQ∥CD,
∴∠ABE=∠BEN=α,∠ECD=∠CEN,∠ABF+∠BFQ=180°,∠DCF+∠CFQ=180°,
∴∠ABE+∠ECD=∠BEN+∠CEN=∠BEC,∠ABF+∠BFQ+∠CFQ+∠DCF=180°+180°=360°,
即α+∠ECD=β,3α+γ+4∠DCE=360°,
∴∠ECD=β﹣α,
∴3α+γ+4(β﹣α)=360°,
即4β﹣α+γ=360°,
故选:A.
【点评】本题考查了平行线的性质和判定,能灵活运用知识点进行推理是解此题的关键.
4.如图,AB∥CD,F为AB上一点,FD∥EH,且FE平分∠AFG,过点F作FG⊥EH于点G,且∠AFG=2∠D,则下列结论:①∠D=30°;②2∠D+∠EHC=90°;③FD平分∠HFB;④FH平分∠GFD.其中正确结论的个数是( )
A.1个 B.2个 C.3个 D.4个
【分析】根据角平分线的性质和平行线的性质解答.延长FG,交CH于I,构造出直角三角形,利用直角三角形两锐角互余解答.
【解答】解:延长FG,交CH于I.
∵AB∥CD,
∴∠BFD=∠D,∠AFI=∠FIH,
∵FD∥EH,
∴∠EHC=∠D,
∵FE平分∠AFG,
∴∠FIH=2∠AFE=2∠EHC,
∴3∠EHC=90°,
∴∠EHC=30°,
∴∠D=30°,
∴2∠D+∠EHC=2×30°+30°=90°,
∴①∠D=30°;②2∠D+∠EHC=90°正确,
∵FE平分∠AFG,
∴∠AFI=30°×2=60°,
∵∠BFD=30°,
∴∠GFD=90°,
∴∠GFH+∠HFD=90°,
可见,∠HFD的值未必为30°,∠GFH未必为45°,只要和为90°即可,
∴③FD平分∠HFB,④FH平分∠GFD不一定正确.
故选B.
【点评】本题考查了角平分线的性质和平行线的性质,二者有机结合,难度较大,需要作出辅助线,对能力要求较高.
5.如图,CD∥AB,BC平分∠ACD,CF平分∠ACG,点G、C、D共线,点B、E、A、F共线,∠BAC=40°,∠1=∠2,则下列结论:①CB⊥CF;②∠1=70°;③∠3=2∠4;④∠ACE=2∠4.其中正确的是( )
A.①②③ B.①②④ C.②③④ D.①②③④
【分析】根据角平分线的意义和平角的定义即可判断①;根据两直线平行,内错角相等和外角的性质得出∠AFC=∠4=∠ACF=20°,∠BCD=∠2,再根据角的和差即可判断②;根据三角形内角和定理即可判断③;根据外角的性质即可判断④.
【解答】解:∵BC平分∠ACD,CF平分∠ACG,
∴,
∵∠ACD+∠ACG=180°,
∴,
∴CB⊥CF,①正确;
∵CD∥AB,∠BAC=40°=∠AFC+∠ACF,
∴∠AFC=∠4=∠ACF=20°,∠BCD=∠2,
∴∠BCD=90°﹣∠4=70°=∠2,
∴∠1=∠2=70°,②正确;
∵∠1+∠2+∠3=180°,
∴∠3=180°﹣∠1﹣∠2=40°,
∴∠3=2∠4,③正确;
∵∠1=∠BAC+∠ACE,
∴∠ACE=∠1﹣∠BAC=30°≠2∠4,④错误;
故选:A.
【点评】本题考查了角平分线的定义,三角形外角的性质,平行线的性质,三角形内角和定理等,熟练掌握知识点是解题的关键,
二.填空题(共6小题)
6.如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是 15° .
【分析】过A点作AB∥a,利用平行线的性质得AB∥b,所以∠1=∠2,∠3=∠4=30°,加上∠2+∠3=45°,易得∠1=15°.
【解答】解:如图,过A点作AB∥a,
∴∠1=∠2,
∵a∥b,
∴AB∥b,
∴∠3=∠4=30°,
而∠2+∠3=45°,
∴∠2=15°,
∴∠1=15°.
故答案为15°.
【点评】本题考查了平行线的性质:两直线平行,内错角相等.
7.一平面内,三条直线两两相交,最多有3个交点;4条直线两两相交,最多有6个交点;5条直线两两相交,最多有10个交点;8条直线两两相交,最多有 28 个交点.
【分析】由已知一平面内,三条直线两两相交,最多有3个交点;4条直线两两相交,最多有6个交点;5条直线两两相交,最多有10个交点总结出:在同一平面内,n条直线两两相交,则有 个交点,代入即可求解.
【解答】解:∵由已知总结出在同一平面内,n条直线两两相交,则最多有 个交点,
∴8条直线两两相交,交点的个数最多为 28.
故答案为:28.
【点评】此题考查的知识点是相交线,关键是此题在相交线的基础上,着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊到一般猜想的方法.
8.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C.其中正确的有 ①②④ .(填序号)
【分析】根据两种三角板的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案.
【解答】解:①∵∠CAB=∠EAD=90°,
∴∠1=∠CAB﹣∠2,∠3=∠EAD﹣∠2,
∴∠1=∠3.
∴①正确.
②∵∠2=30°,
∴∠1=90°﹣30°=60°,
∵∠E=60°,
∴∠1=∠E,
∴AC∥DE.
∴②正确.
③∵∠2=30°,
∴∠3=90°﹣30°=60°,
∵∠B=45°,
∴BC不平行于AD.
∴③错误.
④由②得AC∥DE.
∴∠4=∠C.
∴④正确.
故答案为:①②④.
【点评】此题主要考查学生对平行线判定与性质、余角和补角的理解和掌握,解答此题时要明确两种三角板各角的度数.
9.如图,AB∥CD,,,DQ,BQ分别平分∠GDE和∠HBE,则∠DFB,∠DQB满足的数量关系为: .
【分析】根据拐角∠F和∠Q的特性,作FT∥CD,QK∥AB,根据两直线平行内错角相等分别推出四个角∠DFT,∠TFB,∠DQK,∠KQB对应的相等角,再根据平角的定义和角平分线的定义推出∠DFB,∠DBQ两者的数量关系.
【解答】解:过点F作FT∥CD,过点Q作QK∥AB
∵AB∥CD,
∴CD∥FT∥QK∥AB,
∴∠DFT=∠CDF,∠TFB=∠ABF,∠DQK=∠GDQ,∠KQB=∠QBH,
∴∠DFB=∠DFT+∠TFB=∠CDF+∠ABF∠DQB=∠DQK+∠KQB=∠GDQ+∠QBH,
∵,
∴,
∴,
∵DQ,BQ分别平分∠GDE和∠HBE,
∴,
∵∠GDE+∠CDE=180°,∠HBE+∠ABE=180°,
∴,
∴∴,
∴,
故答案为:.
【点评】本题考查了平行线的性质,涉及到的是知识点有内错角和角平分线的定义,解题过程中是否能熟练掌握两直线平行,内错角相等是解题重点,能否画对辅助线是解题的关键.
10.【动手操作】如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°.将直角三角板MON绕点O旋转一周,当直线OM与直线OC互相垂直时,∠AOM的度数是 135°或45° .
【分析】分OM在直线OC的右侧和OM在直线OC的左侧两种情况求解即可.
【解答】解:∵∠BOC=135°,
∴∠AOC=180°﹣135°=45°.
当OM在直线OC的右侧时,如图,
∵OM⊥OC,
∴∠COM=90°,
∴∠AOM=∠AOC+∠COM=135°.
当OM在直线OC的左侧时,如图,
∵OM⊥OC,
∴∠COM=90°,
∴∠AOM=∠COM﹣∠AOC=45°.
故答案为:135°或45°.
【点评】本题考查了垂直的定义,角的和差计算,数形结合是解答本题的关键.
11.将一条两边互相平行的纸带沿EF折叠,如图(1),AD∥BC,ED'∥FC',设∠AED'=x°
(1)∠EFB= 90°x° .(用含x的代数式表示)
(2)若将图1继续沿BF折叠成图(2),∠EFC″= 90° .(用含x的代数式表示).
【分析】(1)由平行线的性质得∠DEF=∠EFB,∠AEH+∠EHB=180°,折叠和三角形的外角得∠D'EF=∠EFB,∠EFB∠EHB,最后计算出∠EFB=90°x°;
(2)由折叠和平角的定义求出∠EFC'=90°,再次折叠经计算求出∠EFC''=.
【解答】解:(1)如图1所示:
∵AD∥BC,
∴∠DEF=∠EFB,∠AEH+∠EHB=180°,
又∵∠DEF=∠D'EF,
∴∠D'EF=∠EFB,
又∵∠EHB=∠D'EF+∠EFB,
∴∠EFB∠EHB,
又∵∠AED'=x°,
∴∠EHB=180°﹣x°
∴∠EFB90°x°
(2)如图2所示:
∵∠EFB+∠EFC'=180°,
∴∠EFC'=180°﹣(90°°)=90°,
又∵∠EFC'=2∠EFB+∠EFC'',
∴∠EFC''=∠EFC'﹣2∠EFB
=90°2(90°°)
,
故答案为.
【点评】本题综合考查了平行线的性质,折叠问题,等腰三角形的性质,三角形的外角定理,平角的定义和角的和差等相关知识,重点掌握平行线的性质,难点是折叠前后的变及不变的问题,二次折叠角的前后大小等量关系.
三.解答题(共16小题)
12.已知,如图,EF⊥AC于F,DB⊥AC于M,∠1=∠2,∠3=∠C,求证:AB∥MN.
【分析】由于EF⊥AC,DB⊥AC得到EF∥DM,根据平行线的性质得∠2=∠CDM,而∠1=∠2,则∠1=∠CDM,根据平行线的判定得到MN∥CD,所以∠C=∠AMN,又∠3=∠C,于是∠3=∠AMN,然后根据平行线的判定即可得到AB∥MN.
【解答】证明:∵EF⊥AC,DB⊥AC,
∴EF∥DM,
∴∠2=∠CDM,
∵∠1=∠2,
∴∠1=∠CDM,
∴MN∥CD,
∴∠C=∠AMN,
∵∠3=∠C,
∴∠3=∠AMN,
∴AB∥MN.
【点评】本题考查了平行线的判定与性质:内错角相等,两直线平行;两直线平行,同位角相等.
13.已知,AB∥CD,试解决下列问题:
(1)如图1,∠1+∠2= 180° ;
(2)如图2,∠1+∠2+∠3= 360° ;
(3)如图3,∠1+∠2+∠3+∠4= 540° ;
(4)如图4,试探究∠1+∠2+∠3+∠4+…+∠n= 180°(n﹣1) .
【分析】(1)根据两条直线平行,同旁内角互补作答;
(2)过点E作平行于AB的直线,运用两次两条直线平行,同旁内角互补即可得到三个角的和;
(3)分别过点E,F作AB的平行线,运用三次平行线的性质,即可得到四个角的和;
(4)同样作辅助线,运用(n﹣1)次平行线的性质,则n个角的和是(n﹣1)180°.
【解答】
解:(1)∵AB∥CD,∴∠1+∠2=180°(两直线平行,同旁内角互补);
(2)过点E作一条直线EF∥AB,
∵AB∥CD,
∴CD∥EF,
∴∠1+∠AEF=180°,∠FEC+∠3=180°,
∴∠1+∠2+∠3=360°;
(3)过点E、F作EG、FH平行于AB,
∵AB∥CD,
∴AB∥EG∥FH∥CD,
∴∠1+∠AEG=180°,∠GEF+∠EFH=180°,∠HFC+∠4=180°;
∴∠1+∠2+∠3+∠4=540°;
(4)根据上述规律,显然作(n﹣2)条辅助线,运用(n﹣1)次两条直线平行,同旁内角互补.即可得到n个角的和是180°(n﹣1).
【点评】注意此类题要构造平行线,运用平行线的性质进行解决.
14.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.
小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.
(1)按小明的思路,易求得∠APC的度数为 110 度;
(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由;
(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出∠APC与α、β之间的数量关系.
【分析】(1)过P作PE∥AB,通过平行线性质求∠APC即可;
(2)过P作PE∥AB交AC于E,推出AB∥PE∥DC,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案;
(3)分两种情况:P在BD延长线上;P在DB延长线上,分别画出图形,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案.
【解答】(1)解:过点P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠A+∠APE=180°,∠C+∠CPE=180°,
∵∠PAB=130°,∠PCD=120°,
∴∠APE=50°,∠CPE=60°,
∴∠APC=∠APE+∠CPE=110°.
(2)∠APC=α+β,
理由:如图2,过P作PE∥AB交AC于E,
∵AB∥CD,
∴AB∥PE∥CD,
∴α=∠APE,β=∠CPE,
∴∠APC=∠APE+∠CPE=α+β;
(3)如图所示,当P在BD延长线上时,
∠CPA=α﹣β;
如图所示,当P在DB延长线上时,
∠CPA=β﹣α.
【点评】本题主要考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,解题时注意分类思想的运用.
15.已知,直线AB∥DC,点P为平面上一点,连接AP与CP.
(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC.
(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC之间的数量关系,并说明理由.
(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC有何数量关系?并说明理由.
【分析】(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠APC=∠APE+∠CPE=∠BAP+∠DCP进行计算即可;
(2)过K作KE∥AB,根据KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,进而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根据角平分线的定义,得出∠BAK+∠DCK∠BAP∠DCP(∠BAP+∠DCP)∠APC,进而得到∠AKC∠APC;
(3)过K作KE∥AB,根据KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,进而得到∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根据角平分线的定义,得出∠BAK﹣∠DCK∠BAP∠DCP(∠BAP﹣∠DCP)∠APC,进而得到∠AKC∠APC.
【解答】解:(1)如图1,过P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠APE=∠BAP,∠CPE=∠DCP,
∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;
(2)∠AKC∠APC.
理由:如图2,过K作KE∥AB,
∵AB∥CD,
∴KE∥AB∥CD,
∴∠AKE=∠BAK,∠CKE=∠DCK,
∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,
过P作PF∥AB,
同理可得,∠APC=∠BAP+∠DCP,
∵∠BAP与∠DCP的角平分线相交于点K,
∴∠BAK+∠DCK∠BAP∠DCP(∠BAP+∠DCP)∠APC,
∴∠AKC∠APC;
(3)∠AKC∠APC.
理由:如图3,过K作KE∥AB,
∵AB∥CD,
∴KE∥AB∥CD,
∴∠BAK=∠AKE,∠DCK=∠CKE,
∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,
过P作PF∥AB,
同理可得,∠APC=∠BAP﹣∠DCP,
∵∠BAP与∠DCP的角平分线相交于点K,
∴∠BAK﹣∠DCK∠BAP∠DCP(∠BAP﹣∠DCP)∠APC,
∴∠AKC∠APC.
【点评】本题主要考查了平行线的性质以及角平分线的定义的运用,解决问题的关键是作平行线构造内错角,依据两直线平行,内错角相等进行计算.
16.已知AM∥CN,点B为平面内一点,AB⊥BC于B.
(1)如图1,直接写出∠A和∠C之间的数量关系 ∠A+∠C=90° ;
(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;
(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.
【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;
(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;
(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.
【解答】解:(1)如图1,AM与BC的交点记作点O,
∵AM∥CN,
∴∠C=∠AOB,
∵AB⊥BC,
∴∠A+∠AOB=90°,
∴∠A+∠C=90°,
故答案为:∠A+∠C=90°;
(2)如图2,过点B作BG∥DM,
∵BD⊥AM,
∴DB⊥BG,即∠ABD+∠ABG=90°,
又∵AB⊥BC,
∴∠CBG+∠ABG=90°,
∴∠ABD=∠CBG,
∵AM∥CN,BG∥AM,
∴CN∥BG,
∴∠C=∠CBG,
∴∠ABD=∠C;
(3)如图3,过点B作BG∥DM,
∵BF平分∠DBC,BE平分∠ABD,
∴∠DBF=∠CBF,∠DBE=∠ABE,
由(2)可得∠ABD=∠CBG,
∴∠ABF=∠GBF,
设∠DBE=α,∠ABF=β,则
∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,
∴∠AFC=3α+β,
∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,
∴∠FCB=∠AFC=3α+β,
△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得
(2α+β)+3α+(3α+β)=180°,①
由AB⊥BC,可得
β+β+2α=90°,②
由①②联立方程组,解得α=15°,
∴∠ABE=15°,
∴∠EBC=∠ABE+∠ABC=15°+90°=105°.
【点评】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.
17.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F
(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为 ∠PFD+∠AEM=90° ;
(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;
(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.
【分析】(1)由平行线的性质得出∠PFD=∠1,∠2=∠AEM,即可得出结果;
(2)由平行线的性质得出∠PFD+∠1=180°,再由角的互余关系即可得出结果;
(3)由角的互余关系求出∠PHE,再由平行线的性质得出∠PFC的度数,然后由三角形的外角性质即可得出结论.
【解答】解:(1)作PG∥AB,如图①所示:
则PG∥CD,
∴∠PFD=∠1,∠2=∠AEM,
∵∠1+∠2=∠P=90°,
∴∠PFD+∠AEM=∠1+∠2=90°,
故答案为:∠PFD+∠AEM=90°;
(2)证明:如图②所示:
∵AB∥CD,
∴∠PFD+∠BHF=180°,
∵∠P=90°,
∴∠BHF+∠2=90°,
∵∠2=∠AEM,
∴∠BHF=∠PHE=90°﹣∠AEM,
∴∠PFD+90°﹣∠AEM=180°,
∴∠PFD﹣∠AEM=90°;
(3)如图③所示:
∵∠P=90°,
∴∠PHE=90°﹣∠PEB=90°﹣15°=75°,
∵AB∥CD,
∴∠PFC=∠PHE=75°,
∵∠PFC=∠N+∠DON,
∴∠N=75°﹣30°=45°.
【点评】本题考查了平行线的性质、角的互余关系;熟练掌握平行线的性质,弄清角之间的数量关系是解决问题的关键.
18.“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.
(1)填空:∠BAN= 60 °;
(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?
(3)如图2,若两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作∠ACD交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.
【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,即可得到∠BAN的度数;
(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1 (30+t),可得 t=30;当90<t<150时,根据1 (30+t)+(2t﹣180)=180,可得t=110;
(3)设灯A射线转动时间为t秒,根据∠BAC=2t﹣120°,∠BCD=120°﹣∠BCA=t﹣60°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化.
【解答】解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,
∴∠BAN=180°60°,
故答案为:60;
(2)设A灯转动t秒,两灯的光束互相平行,
①当0<t<90时,如图1,
∵PQ∥MN,
∴∠PBD=∠BDA,
∵AC∥BD,
∴∠CAM=∠BDA,
∴∠CAM=∠PBD
∴2t=1 (30+t),
解得 t=30;
②当90<t<150时,如图2,
∵PQ∥MN,
∴∠PBD+∠BDA=180°,
∵AC∥BD,
∴∠CAN=∠BDA
∴∠PBD+∠CAN=180°
∴1 (30+t)+(2t﹣180)=180,
解得 t=110,
综上所述,当t=30秒或110秒时,两灯的光束互相平行;
(3)∠BAC和∠BCD关系不会变化.
理由:设灯A射线转动时间为t秒,
∵∠CAN=180°﹣2t,
∴∠BAC=60°﹣(180°﹣2t)=2t﹣120°,
又∵∠ABC=120°﹣t,
∴∠BCA=180°﹣∠ABC﹣∠BAC=180°﹣t,而∠ACD=120°,
∴∠BCD=120°﹣∠BCA=120°﹣(180°﹣t)=t﹣60°,
∴∠BAC:∠BCD=2:1,
即∠BAC=2∠BCD,
∴∠BAC和∠BCD关系不会变化.
【点评】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.
19.已知一个角的两边与另一个角的两边分别平行,请结合图,探索这两个角之间的关系,并说明理由.
(1)如图①,AB∥CD,BE∥DF,∠1与∠2的关系是 相等 ;
证明:
(2)如图②,AB∥CD,BE∥DF,∠1与∠2的关系是 互补 ;
证明:
(3)经过上述证明,我们可得出结论,如果一个角的两边与另一个角的两边分别平行,那么这两个角 相等或互补 ;
(4)若这两个角的两边分别平行,且一个角比另一个角的3倍少60°,则这两个角分别是多少度?
解:
【分析】(1)根据平行线的性质易得∠1=∠3,∠2=∠3,则∠1=∠2;
(2)根据平行线的性质易得∠1=∠3,∠2+∠3=180°,所以∠1+∠2=180°;
(3)由(1)和(2)的结论进行回答;
(4)设一个角的度数为x,则另一个角的度数为3x﹣60°,根据(3)的结论进行讨论:x=3x﹣60°或x+3x﹣60°=180°,然后分别解方程求出x,则可得到对应两个角的度数.
【解答】解:(1)∠1=∠2.
证明如下:∵AB∥CD,
∴∠1=∠3,
∵BE∥DF,
∴∠2=∠3,
∴∠1=∠2;
故答案为:相等;
(2)∠1+∠2=180°.
证明如下:∵AB∥CD,
∴∠1=∠3,
∵BE∥DF,
∴∠2+∠3=180°,
∴∠1+∠2=180°;
故答案为:互补;
(3)如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补;
故答案为:相等或互补;
(4)设一个角的度数为x,则另一个角的度数为3x﹣60°,
当x=3x﹣60°,解得x=30°,则这两个角的度数分别为30°,30°;
当x+3x﹣60°=180°,解得x=60°,则这两个角的度数分别为60°,120°.
【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
20.当光线经过镜面反射时,入射光线、反射光线与镜面所夹的角对应相等例如:在图①、图②中,都有∠1=∠2,∠3=∠4.设镜子AB与BC的夹角∠ABC=α.
(1)如图①,若α=90°,判断入射光线EF与反射光线GH的位置关系,并说明理由.
(2)如图②,若90°<α<180°,入射光线EF与反射光线GH的夹角∠FMH=β.探索α与β的数量关系,并说明理由.
(3)如图③,若α=120°,设镜子CD与BC的夹角∠BCD=γ(90°<γ<180°),入射光线EF与镜面AB的夹角∠1=m(0°<m<90°),已知入射光线EF从镜面AB开始反射,经过n(n为正整数,且n≤3)次反射,当第n次反射光线与入射光线EF平行时,请直接写出γ的度数.(可用含有m的代数式表示)
【分析】(1)在△BEG中,∠2+∠3+α=180°,α=90°,可得∠2+∠3=90°,根据入射光线、反射光线与镜面所夹的角对应相等可得,∠FEG+∠EGH=180°,进而可得EF∥GH;
(2)在△BEG中,∠2+∠3+α=180°,可得∠2+∠3=180°﹣α,根据入射光线、反射光线与镜面所夹的角对应相等可得,∠MEG=2∠2,∠MGE=2∠3,在△MEG中,∠MEG+∠MGE+β=180°,可得α与β的数量关系;
(3)分两种情况画图讨论:①当n=3时,根据入射光线、反射光线与镜面所夹的角对应相等,及△GCH内角和,可得γ=90°+m.②当n=2时,如果在BC边反射后与EF平行,则α=90°,与题意不符;则只能在CD边反射后与EF平行,根据三角形外角定义,可得∠G=γ﹣60°,由EF∥HK,且由(1)的结论可得,γ=150°.
【解答】解:(1)EF∥GH,理由如下:
在△BEG中,∠2+∠3+α=180°,α=90°,
∴∠2+∠3=90°,
∵∠1=∠2,∠3=∠4,
∴∠1+∠2+∠3+∠4=180°,
∵∠1+∠2+∠FEG=180°,
∠3+∠4+∠EGH=180°,
∴∠FEG+∠EGH=180°,
∴EF∥GH;
(2)β=2α﹣180°,理由如下:
在△BEG中,∠2+∠3+α=180°,
∴∠2+∠3=180°﹣α,
∵∠1=∠2,∠1=∠MEB,
∴∠2=∠MEB,
∴∠MEG=2∠2,
同理可得,∠MGE=2∠3,
在△MEG中,∠MEG+∠MGE+β=180°,
∴β=180°﹣(∠MEG+∠MGE)
=180°﹣(2∠2+2∠3)
=180°﹣2(∠2+∠3)
=180°﹣2(180°﹣α)
=2α﹣180°;
(3)90°+m或150°.
理由如下:①当n=3时,如图所示:
∵∠BEG=∠1=m,
∴∠BGE=∠CGH=60°﹣m,
∴∠FEG=180°﹣2∠1=180°﹣2m,
∠EGH=180°﹣2∠BGE=180°﹣2(60°﹣m),
∵EF∥HK,
∴∠FEG+∠EGH+∠GHK=360°,
则∠GHK=120°,
则∠GHC=30°,
由△GCH内角和,得γ=90°+m.
②当n=2时,如果在BC边反射后与EF平行,则α=90°,
与题意不符;
则只能在CD边反射后与EF平行,
如图所示:
根据三角形外角定义,得
∠G=γ﹣60°,
由EF∥HK,且由(1)的结论可得,
∠G=γ﹣60°=90°,
则γ=150°.
综上所述:γ的度数为:90°+m或150°.
【点评】本题考查了平行线的性质、列代数式,解决本题的关键是掌握平行线的性质,注意分类讨论思想的利用.
21.如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF
(1)求∠EOB的度数;
(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.
(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.
【分析】(1)根据两直线平行,同旁内角互补求出∠AOC,然后求出∠EOB∠AOC,计算即可得解;
(2)根据两直线平行,内错角相等可得∠AOB=∠OBC,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠OFC=2∠OBC,从而得解;
(3)根据三角形的内角和定理求出∠COE=∠AOB,从而得到OB、OE、OF是∠AOC的四等分线,再利用三角形的内角和定理列式计算即可得解.
【解答】解:(1)∵CB∥OA,
∴∠AOC=180°﹣∠C=180°﹣100°=80°,
∵OE平分∠COF,
∴∠COE=∠EOF,
∵∠FOB=∠AOB,
∴∠EOB=∠EOF+∠FOB∠AOC80°=40°;
(2)∵CB∥OA,
∴∠AOB=∠OBC,
∵∠FOB=∠AOB,
∴∠FOB=∠OBC,
∴∠OFC=∠FOB+∠OBC=2∠OBC,
∴∠OBC:∠OFC=1:2,是定值;
(3)在△COE和△AOB中,
∵∠OEC=∠OBA,∠C=∠OAB,
∴∠COE=∠AOB,
∴OB、OE、OF是∠AOC的四等分线,
∴∠COE∠AOC80°=20°,
∴∠OEC=180°﹣∠C﹣∠COE=180°﹣100°﹣20°=60°,
故存在某种情况,使∠OEC=∠OBA,此时∠OEC=∠OBA=60°.
【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.
22.如图,AB∥CD,定点E,F分别在直线AB,CD上,在平行线AB,CD之间有一动点P,满足0°<∠EPF<180°.
(1)试问∠AEP,∠EPF,∠PFC满足怎样的数量关系?
解:由于点P是平行线AB,CD之间有一动点,因此需要对点P的位置进行分类讨论:如图1,当P点在EF的左侧时,∠AEP,∠EPF,∠PFC满足数量关系为 ∠EPF=∠AEP+∠PFC ,如图2,当P点在EF的右侧时,∠AEP,∠EPF,∠PFC满足数量关系为 ∠AEP+∠EPF+∠PFC=360° .
(2)如图3,QE,QF分别平分∠PEB和∠PFD,且点P在EF左侧.
①若∠EPF=60°,则∠EQF= 150° .
②猜想∠EPF与∠EQF的数量关系,并说明理由;
③如图4,若∠BEQ与∠DFQ的角平分线交于点Q1,∠BEQ1与∠DFQ1的角平分线交于点Q2,∠BEQ2,与∠DFQ2的角平分线交于点Q3;此次类推,则∠EPF与∠EQ2018F满足怎样的数量关系?(直接写出结果)
【分析】(1)过点P作PH∥AB,利用平行线的性质即可求解;
(2)设:∠BEQ=∠QEP=α,∠QFD=∠PFQ=β,则∠P=180°﹣2α+180°﹣2β,∠Q=α+β,∠Q1(α+β),∠Q2(α+β),即可求解.
【解答】解:(1)如图1,过点P作PH∥AB,
则∠EPF=∠EPH+∠FPH=∠AEP+∠CFP,
故答案为:∠EPF=∠AEP+∠PFC;
同理可得:∠AEP+∠EPF+∠PFC=360°,
故答案为:∠AEP+∠EPF+∠PFC=360°;
(2)①∠EPF=60°,则∠EQF=150°,
由(1)知∠PEA+∠PFC=∠P=60°,
而∠PFC+2β=180°,∠PEA+2α=180°,
故α+β=150°=∠EQF,
故答案为150°;
②如图3,QE,QF分别平分∠PEB和∠PFD,
设:∠BEQ=∠QEP=α,∠QFD=∠PFQ=β,
则∠P=180°﹣2α+180°﹣2β=360°﹣2(α+β),
∠Q=α+β,
即:∠EPF+2∠EQF=360°;
③同理可得:∠Q1(α+β),∠Q2(α+β),
∠Q2018=()2018(α+β),
故:∠EPF+22019 ∠EQ2018F=360°.
【点评】本题主要考查了平行线的性质,平行公理和及推论等知识点,作辅助线后能求出各个角的度数,是解此题的关键.
23.已知AB∥CD,点M、N分别是AB、CD上两点,点G在AB、CD之间,连接MG、NG.
(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;
(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG=40°,求∠MGN+∠MPN的度数;
(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=102°,求∠AME的度数.(直接写出结果)
【分析】(1)过G作GH∥AB,依据两直线平行,内错角相等,即可得到∠AMG+∠CNG的度数;
(2)过G作GK∥AB,过点P作PQ∥AB,设∠GND=α,利用平行线的性质以及角平分线的定义,求得∠MGN=40°+α,∠MPN=80°﹣α,即可得到结论;
(3)过G作GK∥AB,过E作ET∥AB,设∠AMF=x,∠GND=y,利用平行线的性质以及角平分线的定义即可得出结论.
【解答】解:(1)如图1,过G作GH∥AB,
∵AB∥CD,
∴GH∥AB∥CD,
∴∠AMG=∠HGM,∠CNG=∠HGN,
∵MG⊥NG,
∴∠MGN=∠MGH+∠NGH=∠AMG+∠CNG=90°;
(2)如图2,过G作GK∥AB,过点P作PQ∥AB,设∠GND=α,
∵GK∥AB,AB∥CD,
∴GK∥CD,
∴∠KGN=∠GND=α,
∵GK∥AB,∠BMG=40°,
∴∠MGK=∠BMG=40°,
∵MG平分∠BMP,ND平分∠GNP,
∴∠GMP=∠BMG=40°,
∴∠BMP=80°,
∵PQ∥AB,
∴∠MPQ=∠BMP=80°,
∵ND平分∠GNP,
∴∠DNP=∠GND=α,
∵AB∥CD,
∴PQ∥CD,
∴∠QPN=∠DNP=α,
∴∠MGN=40°+α,∠MPN=80°﹣α,
∴∠MGN+∠MPN=40°+α+80°﹣α=120°;
(3)如图3,过G作GK∥AB,过E作ET∥AB,设∠AMF=x,∠GND=y,
∵AB,FG交于M,MF平分∠AME,
∴∠FME=∠FMA=∠BMG=x,
∴∠AME=2x,
∵GK∥AB,
∴∠MGK=∠BMG=x,
∵ET∥AB,
∴∠TEM=∠EMA=2x,
∵CD∥AB∥KG,
∴GK∥CD,
∴∠KGN=∠GND=y,
∴∠MGN=x+y,
∵∠CND=180°,NE平分∠CNG,
∴∠CNG=180°﹣y,∠CNE∠CNG=90°y,
∵ET∥AB∥CD,
∴ET∥CD,
∴∠TEN=∠CNE=90°y,
∴∠MEN=∠TEN﹣∠TEM=90°y﹣2x,∠MGN=x+y,
∵2∠MEN+∠G=102°,
∴2(90°y﹣2x)+x+y=102°,
∴x=26°,
∴∠AME=2x=52°.
【点评】本题主要考查了平行线的性质与判定的综合运用,解决问题的关键是作辅助线构造内错角,利用平行线的性质以及角的和差关系进行推算.
24.将△ABC纸片沿DE折叠,其中∠B=∠C.
(1)如图1,点C落在BC边上的点F处,AB与DF是否平行?请说明理由;
(2)如图2,点C落在四边形ABCD内部的点G处,探索∠B与∠1+∠2之间的数量关系,并说明理由.
【分析】(1)AB与DF平行.根据翻折可得出∠DFC=∠C,结合∠B=∠C即可得出∠B=∠DFC,从而证出AB∥DF;
(2)连接GC,由翻折可得出∠DGE=∠ACB,再根据三角形外角的性质得出∠1=∠DGC+∠DCG,∠2=∠EGC+∠ECG,通过角的运算即可得出∠1+∠2=2∠B.
【解答】解:(1)AB与DF平行.理由如下:
由翻折,得∠DFC=∠C.
又∵∠B=∠C,
∴∠B=∠DFC,
∴AB∥DF.
(2)连接GC,如图所示.
由翻折,得∠DGE=∠ACB.
∵∠1=∠DGC+∠DCG,∠2=∠EGC+∠ECG,
∴∠1+∠2=∠DGC+∠DCG+∠EGC+∠ECG=(∠DGC+∠EGC)+(∠DCG+∠ECG)=∠DGE+∠DCE=2∠ACB.
∵∠B=∠ACB,
∴∠1+∠2=2∠B.
【点评】本题考查了平行线的判定以及翻折得性质,解题的关键是:(1)找出∠B=∠DFC;(2)根据三角形外角的性质利用角的计算求出∠1+∠2=2∠B.本题属于基础题,难度不大,解决该题型题目时,找出相等(或互补)的角是关键.
25.问题情境
在综合与实践课上,老师让同学们以“两条平行线AB,CD和一块含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”为主题开展数学活动.
操作发现
(1)如图(1),小明把三角尺的60°角的顶点G放在CD上,若∠2=2∠1,求∠1的度数;
(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF与∠FGC之间的数量关系;
结论应用
(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG=α,则∠CFG等于 60°﹣α (用含α的式子表示).
【分析】(1)依据AB∥CD,可得∠1=∠EGD,再根据∠2=2∠1,∠FGE=60°,即可得出∠EGD(180°﹣60°)=40°,进而得到∠1=40°;
(2)根据AB∥CD,可得∠AEG+∠CGE=180°,再根据∠FEG+∠EGF=90°,即可得到∠AEF+∠FGC=90°;
(3)依据AB∥CD,可得∠AEF+∠CFE=180°,再根据∠GFE=90°,∠GEF=30°,∠AEG=α,即可得到∠GFC=180°﹣90°﹣30°﹣α=60°﹣α.
【解答】解:(1)如图1,∵AB∥CD,
∴∠1=∠EGD,
又∵∠2=2∠1,
∴∠2=2∠EGD,
又∵∠FGE=60°,
∴∠EGD(180°﹣60°)=40°,
∴∠1=40°;
(2)如图2,∵AB∥CD,
∴∠AEG+∠CGE=180°,
即∠AEF+∠FEG+∠EGF+∠FGC=180°,
又∵∠FEG+∠EGF=90°,
∴∠AEF+∠FGC=90°;
(3)如图3,∵AB∥CD,
∴∠AEF+∠CFE=180°,
即∠AEG+∠FEG+∠EFG+∠GFC=180°,
又∵∠GFE=90°,∠GEF=30°,∠AEG=α,
∴∠GFC=180°﹣90°﹣30°﹣α=60°﹣α.
故答案为:60°﹣α.
【点评】本题主要考查了平行线的性质的运用,解决问题的关键是掌握:两直线平行,同旁内角互补.
26.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=110°.将一直角三角板的直角顶点放在点O处(∠OMN=30°),一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.求∠BON的度数.
(2)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为 11或47 (直接写出结果).
(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC的数量关系,并说明理由.
【分析】(1)根据角平分线的定义以及直角的定义,即可求得∠BON的度数;
(2)分两种情况:ON的反向延长线平分∠AOC或射线ON平分∠AOC,分别根据角平分线的定义以及角的和差关系进行计算即可;
(3)根据∠MON=90°,∠AOC=70°,分别求得∠AOM=90°﹣∠AON,∠NOC=70°﹣∠AON,再根据∠AOM﹣∠NOC=(90°﹣∠AON)﹣(70°﹣∠AON)进行计算,即可得出∠AOM与∠NOC的数量关系.
【解答】解:(1)如图2,∵OM平分∠BOC,
∴∠MOC=∠MOB,
又∵∠BOC=110°,
∴∠MOB=55°,
∵∠MON=90°,
∴∠BON=∠MON﹣∠MOB=35°;
(2)分两种情况:
①如图2,∵∠BOC=110°
∴∠AOC=70°,
当直线ON恰好平分锐角∠AOC时,∠AOD=∠COD=35°,
∴∠BON=35°,∠BOM=55°,
即逆时针旋转的角度为55°,
由题意得,5t=55°
解得t=11;
②如图3,当NO平分∠AOC时,∠NOA=35°,
∴∠AOM=55°,
即逆时针旋转的角度为:180°+55°=235°,
由题意得,5t=235°,
解得t=47,
综上所述,t=11s或47s时,直线ON恰好平分锐角∠AOC;
故答案为:11或47;
(3)∠AOM﹣∠NOC=20°.
理由:∵∠MON=90°,∠AOC=70°,
∴∠AOM=90°﹣∠AON,∠NOC=70°﹣∠AON,
∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(70°﹣∠AON)=20°,
∴∠AOM与∠NOC的数量关系为:∠AOM﹣∠NOC=20°.
【点评】本题主要考查的是角的计算、角平分线的定义的运用,用含∠AON的式子表示出∠AOM和∠NOC的长是解题的关键.解题时注意分类思想和方程思想的运用.
27.已知M、N分别为直线AB,直线CD上的点,且AB∥CD,E在AB,CD之间.
(1)如图1,求证:∠BME+∠DNE=∠MEN;
(2)如图2,P是CD上一点,连PM,作MQ∥EN,若∠QMP=∠BME.
试探究∠E与∠AMP的数量关系,并说明理由;
(3)在(2)的条件下,作NG⊥CD交PM于G,若MP平分∠QME,NF平分∠ENG,若∠MGN=m°,∠MFN=n°,直接写出m与n的数量关系 4n﹣m=270° .
【分析】(1)过E作EG∥AB,根据平行线的性质可得∠BME=∠MEG,∠DNE=∠GEN,结合∠MEN=∠MEG+∠GEN,可证明结论;
(2)根据MQ∥EN,得∠QME+∠E=180°,再由∠QMP=∠BME可求解;
(3)根据平行线的性质,结合角平分线的定义可求解.
【解答】解:(1)过E作EG∥AB,如图1,
∵AB∥CD,
∴EG∥CD,
∴∠BME=∠MEG,∠DNE=∠GEN,
∵∠MEN=∠MEG+∠GEN,
∴∠BME+∠DNE=∠MEN;
(2)∠E=∠AMP.
理由:∵AB∥CD,
∴∠BMP+∠MPD=180°,∠MPD=∠AMP,
∵MQ∥EN,
∴∠QME+∠E=180°,
∵∠QMP=∠BME.
∴∠QME=∠BMP,
∴∠E=∠MPD,
∴∠E=∠AMP;
(3)如图3,
在(2)的条件下,∠AMP=∠E,
∵∠QMP=∠BME,
∴∠AMQ=∠DNE,
∵MP平分∠QME,
∴∠PMQ=∠PME=∠BME,
∵NG⊥CD,NF平分∠ENG,
∴∠FNG=∠ENF,
若∠MGN=m°,∠MFN=n°,∠PMQ=∠PME=∠BME=y°,∠AMQ=∠DNE=x°,∠FNG=∠ENF=z,
则m=x+y+90°,n=x+y+z,x+2z=90°,x+3y=180°,
解得4n﹣m=270°.
故答案为4n﹣m=270°.
【点评】本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键.
第1页(共1页)