中小学教育资源及组卷应用平台
2026高考生物学的二轮专题
层级二 关键突破提升练
突破点1 运用“对照”和“变量”思维解答酶类实验题
1.(2024·湖南卷)某同学将质粒DNA进行限制酶酶切时,发现DNA完全没有被酶切,分析可能的原因并提出解决方法。下列叙述错误的是( )
A.限制酶失活,更换新的限制酶
B.酶切条件不合适,调整反应条件如温度和酶的用量等
C.质粒DNA突变导致酶识别位点缺失,更换正常质粒DNA
D.酶切位点被甲基化修饰,换用对DNA甲基化不敏感的限制酶
2.为检测温度对糖化酶和α-淀粉酶活性的影响,某兴趣小组进行了A、B、C、D四组实验。每组实验取4支试管,各加入2 mL淀粉溶液,1号不加酶,2~4号分别加入0.5 mL 10万活性糖化酶、5万活性糖化酶、α-淀粉酶(底物淀粉和酶均已经置于相应温度下进行预保温)。反应1 min后,每支试管加入4滴碘液检测。结果如下表所示(“+”表示显蓝色,“+”越多蓝色越深,“-”表示不变蓝)。下列叙述正确的是( )
组别 反应温度/℃ 1号 2号 3号 4号
A 冰浴 ++++ +++ +++ -
B 15 ++++ +++ +++ -
C 60 +++ - - -
D 85 ++++ ++ ++ -
A.糖化酶对温度的敏感程度较α-淀粉酶高
B.60 ℃条件下4支试管的结果说明α-淀粉酶具有高效性
C.可以使用斐林试剂代替碘液检测实验结果
D.糖化酶的最适温度在15~60 ℃范围内
3.硝态氮(N)可为植物生长发育提供氮素营养,硝酸还原酶(NR)是将N转化为N的关键酶。为探究硝酸还原酶活性的最适pH,研究人员进行了相关实验,结果如下图所示。下列叙述正确的是 ( )
A.NR在pH为6的环境下变性失活
B.pH为7.5时,NR为化学反应提供的活化能最高
C.进一步实验应在pH为7~8的范围内进行
D.N数量、酶的数量也是影响NR活性的因素
4.脲酶能够将尿素分解成二氧化碳和氨(氨溶于水后形成铵根离子)。某研究小组利用一定浓度的尿液进行了铜离子对脲酶活性的影响实验,得到如图所示结果。请回答下列问题。
(1)本实验的自变量为 。
(2)图中显示脲酶作用的最适温度范围是 ℃,为了进一步探究脲酶作用的最适温度,请写出实验设计的基本思路: 。
(3)幽门螺杆菌是导致胃炎的罪魁祸首,该生物也可产生脲酶,并分泌到细胞外发挥作用,幽门螺杆菌产生脲酶的过程中参与的细胞器有 。13C呼气试验检测系统是国际上公认的幽门螺杆菌检查的“金标准”,被测者先口服用13C标记的尿素,然后向专用的呼气卡中吹气留取样本,即可以准确地检测出被测者是否被幽门螺杆菌感染。请简要说明呼气试验检测的原理: 。
突破点2 运用“物质与能量观”分析光合作用与细胞呼吸过程
5.(2025·河北卷)对绿色植物的光合作用和呼吸作用过程进行比较,下列叙述错误的是( )
A.类囊体膜上消耗H2O,而线粒体基质中生成H2O
B.叶绿体基质中消耗CO2,而线粒体基质中生成CO2
C.类囊体膜上生成O2,而线粒体内膜上消耗O2
D.叶绿体基质中合成有机物,而线粒体基质中分解有机物
6.如图表示某植物非绿色器官在不同O2浓度下,O2的吸收量和CO2的释放量的变化情况,根据所提供的信息,下列判断错误的是( )
A.O点时,该器官产生CO2的场所是细胞质基质
B.该器官呼吸作用过程中有非糖物质氧化分解,可能来自油料作物
C.N点时,该器官O2的吸收量等于CO2的释放量,说明其只进行有氧呼吸
D.若该非绿色器官是种子,则M点对应的O2浓度最适合储存
7.当同时给予植物红光和远红光照射时,光合作用的效率大于分开给光的效率,这一现象称为双光增益效应,如图1所示。出现这一现象的原因是光合作用过程中存在两个串联的光系统,即光系统Ⅰ(PSⅠ)和光系统Ⅱ(PSⅡ),其作用机理如图2所示。以下相关说法正确的是( )
图1
图2
A.光系统Ⅰ位于叶绿体类囊体,光系统Ⅱ位于叶绿体基质
B.双光增益是通过提高单位时间内光合色素对光能的吸收量来实现的
C.光系统Ⅱ和光系统Ⅰ通过电子传递链串联起来,最终提高了光能的利用率
D.光系统Ⅰ和光系统Ⅱ产生的氧化剂都可以氧化水,从而生成氧气
8.大豆、玉米等植物的叶绿体中存在一种名为Rubisco的酶,参与卡尔文循环和光呼吸。在较强光照下,Rubisco以五碳化合物(RuBP)为底物,在CO2/O2值高时,使RuBP结合CO2发生羧化;在CO2/O2值低时,使RuBP结合O2发生氧化进行光呼吸,具体过程如下图所示。下列有关说法正确的是( )
A.大豆、玉米等植物的叶片中消耗O2的场所有叶绿体、线粒体
B.光呼吸发生在叶肉细胞的细胞质基质和叶绿体中
C.有氧呼吸和光呼吸均产生ATP
D.干旱、晴朗的中午,叶肉细胞中光呼吸强度较通常条件下会降低
9.研究发现,光反应过程中光合电子传递包括线性电子传递和环式电子传递。线性电子传递中,电子经PSⅡ、Cb6/f和PSⅠ最终产生NADPH和ATP。环式电子传递中,电子在PSⅠ和Cb6/f间循环,仅产生ATP不产生NADPH。拟南芥中亲环素蛋白C37可以调控植物光合电子传递效率,提高植物对强光的适应性(如图)。在强光胁迫下,C37蛋白与Cb6/f结合更加紧密,利于提高电子传递效率,避免产生大量活性氧(ROS),而ROS的过度积累会导致光损伤加剧、叶绿素降解增加。ROS超过一定水平后会引发细胞凋亡。
注:光系统Ⅱ(PSⅡ)、细胞色素复合体(Cb6/f)、光系统Ⅰ(PSⅠ)均为光合电子传递链的光合复合体;→表示线性电子传递;表示环式电子传递;表示电子。
上述研究揭示出,植物通过调节光合链上的电子流动速率以适应强光胁迫。
(1)从图示推出,光系统Ⅰ(PSⅠ)和光系统Ⅱ(PSⅡ)位于叶绿体的 结构上,作用是 。
(2)环式电子传递与线性电子传递相比,能够 (填“提高”或“降低”)ATP/NADPH比例。
(3)请概括出拟南芥抵御强光胁迫的机制: (至少答出2点)。
(4)已知光反应场所内的H+浓度适当增加,可以保护PSⅡ免受强光破坏,在植物面临胁迫环境时,环式电子传递会加强。综合所有信息,总结环式电子传递对于植物应对光胁迫的作用: 。
10.植物在夏季常受到高温和强光的双重胁迫。研究人员将番茄植株在适宜温度、适宜光照条件(CK)下和高温、强光条件(HH)下培养较长时间后,测得的相关指标如下表。回答下列问题。
组别 净光合速率/(μmol·m-2·s-1) 气孔导度/(mmol·m-2·s-1) 胞间CO2浓度/(μmol·mol-1) Rubisco活性/(U·mL-1)
CK 12.1 114.2 308 189
HH 1.8 31.2 448 61
(1)由表中数据可知,高温和强光的双重胁迫下,气孔导度下降 (填“是”或“不是”)净光合速率降低的主要因素,依据是 。
(2)Rubisco可催化RuBP(C5)与CO2的反应,其发挥作用的场所是 ,高温和强光的双重胁迫下,番茄光反应速率下降,结合表中数据分析,原因可能是 。
(3)下图为类囊体薄膜结构图。研究表明,高温和强光的双重胁迫下,PSⅡ(光合电子传递链的光合复合体)的结构和功能均会发生改变,从而会影响光合色素对光能的 。
(4)高温和强光的双重胁迫还会引发活性氧ROS(如自由基、H2O2等)的积累,进一步抑制光反应的发生。分析其原因可能有 。
A.ROS攻击类囊体膜上的磷脂分子,造成膜结构的损伤
B.ROS与光系统中的蛋白质分子结合,使其变性失活
C.ROS造成叶绿体DNA的损伤,导致光反应所需酶的合成受阻
D.ROS会加快PSⅡ的修复过程,进一步限制电子的线性传递过程
11.(2025·安徽卷)为探究水通道蛋白NtPIP对作物耐涝性的影响,科研小组测定了油菜的野生型(WT)及NtPIP基因过量表达株(OE)在正常供氧(AT)和低氧(HT,模拟涝渍)条件下的根细胞呼吸速率和氧浓度,结果见图1 a、b。
图1 a
图1 b
回答下列问题。
(1)据图1 a、b分析,低氧胁迫下,NtPIP基因过量表达会使根细胞有氧呼吸 ,原因是 。
有氧呼吸第二阶段丙酮酸中的化学能大部分被转化为 中储存的能量。
(2)科学家早期在探索有氧呼吸第二阶段代谢路径时发现,在添加丙二酸的组织悬浮液中加入分子A、B或C时,E增多并累积(图2 a);当加入F、G或H时,E也同样累积(图2 b)。根据此结果,针对有氧呼吸第二阶段代谢路径提出假设: 。
图2
说明:字母A~H表示一系列分子。
(3)科研小组还发现,低氧条件下,NtPIP基因过量表达株的叶片净光合速率高于野生型。结合根细胞呼吸速率的变化分析,其原因是 。
(4)光合作用光反应实质是光能引起的氧化还原反应,最终接受电子的物质(最终电子受体)是 ,而最终提供电子的物质(最终电子供体)是 。
突破点3 结合生产实践考查细胞呼吸和光合作用的影响因素
12.(2024·湖北卷)植物甲的花产量、品质(与叶黄素含量呈正相关)与光照长短密切相关。研究人员用不同光照处理植物甲幼苗,实验结果如下表所示。下列叙述正确的是( )
组 别 光照 处理 首次 开花 时间 茎粗/ mm 花的叶黄 素含量/ (g·kg-1) 鲜花累计 平均产量/ (kg·hm-2)
① 光照8 h/ 黑暗16 h 7月 4日 9.5 2.3 13 000
② 光照12 h/ 黑暗12 h 7月 18日 10.6 4.4 21 800
③ 光照16 h/ 黑暗8 h 7月 26日 11.5 2.4 22 500
A.第①组处理有利于诱导植物甲提前开花,且产量最高
B.植物甲花的品质与光照处理中的黑暗时长呈负相关
C.综合考虑花的产量和品质,应该选择第②组处理
D.植物甲花的叶黄素含量与花的产量呈正相关
13.与野生型拟南芥WT相比,突变体t1和t2在正常光照条件下,叶绿体在叶肉细胞中的分布及位置不同(图a),造成叶绿体相对受光面积的不同(图b),进而引起光合速率差异,但叶绿素含量及其他性状基本一致。在不考虑叶绿体运动的前提下,下列叙述错误的是( )
a
b
A.t2比t1具有更高的光饱和点(光合速率不再随光照强度增加而增加时的光照强度)
B.t1比t2具有更低的光补偿点(光合作用吸收CO2与呼吸作用释放CO2等量时的光照强度)
C.三者光合速率的高低与叶绿素的含量无关
D.三者光合速率的差异随光照强度的增加而变大
14.强光胁迫会导致大豆出现光抑制现象。接近光饱和点的强光会导致大豆的光系统Ⅱ(PSⅡ)出现可逆失活,失活状态的PSⅡ加强了能量耗散,以避免受到进一步破坏。该过程中起重要作用的是参与构成PSⅡ的D1蛋白。强光下D1即开始降解,其净损失率与PSⅡ单位时间接受的光量子数呈正相关。编码D1的psbA基因定位于叶绿体基因组,科研人员尝试将蓝细菌的psbA基因导入大豆细胞核(纯合品系R),结果发现在强光下D1的降解率并没有下降,但光饱和点提高了。下列说法正确的是 ( )
A.强光下D1的降解速率不能超过其补充速率
B.PSⅡ等吸收的光能一部分储存在ATP、NADPH中
C.品系R的核基因psbA表达产物应定位于叶绿体基质中
D.强光下气孔关闭,可能导致C5的含量迅速降低,阻碍暗反应的进行
15.(2024·安徽卷)为探究基因OsNAC对光合作用的影响,研究人员在相同条件下种植某品种水稻的野生型(WT)、OsNAC敲除突变体(KO)及OsNAC过量表达株(OE),测定了灌浆期旗叶(位于植株最顶端)净光合速率和叶绿素含量,结果见下表。回答下列问题。
比较 项目 净光合速率/ (μmol·m-2·s-1) 叶绿素含量/ (mg·g-1)
WT 24.0 4.0
KO 20.3 3.2
OE 27.7 4.6
(1)旗叶从外界吸收1分子CO2与核酮糖-1,5-二磷酸结合,在特定酶作用下形成2分子3-磷酸甘油酸;在有关酶的作用下,3-磷酸甘油酸接受 释放的能量并被还原,随后在叶绿体基质中转化为 。
(2)与WT相比,实验组KO与OE的设置分别采用了自变量控制中的 、 (填科学方法)。
(3)据表可知,OsNAC过量表达会使旗叶净光合速率 。为进一步探究该基因的功能,研究人员测定了旗叶中编码蔗糖转运蛋白基因的相对表达量、蔗糖含量及单株产量,结果如图。
结合图表,分析OsNAC过量表达会使旗叶净光合速率发生相应变化的原因:① ;
② 。
参考答案
突破点1 运用“对照”和“变量”思维解答酶类实验题
1.B 解析 限制酶失活会使DNA完全不被酶切,此时应更换新的限制酶,A项正确。酶切条件不合适通常会使切割效果下降,此时应有部分DNA被酶切,B项错误。质粒DNA突变会导致限制酶识别位点缺失,进而造成限制酶无法进行切割,此时应更换为正常质粒,C项正确。质粒DNA上酶切位点被甲基化修饰,会导致对DNA甲基化敏感的限制酶无法进行酶切,此时应换用对DNA甲基化不敏感的限制酶,D项正确。
2.A 解析 依据表格信息可知,糖化酶与淀粉酶相比较,随温度的变化,实验现象变化更明显,说明糖化酶对温度的敏感程度较α-淀粉酶高,A项正确;酶的高效性是指酶与无机催化剂相比较,可以显著降低化学反应的活化能,依据表格信息,在60 ℃条件下,2、3、4号试管均不出现显色反应,说明淀粉已被水解,但是由于缺乏无机催化剂的对照,不能说明α-淀粉酶具有高效性,B项错误;使用斐林试剂检测淀粉水解,需要进行水浴加热,而此实验的目的是检测温度对糖化酶和α-淀粉酶活性的影响,斐林试剂的使用会对实验造成干扰,所以不可以使用斐林试剂代替碘液检测实验结果,C项错误;以2号组为例,依据实验现象,淀粉在60 ℃时不出现蓝色,说明淀粉已被完全水解,85 ℃时蓝色较浅,说明淀粉被部分水解,15 ℃时蓝色比85 ℃时深,说明15 ℃时剩余淀粉含量比85 ℃时多,概括可知,糖化酶的最适温度在60~85 ℃范围内,D项错误。
3.C 解析 根据题图分析可知,NR在pH为6的环境下仍具有活性,因此没有变性失活,A项错误;酶只能降低化学反应的活化能,不能提供活化能,B项错误;根据题图分析可知,pH为7.5时NR活性最大,因此若要探究酶的最适pH,进一步实验应在pH为7~8的范围内进行,C项正确;酶的活性受温度、pH等因素的影响,N数量、酶的数量不会影响NR活性,D项错误。
4.答案 (1)温度和铜离子浓度
(2)40~60 在不加入铜离子(或铜离子浓度一定)的情况下,在温度为40~60 ℃范围内设置更小的温度梯度进行实验,测定尿素分解速率
(3)核糖体 幽门螺杆菌会产生脲酶,脲酶能将尿素分解成NH3和13CO2,若检测到被测者呼出的气体中含有13CO2,则说明被测者被幽门螺杆菌感染
解析 (1)图中温度和铜离子浓度是实验中人为改变的量,属于自变量。(2)图中显示,脲酶在50 ℃时活性最高,所以作用的最适温度范围是40~60 ℃。为了进一步探究脲酶作用的最适温度,在不加入铜离子(或铜离子浓度一定)的情况下,在温度为40~60 ℃范围内设置更小的温度梯度进行实验,测定尿素分解速率,尿素分解速率最高时的温度为脲酶作用的最适温度。(3)脲酶是蛋白质,幽门螺杆菌是原核生物,故合成脲酶的场所是核糖体。被测者口服用13C标记的尿素,尿素中的碳原子是13C,分子式为13CO(NH2)2,若胃部存在幽门螺杆菌,幽门螺杆菌会产生脲酶,则尿素会被分解为NH3和13CO2,若检测到被测者呼出的气体中含有13CO2,则代表其胃部存在幽门螺杆菌。
突破点2 运用“物质与能量观”分析光合作用与细胞呼吸过程
5.A 解析 光合作用的光反应在类囊体膜上进行,会消耗H2O;有氧呼吸第三阶段在线粒体内膜上进行,会生成H2O,A项错误。光合作用的暗反应在叶绿体基质中进行,会消耗CO2;有氧呼吸第二阶段在线粒体基质中进行,会生成CO2,B项正确。光合作用的光反应在类囊体膜上进行,会生成O2;有氧呼吸第三阶段在线粒体内膜上进行,会消耗O2,C项正确。光合作用的暗反应在叶绿体基质中进行,会合成有机物;有氧呼吸第二阶段在线粒体基质中进行,会发生丙酮酸(属于有机物)的分解,D项正确。
6.C 解析 O点时无O2的吸收,该器官只进行无氧呼吸,产生CO2的场所是细胞质基质,A项正确;图中显示N点后,O2的吸收量大于CO2释放量,说明该器官呼吸作用过程中有非糖物质氧化分解,可能来自某油料作物,故N点时,该器官O2的吸收量和CO2的释放量相等不能说明其只进行有氧呼吸,B项正确,C项错误;M点时CO2的释放量最低,有机物消耗最少,M点对应的O2浓度最适合储存,D项正确。
7.C 解析 绿色植物进行光反应的场所是叶绿体的类囊体薄膜,故两个光系统均位于叶绿体的类囊体薄膜上,A项错误;单位时间内光合色素对光能的吸收量取决于光照强度、光合色素的量等,由图2可知,双光增益现象得益于PSⅡ和PSⅠ之间形成电子传递链,相互促进,最终提高了光能的利用率,B项错误,C项正确;由图2可知,只有光系统Ⅱ可以氧化水,D项错误。
8.A 解析 大豆、玉米叶片中通过有氧呼吸消耗氧气的场所是线粒体内膜,通过光呼吸消耗氧气的场所是叶绿体基质,A项正确;由题干“在较强光照下,Rubisco以五碳化合物(RuBP)为底物,在CO2/O2值高时,使RuBP结合CO2发生羧化;在CO2/O2值低时,使RuBP结合O2发生氧化进行光呼吸”可知,光呼吸和卡尔文循环发生场所一致,在叶绿体基质中进行,B项错误;由图可知,在CO2/O2的值低时,RuBP结合氧气发生光呼吸,光呼吸会消耗多余的ATP、NADPH,C项错误;干旱、晴朗的中午,胞间CO2浓度会降低,叶肉细胞中光呼吸强度较通常条件下会增强,D项错误。
9.答案 (1)类囊体膜 吸收利用光能,并进行电子传递
(2)提高
(3)在强光胁迫下,C37蛋白与Cb6/f结合更加紧密,利于提高电子传递效率;同时可减少ROS积累,保证了强光下光反应的顺利进行
(4)环式电子传递可以适当增加H+浓度,可以保护PSⅡ免受强光破坏,同时,可以降低强光下的细胞凋亡率
解析 (1)该光合复合体能吸收、转化光能,推测为类囊体膜上的结构,其作用是吸收利用光能,并进行电子传递。
(2)线性电子传递中,电子经PSⅡ、Cb6/f和PSⅠ最终产生NADPH和ATP。环式电子传递中,电子在PSⅠ和Cb6/f间循环,仅产生ATP不产生NADPH。因此环式电子传递与线性电子传递相比,能够提高ATP/NADPH比例。
(3)拟南芥抵御强光胁迫的机制:在强光胁迫下,C37蛋白与Cb6/f结合更加紧密,利于提高电子传递效率;同时可减少ROS积累,避免出现光损伤和叶绿素降解,保证了强光下光反应的顺利进行。
(4)环式电子传递中,电子在PSⅠ和Cb6/f间循环,仅产生ATP不产生NADPH,因此可以适当增加H+浓度,可以保护PSⅡ免受强光破坏。同时,植物面临胁迫环境时环式电子传递加强,也可以降低强光下的细胞凋亡率。
10.答案 (1)不是 气孔导度下降,但胞间CO2浓度较高
(2)叶绿体基质 (HH条件下,)Rubisco活性下降,暗反应减慢,导致光反应产生的ATP和NADPH积累
(3)吸收、转化和传递
(4)ABC
解析 (1)据表分析,高温和强光的双重胁迫下,气孔导度下降,但胞间CO2浓度较高,这说明气孔导度下降不是净光合速率降低的主要因素。
(2)Rubisco可催化RuBP(C5)与CO2的反应,说明其发挥作用的场所是叶绿体基质。结合表中数据可知,HH条件下,Rubisco活性下降,则CO2的固定减慢,导致C3还原时消耗的ATP和NADPH减少,最终光反应产生的ATP和NADPH积累,故光反应速率下降。
(3)光系统与光能的吸收、转化和传递有关,高温和强光的双重胁迫下,PSⅡ(光合电子传递链的光合复合体)的结构和功能均会发生改变,从而会影响光合色素对光能的吸收、转化和传递。
(4)高温胁迫会引发活性氧ROS的积累,ROS化学性质活泼,可攻击生物体内的DNA、蛋白质和脂质等物质,造成氧化性损伤,例如:ROS攻击类囊体膜上的磷脂分子,造成膜结构的损伤,A项符合题意;ROS与光系统中的蛋白质分子结合,使其变性并失去活性,B项符合题意;ROS造成叶绿体DNA的损伤,导致光反应所需酶的合成受阻,从而抑制光反应,C项符合题意;ROS会减缓PSⅡ的修复过程,D项不符合题意。
11.答案 (1)增强 在低氧胁迫下,OE的根细胞呼吸速率和氧浓度均明显高于WT NADH
(2)有氧呼吸第二阶段代谢路径为A→B→C→D→E→F→G→H(或代谢顺序是A到H依次进行)
(3)根细胞有氧呼吸增强,为叶片光合作用提供更多的CO2(或根细胞呼吸产生的CO2运输到叶片,为光合作用提供原料)
(4)NADP+(或辅酶Ⅱ) H2O(或水)
解析 (1)从图1 a看,低氧(HT)条件下,OE组(NtPIP基因过量表达株)根细胞呼吸速率高于WT组(野生型),且结合图1 b氧浓度,OE组能获取更多氧气。有氧呼吸第二阶段,丙酮酸分解,其中大部分化学能转化为NADH中储存的化学能,少部分以热能形式散失。
(2)在图2 a中,添加丙二酸阻遏E转化,加入A、B、C时E都累积,说明A、B、C在E之前的代谢路径;图2 b中,添加丙二酸阻遏E转化,加入F、G、H时E也累积,说明F、G、H在E之后的代谢路径。综合可知,有氧呼吸第二阶段代谢路径是A→B→C→D→E→F→G→H,即代谢顺序按A到H依次进行,中间步骤被丙二酸阻断会使E累积。
(3)低氧条件下,NtPIP基因过量表达株根细胞有氧呼吸增强,细胞呼吸产生的CO2会运输到叶片,CO2是光合作用暗反应的原料,为叶片光合作用提供更多原料,从而促进光合作用,使叶片净光合速率高于野生型。
(4)光合作用光反应中,水在光下分解为O2、H+和电子,水是最终电子供体;产生的电子传递给NADP+,使其结合H+形成NADPH,所以最终电子受体是NADP+(辅酶Ⅱ)。
突破点3 结合生产实践考查细胞呼吸和光合作用的影响因素
12.C 解析 第①组处理开花时间最早,说明有利于诱导植物甲提前开花,但产量比第②③组低,A项错误;由题干可知,植物甲的花品质与叶黄素含量呈正相关,第②组植物甲花的叶黄素含量最高,其黑暗时间比第③组长、比第①组短,所以与光照处理中的黑暗时长不呈负相关,B项错误;第②组植物甲花的叶黄素含量最高,产量与第③组比较接近,明显高于第①组,所以综合考虑花的产量和品质,应该选择第②组处理,C项正确;第②组植物甲花的叶黄素含量最高,但产量不如第③组,说明植物甲花的叶黄素含量与花的产量不呈正相关,D项错误。
13.D 解析 由图a可知,t1较多的叶绿体分布在光照下,t2较少的叶绿体分布在光照下,由此可推断,t2比t1具有更高的光饱和点(光合速率不再随光照强度增加而增加时的光照强度),t1比t2具有更低的光补偿点(光合作用吸收CO2与呼吸作用释放CO2等量时的光照强度),A、B两项正确;通过题干信息可知,三者的叶绿素含量及其他性状基本一致,由此推测,三者光合速率的高低与叶绿素的含量无关,C项正确;在一定光照强度下,三者光合速率的差异随光照强度的增加而变大,但是超过光饱和点,再增大光照强度,三者光合速率的差异不再变化,D项错误。
14.B 解析 强光下D1的降解速率可超过其补充速率,导致PSⅡ单位时间接受的光量子数减少,A项错误;PSⅡ等吸收的光能一部分储存在ATP、NADPH中,一部分以热能的形式散失,B项正确;叶绿体基因组编码的蛋白质定位于叶绿体中,C项错误;强光下气孔关闭,CO2吸收减少,CO2的固定减慢,C3的还原不变,C5的含量会积累,阻碍暗反应的进行,D项错误。
15.答案 (1)ATP和NADPH 核酮糖-1,5-二磷酸(C5)和糖类
(2)减法原理 加法原理
(3)增大(或升高) 与WT组相比,OE组叶绿素含量较高,增强了对光能的吸收、传递和转化,光反应增强,从而促进旗叶的光合作用 与WT组相比,OE组旗叶中编码蔗糖转运蛋白基因的表达量较高,可以及时将更多的光合产物(蔗糖)向外运出,从而促进旗叶的光合作用
解析 (1)在光合作用的暗反应阶段,1分子CO2被固定后形成2分子3-磷酸甘油酸(C3)分子,在有关酶的催化作用下,3-磷酸甘油酸接受ATP和NADPH释放的能量,并被NADPH还原,随后在叶绿体基质中转化为核酮糖-1,5-二磷酸(C5)和糖类。(2)与WT相比,实验组KO为OsNAC敲除突变体,即敲除了基因OsNAC,采用了自变量控制中的减法原理;实验组OE为OsNAC过量表达株,采用了自变量控制中的加法原理。(3)题图和题表信息显示,OE组的净光合速率、叶绿素含量、旗叶中编码蔗糖转运蛋白基因的相对表达量、单株产量都明显高于WT组和KO组,蔗糖含量却低于WT组和KO组,由此推测OsNAC过量表达会使旗叶净光合速率增大的原因有:①与WT组相比,OE组叶绿素含量较高,增强了对光能的吸收、传递和转化,光反应增强,从而促进旗叶的光合作用;②与WT组相比,OE组旗叶中编码蔗糖转运蛋白基因的表达量较高,可以及时将更多的光合产物(蔗糖)向外运出,从而促进旗叶的光合作用。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)