讲义一: 集合的含义与表示(2课时)
(Ⅰ)、基本概念及知识体系:
1、了解集合的含义、领会集合中元素与集合的∈、关系;元素:用小写的字母a,b,c,…表示;元素之间用逗号隔开。集合:用大写字母A,B,C,…表示;
2、能准确把握集合语言的描述与意义:列举法和描述法:注意以下表示的集合之区别:{y=x2+1};{x2-x-2=0},{x| x2-x-2=0},{x|y=x2+1};{t|y=t2+1};{y|y=x2+1};{(x,y)|y=x2+1}; ;{},{0}
3、特殊的集合:N、Z、Q、R;N*、;
(Ⅱ)、典例剖析与课堂讲授过程:
一、集合的概念以及元素与集合的关系:
1、 元素:用小写的字母a,b,c,…表示;元素之间用逗号隔开。
集合:用大写字母A,B,C,…表示;元素与集合的关系:∈、
②、特殊的集合:N、Z、Q、R;N*、;
③、集合中的元素具有确定性、互异性、无序性:
★【例题1】、已知集合A={a-2,2a2+5a,10},又-3∈A,求出a之值。
●解析:分类讨论思想;a=-1(舍去),a=
▲★课堂练习:
1、书本P5:练习题1;P11:习题1.1:题1、2、5:①②
2、已知集合A={1,0,x},又x2∈A,求出x之值。(解:x=-1)
3、已知集合A={a+2,(a+1)2,a2+3a+3},又1∈A,求出a之值。(解:a=0)
二、集合的表示---------列举法和描述法
★【例题2】、书本P3:例题1、P4:例题2
★【例题3】、已知下列集合:(1)、={n | n = 2k+1,kN,k5};(2)、={x | x = 2k, kN, k3};(3)、={x | x = 4k+1,或x = 4k-1,kk3};
问:(Ⅰ)、用列举法表示上述各集合;(Ⅱ)、对集合,,,如果使kZ,那么,,所表示的集合分别是什么?并说明与的关系。
● 解:(Ⅰ)、⑴ ={n | n = 2k+1,kN ,k5}={1,3,5,7,9,11};
⑵、={x | x = 2k, kN, k3}={0,2,4,6};
⑶、={x | x = 4k1,kk3}={-1,1,3,5,7,9,11,13};
(Ⅱ)、对集合,,,如果使kZ,那么、所表示的集合都是奇数集;所表示的集合都是偶数集。
▲点评:(1)通过对上述集合的识别,进一步巩固对描述法中代表元素及其性质的表述的理解;
(2)掌握奇数集.偶数集的描述法表示和集合的图示法表示。
★【例题4】、已知某数集A满足条件:若,则.
①、若2,则在A中还有两个元素是什么;②、若A为单元素集,求出A和之值.
● 解:①和; ②(此时)或(此时)。
▲●课堂练习:
1、书本P5:练习题2;P12:题3、4
2、设集合M={x|x= 4m+2,m∈Z},N={y|y= 4n+3,n∈Z},若x0∈M,y0∈N,则x0·y0与集合M、N的关系是( A):A、x0·y0∈M B、x0·y0M C、x0·y0∈N D、无法确定
●解:x0·y0= 4(4mn+3m+2n+1)+2,则x0·y0∈M
三、今日作业:
1、已知集合B={x|ax2-3x+2=0,a∈R},若B中的元素至多只有一个,求出a的取值范围。(解:a=0或a≥9/8)
2、已知集合M={x∈N|∈Z},求出集合M。(解:M={0,1,2,5}
3、已知集合N={∈Z | x∈N},求出集合N。(解:N={1,2,3,6}
四、提高练习:
★【题1】、(2006年·辽宁·T5·5分)设 是R上的一个运算,A是R上的非空子集,若对任意的a、b∈A,有a b∈A,则称A对运算 封闭,下列数集对加法、减法、乘法和除法(除数不等于0)四则运算都封闭的是( C )
A 自然数集 B 整数集 C 有理数集 D 无理数集
★【题2】(2006年·山东·T1·5分)定义集合运算:A⊙B={z︳z= xy(x+y),z∈A,y∈B},设集合A={0,1},B={2,3},则集合A⊙B的所有元素之和为( D )
(A)0 (B)6 (C)12 (D)18
★【题3】(2005年·湖北·T1·5分)设P、Q为两个非空实数集合,定义集合P+Q=,则P+Q中元素的个数是( B )
A.9 B.8 C.7 D.6
★【题4】(广东2007年理科·8题)设是至少含有两个元素的集合,在上定义了一个二元运算“*”(即对任意的,对于有序元素对(),在中有唯一确定的元素与之对应).若对任意的,有,则对任意的,下列等式中不恒成立的是( A )
A. B.
C. D.
(Ⅲ)、课堂回顾与小结:
1、 记准N、Z、Q、R;
2、 分清列举法和描述法,注意集合中的元素是否满足互异。◆