课件19张PPT。3.6 位 似
第1课时 位似图形的概念及画法新课导入相似图形这种相似有什么特征?相似图形这种相似有什么特征?照相机把人物的影像缩小到底片上相似图形这种相似有什么特征?1.在幻灯机放映图片的过程中,这些图片有
什么关系?2. 幻灯机在哪儿呢?3.我们能给这种有特殊位置的相似图形一个名称吗?观 察它们相似的共同点是什么?其中相似图形的共同点是什么?1.位似图形的概念如果两个图形不仅相似,而且每组对应点所在的直线都经过同一点,对应边互相平行,或者在同一条直线上,那么这样的两个图形叫做位似图形,这个点叫做位似中心.相似对应点的连线相交一点对应边平行或
同一条直线上明确: 位似是一种具有位置关系的相似.
位似图形是相似图形的特殊情形.
位似图形必定是相似图形,而相似图形不一定是位似图形.
两个位似图形的位似中心只有一个.
两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧.注意2. 位似图形的性质 性质:两个位似的图形上每一对对应点都与位似中心在一条直线上,并且新图形与原图形上对应点到位似中心的距离之比等于相似比 位似的作用 位似可以将一个图形放大或缩小。判断下列各对图形是不是位似图形. (1)正五边形ABCDE与正五边形A′B′C′D′E′; (2)等边三角形ABC与等边三角形A′B′C′.思考:是否相似图形都是位似图形?位似图形都是相似图形吗?是是判断下面的正方形是不是位似图形?(1)不是ACDBFEG显然,位似图形是相似图形的特殊情形.相似图形不一定是位似图形,可位似图形一定是相似图形 思考:位似图形有何性质?DEFAOBC如何把三角形ABC放大为原来的2倍?DEFAOBC对应点连线都交于____________对应线段_______________________________位似中心平行或在一条直线上O.ABCA'C’B’. 1.如图,已知△ABC和点O.以O为位似中心,求作△ABC的位似图形,并把△ABC的边长扩大到原来的两倍. OA:OA’ =OB:OB’ =OC:OC’= 1:2思考:还有没其他作法?O.ABA'C’B’C思考:如果位似中心跑到三角形内部呢?你会了吗?回味无穷位似图形的概念:
如果两个图形不仅形状相同,而且每组对应顶点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比.
位似图形的性质:
位似图形上的任意一对对应点到位似中心的距离之比等于位似比使新图形与原图形对应线段的比是2∶1.在原图上取几个关键点A,B,C,D,E,F,G;图外任取一点P;作射线AP,BP,CP,DP,EP,FP,GP;在这些射线上依次取点A′,B′,C′,D′,E′,F′,G′,使PA′=2PA,PB′=2PB,PC′=2PC,PD′=2PD,PC′=2PC,PE′ =2PE,PF′=2PF,PG′=2PG;顺次连接点A′, B′, C′, D′, E′, F′,G′,所得到的图形(向下的箭头)就是符合要求的图形。小练习课件11张PPT。第2课时 坐标系中的位似图形3.6 位 似
B'A'xyBAoA′(2,1), B′(2,0)观察对应点之间的坐标的变化,你有什么发现?B'A'xyBAo 在平面直角坐标系中,有两点A(6,3),B(6,0),以原点O为位似中心,相似比为1:3,把线段AB缩小.A′(2,1), B′(2,0)观察对应点之间的坐标的变化,你有什么发现?B'A'xyBAo 在平面直角坐标系中,有两点A(6,3),B(6,0),以原点O为位似中心,相似比为1:3,把线段AB缩小.A′(2,1),B′(2,0)A〞B〞A〞(-2,-1),B(-2,0)观察对应点之间的坐标的变化,你有什么发现?xyo 在平面直角坐标系中, △ABC三个顶点的坐标分别为A(2,3),B(2,1),C(6,2),以原点O为位似中心,相似比为2画它的位似图形.BACA′( 4 ,6 ), B′( 4 ,2 ), C′( 12 ,4 )放大后对应点的坐标分别是多少?B'A'C'还有其他办法吗?2461213624xyo 在平面直角坐标系中, △ABC三个顶点的坐标分别为A(2,3),B(2,1),C(6,2),以原点O为位似中心,相似比为2,将△ABC放大.A′( -4 ,-6 ), B′( -4 ,-2 ), C′( -12 ,-4 )BAC放大后对应点的坐标分别是多少?B”A” 在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,则像上的对应点的坐标为(kx,ky)或(-kx,-ky).xyo 在平面直角坐标系中, 四边形ABCD的四个顶点的坐标分别为A(-6,6),B(-8,2),C(-4,0),D(-2,4),画出它的一个以原点O为位似中心,相似比为1/2的位似图形.A′( -3,3 ), B′( -4,1 ), C′( -2,0 ), D′( -1,2 )A′B′C′D′你还有其他办法吗?试试看.1. 如图表示△AOB和把它缩小后得到的△COD,求它们的相似比.点D的横坐标为2点B的横坐标为5相似比为2. 如图,△ABC三个顶点坐标分别为A(2,-2),B(4,-5),C(5,-2),以原点O为位似中心,将这个三角形放大为原来的2倍.ABC解:
A'( , ),B ' ( , ),C ' ( , ),4- 4- 108-410A" ( , ),B" ( , ),C" ( , ),4- 4- 810-104A'B 'C 'A"B"C" 至此,我们已经学习了四种变换:平移、轴对称、旋转和位似,你能说出它们之间的异同吗?在图所示的图案中,你能找到这些变换吗?