画图操作图形设计
动手能力的训练不可忽视,在探究问题时,非常关键,画画图,折折纸,或将模型平移旋转,从中获得启发,往往就能找到解决问题的途径。
1、 (2009山西省太原市)如图,是边上一点,.
(1)在图中作的角平分线,交于点;(要求:尺规作图,保留作图痕迹,不写作法和证明)
(2)在(1)中,过点画的垂线,垂足为点,交于点,连接,将图形补充完整,并证明四边形是菱形.
2、(山东省临沂市)
如图,A,B是公路l(l为东西走向)两旁的两个村庄,A村到公路l的距离AC=1km,B村到公路l的距离BD=2km,B村在A村的南偏东方向上.
(1)求出A,B两村之间的距离;
(2)为方便村民出行,计划在公路边新建一个公共汽车站P,要求该站到两村的距离相等,请用尺规在图中作出点P的位置(保留清晰的作图痕迹,并简要写明作法).
3、(2009年莆田)
(1)根据下列步骤画图并标明相应的字母:(直接在图1中画图)
①以已知线段(图1)为直径画半圆;
②在半圆上取不同于点的一点,连接;
③过点画交半圆于点
(2)尺规作图:(保留作图痕迹,不要求写作法、证明)
已知:(图2).
求作:的平分线.
4、(2009年枣庄市)宽与长的比是的矩形叫黄金矩形.心理测试表明:黄金矩形令人赏心悦目,它给我们以协调,匀称的美感.现将小波同学在数学活动课中,折叠黄金矩形的方法归纳如下(如图所示):
第一步:作一个正方形ABCD;
第二步:分别取AD,BC的中点M,N,连接MN;
第三步:以N为圆心,ND长为半径画弧,交BC的延长线于E;
第四步:过E作EF⊥AD,交AD的延长线于F.
请你根据以上作法,证明矩形DCEF为黄金矩形.
5、(2009年牡丹江市)有一块直角三角形的绿地,量得两直角边长分别为现在要将绿地扩充成等腰三角形,且扩充部分是以为直角边的直角三角形,求扩充后等腰三角形绿地的周长.
6、(2009 黑龙江大兴安岭)在边长为4和6的矩形中作等腰三角形,使等腰三角形的一条边是矩形的长或宽,第三个顶点在矩形的边上,求所作三角形的面积.
(注:形状相同的三角形按一种计算.)
7、(2009湖北荆州年)把一个正方形分成面积相等的四个三角形的方法有很多,除了可以分成能相互全等的四个三角形外,你还能用三种不同的方法将正方形分成面积相等的四个三角形吗?请分别画出示意图。
8、(2009年安徽)如图,将正方形沿图中虚线(其中x<y)剪成①②③④四块图形,用这四块图形恰能拼成一个矩形(非正方形).
(1)画出拼成的矩形的简图;
(2)求的值.
9、(2009年新疆)如图是用硬纸板做成的四个全等的直角三角形,两直角边长分别是,斜边长为和一个边长为的正方形,请你将它们拼成一个能证明勾股定理的图形.
(1)画出拼成的这个图形的示意图.
(2)证明勾股定理.
10、(2009年陕西省)
问题探究
(1)请在图①的正方形ABCD内,画出使∠APB=90°的一个点P,并说明理由.
(2)请在图②的正方形ABCD内(含边),画出使∠APB=60°的所有的点P,并说明理由.
问题解决
如图③,现有一块矩形钢板ABCD,AB=4,BC=3,工人师傅想用它裁出两块全等的、面积最大的△APB和△CP’D钢板,且∠APB=∠CP’D=60°,请你在图③中画出符合要求的点P和P’,并求出△APB的面积(结果保留根号).
11、(2009年山东青岛市)用圆规、直尺作图,不写作法,但要保留作图痕迹.
为美化校园,学校准备在如图所示的三角形()空地上修建一个面积最大的圆形花坛,请在图中画出这个圆形花坛.
12、(2009年茂名市)如图,方格中有一个请你在方格内,画出满足条件的并判断与是否一定全等?
13、(2009年郴州市)如图6,在下面的方格图中,将ABC先向右平移四个单位得到AB1C1,再将AB1C1绕点A1逆时针旋转得到AB2C2,请依次作出AB1C1和AB2C2。
14、(2009龙岩)阅读下列材料:
正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫格点三角形.
数学老师给小明同学出了一道题目:在图正方形网格(每个小正方形边长为1)中画出格点△ABC,使,;
小明同学的做法是:由勾股定理,得,,于是画出线段AB、AC、BC,从而画出格点△ABC.
(1)请你参考小明同学的做法,在图23-2正方形网格(每个小正方形边长为1)中画出格点△(点位置如图所示),使==5,.(直接画出图形,不写过程);
(2)观察△ABC与△的形状,猜想∠BAC与∠有怎样的数量关系,并证明你的猜想.
15、(09柳州)如图7,正方形网格中,△ABC为格点三角形(顶点都是格点),将△ABC绕点A按逆时针方向旋转90°得到.
(1)在正方形网格中,作出;(不要求写作法)
(2)设网格小正方形的边长为1cm,用阴影表示出旋转过程中线段BC所扫过的图形,然后求出它的面积.(结果保留)
16、(09长春)图①、图②均为的正方形网格,点在格点上.
(1)在图①中确定格点,并画出以为顶点的四边形,使其为轴对称图形.(画一个即可)
(2)在图②中确定格点,并画出以为顶点的四边形,使其为中心对称图形.(画一个即可)
17、(2009年宁波市)
(1)如图1,把等边三角形的各边三等分,分别以居中那条线段为一边向外作等边三角形,并去掉居中的那条线段,得到一个六角星,则这个六角星的边数是 .
(2)如图2,在5×5的网格中有一个正方形,把正方形的各边三等分,分别以居中那条线段为一边向外作正方形,并去掉居中的那条线段.请你把得到的图形画在图3中,并写出这个图形的边数.
(3)现有一个正五边形,把正五边形的各边三等分,分别以居中那条线段为一边向外作正五边形,并去掉居中的那条线段,得到的图形的边数是多少?
18、(2009年齐齐哈尔市)如图,在平面直角坐标系中,的顶点坐标为、、.
(1)若将向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的;
(2)画出绕原点旋转后得到的;
(3)与是中心对称图形,请写出对称中心的坐标:___________;
(4)顺次连结,所得到的图形是轴对称图形吗?
19、(2009年南充)如图,在平面直角坐标系中,已知点,轴于A.
(1)求的值;
(2)将点B绕原点逆时针方向旋转90°后记作点,求点的坐标;
(3)将平移得到,点A的对应点是,点的对应点的坐标为,在坐标系中作出,并写出点、的坐标.
20、(2009年广州市)如图11,在方格纸上建立平面直角坐标系,线段AB的两个端点都在格点上,直线MN经过坐标原点,且点M的坐标是(1,2)。
(1)写出点A、B的坐标;
(2)求直线MN所对应的函数关系式;
(3)利用尺规作出线段AB关于直线MN的对称图形(保留作图痕迹,不写作法)。
21、(2009年娄底)如图9所示,每个小方格都是边长为1的正方形,以O点为坐标原点建立平面直角坐标系.
(1)画出四边形OABC关于y轴对称的四边形OA1B1C1,并写出点B1的坐标是 .
(2)画出四边形OABC绕点O顺时针方向旋转90°后得到的四边形OA2B2C2,并求出点C旋转到点C2经过的路径的长度.
22、(09南宁)已知在平面直角坐标系中的位置如图10所示.
(1)分别写出图中点的坐标;
(2)画出绕点按顺时针方向旋转;
(3)求点旋转到点所经过的路线长(结果保留).
23、(2009年安徽)如图,在对Rt△OAB依次进行位似、轴对称和平移变换后得到△O′A′B′.
(1)在坐标纸上画出这几次变换相应的图形;
(2)设P(x,y)为△OAB边上任一点,依次写出这几次变换后点P对应点的坐标.
24、(2009 黑龙江大兴安岭)如图,在平面直角坐标系中,的顶点坐标为、、.
(1)若将向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的;
(2)画出绕原点旋转后得到的;
(3)与是位似图形,请写出位似中心的坐标: ;
(4)顺次连结、、、,所得到的图形是轴对称图形吗?
25、(2009武汉)如图,已知的三个顶点的坐标分别为、、.
(1)请直接写出点关于轴对称的点的坐标;
(2)将绕坐标原点逆时针旋转90°.画出图形,直接写出点的对应点的坐标;
(3)请直接写出:以为顶点的平行四边形的第四个顶点的坐标.
26、(2009年义乌)如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原。
(1)当时,折痕EF的长为 ;当点E与点A重合时,折痕EF的长为 ;
(2)请写出使四边形EPFD为菱形的的取值范围,并求出当时菱形的边长;
(3)令,当点E在AD、点F在BC上时,写出与的函数关系式。当取最大值时,判断与是否相似?若相似,求出的值;若不相似,请说明理由。
温馨提示:用草稿纸折折看,或许对你有所帮助哦!
27、(2009年孝感) 三个牧童A、B、C在一块正方形的牧场上看守一群牛,为保证公平合理,他们商量将牧场划分为三块分别看守,划分的原则是:①每个人看守的牧场面积相等;②在每个区域内,各选定一个看守点,并保证在有情况时他们所需走的最大距离(看守点到本区域内最远处的距离)相等.按照这一原则,他们先设计了一种如图1的划分方案:把正方形牧场分成三块相等的矩形,大家分头守在这三个矩形的中心(对角线交点),看守自己的一块牧场.过了一段时间,牧童B和牧童C又分别提出了新的划分方案.牧童B的划分方案如图2:三块矩形的面积相等,牧童的位置在三个小矩形的中心.牧童C的划分方案如图3:把正方形的牧场分成三块矩形,牧童的位置在三个小矩形的中心,并保证在有情况时三个人所需走的最大距离相等.
请回答:
(1)牧童B的划分方案中,牧童 (填A、B或C)在有情况时所需走的最大距离较远;
(2)牧童C的划分方案是否符合他们商量的划分原则?为什么?(提示:在计算时可取正方形边长为2)
28、(09湖北宜昌)已知:如图1,把矩形纸片ABCD折叠,使得顶点A与边DC上的动点P重合(P不与点D,C重合), MN为折痕,点M,N分别在边BC, AD上,连接AP,MP,AM, AP与MN相交于点F.⊙O过点M,C,P.
(1)请你在图1中作出⊙O(不写作法,保留作图痕迹);
(2)与 是否相等?请你说明理由;
(3)随着点P的运动,若⊙O与AM相切于点M时,⊙O又与AD相切于点H.
设AB为4,请你通过计算,画出这时的图形.(图2,3供参考)
图1
( http: / / www. / )
图2
图3
1
2
3
4
1
2
4
3
EMBED Equation.DSMT4
EMBED Equation.DSMT4
y
x
O
A
B
C
′
′
′
O
x
A
B
1
1
y
C
A
B
图1
A
B
A
B
O
图2
图6
C
B
A
c
c
a
b
c
a
b
c
a
b
c
a
b
c
l
D
C
A
B
东
北
A
B
C
M
N
E
O
A
(图3)
(图2)
(图1)
图②
C
B
A
图①
C
B
A
图7
A
C
B
A
C
B
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
x
y
O
x
y
A
C
B
N
M
F
E
D
C
B
A
PAGE
1平移问题
平移性质——平移前后图形全等,对应点连线平行且相等。
一、直线的平移
1、(2009武汉)如图,直线与双曲线()交于点.将直线向右平移个单位后,与双曲线()交于点,与轴交于点,若,则 .
2、(09年四川南充市)如图已知正比例函数和反比例函数的图象都经过点.
(1)求正比例函数和反比例函数的解析式;
(2)把直线OA向下平移后与反比例函数的图象交于点,求的值和这个一次函数的解析式;
(3)第(2)问中的一次函数的图象与轴、轴分别交于C、D,求过A、B、D三点的二次函数的解析式;
(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使四边形OECD的面积与四边形OABD的面积S满足:?若存在,求点E的坐标;若不存在,请说明理由.
提示:第(2)问,直线平行时,解析式中k值相等。
3、(2009年日照)某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等边三角形,固定点E为AB的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆.
(1)当MN和AB之间的距离为0.5米时,求此时△EMN的面积;
(2)设MN与AB之间的距离为米,试将△EMN的面积S(平方米)表示成关于x的函数;
(3)请你探究△EMN的面积S(平方米)有无最大值,若有,请求出这个最大值;若没有,请说明理由.
提示:第(2)问,按MN分别在三角形、矩形区域内滑动分类讨论;
第(3)问,对(2)问中两种情况分别求最值,再比较得最值。
4、(2009年山东青岛市)如图,在梯形ABCD中,,,,,点由B出发沿BD方向匀速运动,速度为1cm/s;同时,线段EF由DC出发沿DA方向匀速运动,速度为1cm/s,交于Q,连接PE.若设运动时间为(s)().解答下列问题:
(1)当为何值时,?
(2)设的面积为(cm2),求与之间的函数关系式;
(3)是否存在某一时刻,使?若存在,求出此时的值;若不存在,说明理由.
(4)连接,在上述运动过程中,五边形的面积是否发生变化?说明理由.
提示:第(2)问,t=5时,点P、Q相遇;若没有,则按P、Q相遇时间分段分类,分别画出图形,再根据图形性质写出面积函数关系式,此时,第(3)问要对第(2)问中分类情形,分别解方程求解。
第(4)问,随t的变化,PFCDE的形状在不断变化,t=0时为三角形,点P、Q相遇前为凸五边形,猜测五边形的面积不变,则等于三角形BCD的面积,这样需证明三角形PED与三角形PBF面积相等,事实上△PED≌△FPB(DE=BP=t,∠EDP=∠PBF,DP=BF=10-t)
5、(2009江西)
如图1,在等腰梯形中,,是的中点,过点作交于点.,.
(1)求点到的距离;
(2)点为线段上的一个动点,过作交于点,过作交折线于点,连结,设.
①当点在线段上时(如图2),的形状是否发生改变?若不变,求出的周长;若改变,请说明理由;
②当点在线段上时(如图3),是否存在点,使为等腰三角形?若存在,请求出所有满足要求的的值;若不存在,请说明理由.
提示:第(2)①问,找特殊位置——点N
与点D重合时,易求周长;
第(2)②问,分三种情形,都要找图形的特性,△MNC恒为正三角形;
(一)PN=PM时,PN⊥DC;
(二)PM=MN时,PM⊥EF,PM=MN=MC;
(三)PN=MN时,PM⊥EF,P与F重合;
6、(2009年长春)如图,直线分别与轴、轴交于两点,直线与交于点,与过点且平行于轴的直线交于点.点从点出发,以每秒1个单位的速度沿轴向左运动.过点作轴的垂线,分别交直线于两点,以为边向右作正方形,设正方形与重叠部分(阴影部分)的面积为(平方单位).点的运动时间为(秒).
(1)求点的坐标.
(2)当时,求与之间的函数关系式.(4分)
(3)求(2)中的最大值。
(4)当时,直接写出点在正方形内部时的取值范围.
(分析)(4)在正方形PQMN内部 即在QM 下且在 QP右
7、(09湖南邵阳)如图(8),直线的解析式为,它与轴、轴分别相交于两点.平行于直线的直线从原点出发,沿轴的正方形以每秒1个单位长度的速度运动,它与轴、轴分别相交于两点,设运动时间为秒().
(1)求两点的坐标;
(2)用含的代数式表示的面积;
(3)以为对角线作矩形,记和重合部分的面积为,
①当时,试探究与之间的函数关系式;
②在直线的运动过程中,当为何值时,为面积的?
提示:第(3)问,按 重叠图形分段分类
----------五边形、三角形。
二、三角形的平移
8、(2009威海)如图,△ABC和的△DEF是等腰直角三角形,∠C=∠F=90°,AB=2.DE=4.点B与点D重合,点A,B(D),E在同一条直线上,将△ABC沿方向平移,至点A与点E重合时停止.设点B,D之间的距离为x,△ABC与△DEF重叠部分的面积为y,则准确反映y与x之间对应关系的图象是( )
9、(2009年济南)如图,点G、D、C在直线a上,点E、F、A、B在直线b上,若从如图所示的位置出发,沿直线b向右匀速运动,直到EG与BC重合.运动过程中与矩形重合部分的面积(S)随时间(t)变化的图象大致是( )
10、(2009年山东青岛市)已知:如图,在中,AE是BC边上的高,将沿方向平移,使点E与点C重合,得.
(1)求证:;
(2)若,当AB与BC满足什么数量关系时,四边形是菱形?证明你的结论.
,
11、(2009年咸宁市)如图,将矩形沿对角线剪开,再把沿方向平移得到.
(1)证明;
(2)若,试问当点在线段上的什么位置时,四边形是菱形,并请说明理由.
三、四边形的平移
12、(2009年山西省)如图,已知直线与直线相交于点分别交轴于两点.矩形的顶点分别在直线上,顶点都在轴上,且点与点重合.
(1)求的面积;
(2)求矩形的边与的长;
(3)若矩形从原地出发,沿轴的反方向以每秒1个单位长度的速度平移,设移动时间为秒,矩形与重叠部分的面积为,求关于的函数关系式,并写出相应的的取值范围.
提示:第(3)问,找准平移过程中的几个临界位置分段分类-----DG过点C,EF过点A;按重叠图形种类分段分类——五边形、四边形、三角形。
13、(2009年衡阳市)
如图,直线与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于D.
(1)当点M在AB上运动时,你认为四边形OCMD的周长是否发生变化?并说明理由;
(2)当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?
(3)当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为,正方形OCMD与△AOB重叠部分的面积为S.试求S与的函数关系式并画出该函数的图象.
提示:第(3)问,按 重叠图形分段分类
----------五边形、三角形。
14、(湖南2009年娄底市)如图11,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH∶AC=2∶3
(1)延长HF交AB于G,求△AHG的面积.(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(图12).
探究1:在运动中,四边形CDH′H能否为正方形?若能, 请求出此时t的值;若不能,请说明理由.
探究2:在运动过程中,△ABC与直角梯形DEFH′重叠部分的面积为y,求y与t的函数关系.?
提示:探究2中平移临界位置---F与G重合,H与G重合。
四、圆的平移问题
15、(2009年江苏省)如图,已知射线DE与轴和轴分别交于点和点.动点从点出发,以1个单位长度/秒的速度沿轴向左作匀速运动,与此同时,动点P从点D出发,也以1个单位长度/秒的速度沿射线DE的方向作匀速运动.设运动时间为秒.
(1)请用含的代数式分别表示出点C与点P的坐标;
(2)以点C为圆心、个单位长度为半径的与轴交于A、B两点 (点A在点B的左侧),连接PA、PB.
①当与射线DE有公共点时,求的取值范围;
②当为等腰三角形时,求的值.
提示:
第(2)①问,找特殊位置——A与D重合,⊙C与射线相切
第(2)②问,分类讨论:方法一(解析法)——用勾股定理表示出PA、PB、AB的长,解方程求出t值;方法二(几何法)——按时间过程分别画出满足要求的图形再由图中性质求t值,有四种情形,
PA=PB,PB=AB,
PA=PB,PA=PD=AB。
16、(2009年云南省)
已知在平面直角坐标系中,四边形OABC是矩形,点A、C的坐标分别为、,点D的坐标为,点P是直线AC上的一动点,直线DP与轴交于点M.问:
(1)当点P运动到何位置时,直线DP平分矩形OABC的面积,请简要说明理由,并求出此时直线DP的函数解析式;
(2)当点P沿直线AC移动时,是否存在使与相似的点M,若存在,请求出点M的坐标;若不存在,请说明理由;
(3)当点P沿直线AC移动时,以点P为圆心、半径长为R(R>0)画圆,所得到的圆称为动圆P.若设动圆P的直径长为AC,过点D作动圆P的两条切线,切点分别为点E、F.请探求是否存在四边形DEPF的最小面积S,若存在,请求出S的值;若不存在,请说明理由.
提示:第(2)问,三种情形; 第(3)问,过点D作AC垂线,垂足为P,以AC长为直径画圆,证明此时面积最小。
四、抛物线的平移
17、(2009年舟山)如图,已知点A(-4,8)和点B(2,n)在抛物线上.
(1) 求a的值及点B关于x轴对称点P的坐标,并在x轴上找一点Q,使得AQ+QB最短,求出点Q的坐标;
(2) 平移抛物线,记平移后点A的对应点为A′,点B的对应点为B′,点C(-2,0)和点D(-4,0)是x轴上的两个定点.
① 当抛物线向左平移到某个位置时,A′C+CB′ 最短,求此时抛物线的函数解析式;
2 当抛物线向左或向右平移时,是否存在某个位置,使四边形A′B′CD的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.
提示:
第(2)问,是轴对称的运用。抛物线左移
1 方法一,A′关于x轴对称点A〞,要使
A′C+CB′最短,点C应在直线A〞B′上;
方法二,由(1)知,此时事实上,点Q移到点C位置,求CQ=14/5,即抛物线左移14/5单位;
②设抛物线左移b个单位,则A'(-4-b,8)、B'(2-b,2)。∵CD=2,∴B'左移2个单位得到B″(-b,2)位置,要使A′D+C B'最短,只要A′D+DB″最短。则只有点D在直线
A″B″上。
18、(2009年北京市)已知关于的一元二次方程有实数根,为正整数.
(1)求的值;
(2)当此方程有两个非零的整数根时,将关于的二次函数的图象向下平移8个单位,求平移后的图象的解析式;
(3)在(2)的条件下,将平移后的二次函数的图象在轴下方的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线
与此图象有两个公共点时,的取值范围.
19、(2009年湖北省荆门市)一开口向上的抛物线与x轴交于A(m-2,0),B(m+2,0)两点,记抛物线顶点为C,且AC⊥BC.
(1)若m为常数,求抛物线的解析式;
(2)若m为小于0的常数,那么(1)中的抛物线经过怎么样的平移可以使顶点在坐标原点?
(3)设抛物线交y轴正半轴于D点,问是否存在实数m,使得△BCD为等腰三角形?若存在,求出m的值;若不存在,请说明理由.
20(09湖北宜昌)已知:直角梯形OABC的四个顶点是O(0,0),A(,1), B(s,t),C(,0),抛物线y=x2+mx-m的顶点P是直角梯形OABC内部或边上的一个动点,m为常数.
(1)求s与t的值,并在直角坐标系中画出直角梯形OABC;
(2)当抛物线y=x2+mx-m与直角梯形OABC的边AB相交时,求m的取值范围.
提示:第(2)问,满足两个条件,
(1) 先求顶点P坐标,再由其活动范围确定m取值范围,P在AB下,x轴上,线段OA右,BC左;
(2) 抛物线与线段AB有交点,得到一个特殊方程,求出两解,再求M范围。
21、(2009浙江省杭州市)
已知平行于x轴的直线与函数和函数的图象分别交于点A和点B,又有定点P(2,0)。
(1)若,且tan∠POB=,求线段AB的长;
(2)在过A,B两点且顶点在直线上的抛物线中,已知线段AB=,且在它的对称轴左边时,y随着x的增大而增大,试求出满足条件的抛物线的解析式;
(3)已知经过A,B,P三点的抛物线,平移后能得到的图象,求点P到直线AB的距离。
22、(2009年台州市)
如图,已知直线 交坐标轴于两点,以线段为边向上作正方形,过点的抛物线与直线另一个交点为.
(1)请直接写出点的坐标;
(2)求抛物线的解析式;
(3)若正方形以每秒个单位长度的速度沿射线下滑,直至顶点落在轴上时停止.设正方形落在轴下方部分的面积为,求关于滑行时间的函数关系式,并写出相应自变量的取值范围;
(4)在(3)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上两点间的抛物线弧所扫过的面积.
第8题图
E
F
B
C
G
D
A
C
B
A
D
(第9题)
图8
F
P
E
B
x
m
l
y
N
P
A
M
O
B
x
m
l
y
N
P
A
M
O
A
D
B
E
O
C
F
x
y
y
(G)
G
D
C
E
F
A
B
b
a
(第7题图)
s
t
O
A.
s
t
O
B.
C.
s
t
O
D.
s
t
O
图(3)
A
O
y
x
B
图(2)
A
O
y
x
B
图(1)
A
O
D
C
M
y
x
B
C
F
B
P
Q
D
E
A
A
E
P
O
C
B
Q
M
N
D
x
y
4
x
2
2
A
8
-2
O
-2
-4
y
6
B
C
D
-4
4
Q
P
(第17题)
第15题图
E
D
A
图4(备)用)
C
F
B
E
D
A
C
B
A
y
x
O
(第3题图)
C
M
D
N
G
B
A
E
y
x
O
C
D
B
A
3
3
6
B
F
C
图5(备)
备用)
A
D
E
B
F
C
图1
图2
A
D
E
B
F
C
P
N
M
图3
A
D
E
B
F
C
P
N
M
(第25题)
备用图
A′′
4
-4
D
C
B′
6
y
-4
-2
O
-2
8
A′
2
2
x
4
((2)①图)
B′′
A′′
4
-4
D
C
B′
6
y
-4
-2
O
-2
8
A′
2
2
x
4
((2)②图)
PAGE
1学法指导新题型
(阅读理解、变式探究、开放探究)
1、(2009年济宁市)阅读下面的材料:
在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数的图象为直线,一次函数的图象为直线,若,且,我们就称直线与直线互相平行.
解答下面的问题:
(1)求过点且与已知直线平行的直线的函数表达式,并画出直线 的图象;
(2)设直线分别与轴、轴交于点、,如果直线:与直线平行且交轴于点,求出△的面积关于的函数表达式.
2、(2009年北京市)阅读下列材料:
小明遇到一个问题:5个同样大小的正方形纸片排列形式如图1所示,将它们分割后拼接成一个新的正方形.他的做法是:按图2所示的方法分割后,将三角形纸片①绕AB的中点O旋转至三角形纸片②处,依此方法继续操作,即可拼接成一个新的正方形DEFG.请你参考小明的做法解决下列问题:
(1)现有5个形状、大小相同的矩形纸片,排列形式如图3所示.请将其分割后拼接成一个平行四边形.要求:在图3中画出并 指明拼接成的平行四边形(画出一个符合条件的平行四边形即可);
(2)如图4,在面积为2的平行四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,分别连结AF、BG、CH、DE得到一个新的平行四边形MNPQ请在图4中探究平行四边形MNPQ面积的大小(画图并直接写出结果).
3、(2009年益阳市)阅读材料:
如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:,即三角形面积等于水平宽与铅垂高乘积的一半.
解答下列问题:
如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
(1)求抛物线和直线AB的解析式;
(2)点P是抛物线(在第一象限内)上的一个动点,连结PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及;
(3)是否存在一点P,使S△PAB=S△CAB,若存在,求出P点的坐标;若不存在,请说明理由.
4、(2009年四川省内江市)阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为,腰上的高为h,连结AP,则
即:
(定值)
(1)理解与应用
如图,在边长为3的正方形ABC中,点E为对角线BD上的一点,且BE=BC,F为CE上一点,FM⊥BC于M,FN⊥BD于N,
试利用上述结论求出FM+FN的长。
(2)类比与推理
如果把“等腰三角形”改成“等到边三角形”,
那么P的位置可以由“在底边上任一点”
放宽为“在三角形内任一点”,即:
已知等边△ABC内任意一点P到各边的距离分别为,等边△ABC的高为h,试证明:(定值)。
(3)拓展与延伸
若正n边形A1A2…An内部任意一点P到各边的距离为,请问是否为定值,如果是,请合理猜测出这个定值。
5、(2009年河北)如图1至图5,⊙O均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c.
阅读理解:
(1)如图1⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB = c时⊙O恰好自转1周.
(2)如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A-B-C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2 = n°,⊙O在点B处自转周.
实践应用:
(1)在阅读理解的(1)中,若AB = 2c,则⊙O自转 周;若AB = l,则⊙O自转 周.在阅读理解的(2)中,若∠ABC = 120°,则⊙O在点B处自转 周;若∠ABC = 60°,则⊙O在点B处自转 周.
(2)如图3,∠ABC=90°,AB=BC=c.⊙O从⊙O1的位置出发,在∠ABC外部沿A-B-C滚动到⊙O4的位置,⊙O自转 周.
拓展联想:
(1)如图4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由.
(2)如图5,点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数.
6、(2009青海)请阅读,完成证明和填空.
九年级数学兴趣小组在学校的“数学长廊”中兴奋地展示了他们小组探究发现的结果,内容如下:
(1)如图12-1,正三角形中,在边上分别取点,使,连接,发现,且.请证明:.
(2)如图12-2,正方形中,在边上分别取点,使,连接,那么 ,且 度.
(3)如图12-3,正五边形中,在边上分别取点,使,连接,那么 ,且 度.
(4)在正边形中,对相邻的三边实施同样的操作过程,也会有类似的结论.请大胆猜测,用一句话概括你的发现:
.
7、(2009年咸宁市)问题背景:
在中,、、三边的长分别为、、,求这个三角形的面积.
小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点(即三个顶点都在小正方形的顶点处),如图所示.这样不需求的高,而借用网格就能计算出它的面积.
(1)请你将的面积直接填写在横线上.__________________
思维拓展:
(2)我们把上述求面积的方法叫做构图法.若三边的长分别为、、(),请利用图的正方形网格(每个小正方形的边长为)画出相应的,并求出它的面积.
探索创新:
(3)若三边的长分别为、、(,且),试运用构图法求出这三角形的面积.
8、(2009年湖州)
若P为所在平面上一点,且,则点叫做的费马点.
(1)若点为锐角的费马点,且,则的值为________;
(2)如图,在锐角外侧作等边′连结′.
求证:′过的费马点,且′=.
9、(2009年上海市)已知线段与相交于点,联结,为的中点,为的中点,联结(如图所示).
(1)添加条件∠A=∠D,,求证:AB=DC.
(2)分别将“”记为①,“”记为②,“”记为③,添加条件①、③,以②为结论构成命题1,添加条件②、③,以①为结论构成命题2.命题1是 命题,命题2是 命题(选择“真”或“假”填入空格).
10、(2009临沂)
数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.,且EF交正方形外角的平行线CF于点F,求证:AE=EF.
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证,所以.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
11、(2009年吉林省)如图,,请你写出图中三对全等三角形,并选取其中一对加以证明.
12、(2009年莆田)已知:如图在中,过对角线的中点作直线分别交的延长线、的延长线于点
(1)观察图形并找出一对全等三角形:________________,请加以证明;
(2)在(1)中你所找出的一对全等三角形,其中一个三角形可由另一个三角形经过怎样的变换得到?
13、(2009年宁德市)如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.
(1)连接GD,求证:△ADG≌△ABE;
(2)连接FC,观察并猜测∠FCN的度数,并说明理由;
(3)如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=a,BC=b(a、b为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请用含a、b的代数式表示tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.
14、(2009年莆田)
已知:等边的边长为.
探究(1):如图1,过等边的顶点依次作的垂线围成求证:是等边三角形且;
探究(2):
在等边内取一点,过点分别作垂足分别为点
1 如图2,若点是的重心,我们可利用三角形面积公式及等边三角形性质得到两个正确结论(不必证明):
结论1.;
结论2.;
②如图3,若点是等边内任意一点,则上述结论是否仍然成立?如果成立,请给予证明;如果不成立,请说明理由.
15、(2009威海)如图1,在正方形中,分别为边上的点,,连接交点为.
(1)如图2,连接,试判断四边形的形状,并证明你的结论;
(2)将正方形沿线段剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形的边长为3cm,,则图3中阴影部分的面积为_________.
16、(2009年广西南宁)如图13-1,在边长为5的正方形中,点、分别是、边上的点,且,.
(1)求∶的值;
(2)延长交正方形外角平分线(如图13-2),试判断的大小关系,并说明理由;
(3)在图13-2的边上是否存在一点,使得四边形是平行四边形?若存在,请给予证明;若不存在,请说明理由.
17、(2009年铁岭市)是等边三角形,点是射线上的一个动点(点不与点重合),是以为边的等边三角形,过点作的平行线,分别交射线于点,连接.
(1)如图(a)所示,当点在线段上时.
①求证:;
②探究四边形是怎样特殊的四边形?并说明理由;
(2)如图(b)所示,当点在的延长线上时,直接写出(1)中的两个结论是否成立?
(3)在(2)的情况下,当点运动到什么位置时,四边形是菱形?并说明理由.
18、 (2009年衢州)如图,AD是⊙O的直径.
(1) 如图①,垂直于AD的两条弦B1C1,B2C2把圆周4等分,则∠B1的度数是 ,∠B2的度数是 ;
(2)如图②,垂直于AD的三条弦B1C1,B2C2,B3C3把圆周6等分,分别求∠B1,∠B2,
∠B3的度数;
(3) 如图③,垂直于AD的n条弦B1C1,B2C2,B3 C3,…,BnCn把圆周2n等分,请你用含n的代数式表示∠Bn的度数(只需直接写出答案).
19、(2009仙桃)如图所示,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,如图①,然后将△ADE绕A点顺时针旋转一定角度,得到图②,然后将BD、CE分别延长至M、N,使DM=BD,EN=CE,得到图③,请解答下列问题:
(1)若AB=AC,请探究下列数量关系:
①在图②中,BD与CE的数量关系是________________;
②在图③中,猜想AM与AN的数量关系、
∠MAN与∠BAC的数量关系,并证明你的猜想;
(2)若AB=k·AC(k>1),按上述操作方法,得到图④,请继续探究:AM与AN的数量关系、∠MAN与∠BAC的数量关系,直接写出你的猜想,不必证明.
( http: / / www. / )
2
4
6
2
4
6
-2
-2
A
C
B
A
D
F
C
G
E
B
图1
A
D
F
C
G
E
B
图2
A
D
F
C
G
E
B
图3
F
E
B
A
C
D
O
B
D
C
F
A 郜
E
E
B
M
O
D
N
F
C
A
E
B
M
O
D
N
F
C
A
图(2)
M
B
E
A
C
D
F
G
N
N
M
B
E
C
D
F
G
图(1)
O
O
(图4)
D
B
E
C
F
A
O
(图3)
(图2)
(图1)
D
B
E
C
F
A
D
B
E
C
F
A
B
C
G
A
M
N
1)
D
C
B
A
O
H
G
F
E
E
B
A
D
C
G
F
H
)
图13-1
A
D
C
B
E
图13-2
B
C
E
D
A
F
P
F
A
G
C
D
B
F
E
图(a)
A
D
C
B
F
E
G
图(b)
…
图12-3
图12-2
图12-1
E
N
N
N
M
M
M
O
O
O
D
D
C
C
C
B
B
B
A
A
A
P
r3
r2
r1
h
B P C
A
F
N
E
B M C
A D
1
1
D
B
A
y
O
C
x
a
h
水平宽
铅垂高
C
B
O
图5
D
D
图4
C
B
A
O
O4
C
O1
A
O
O3
O2
图3
B
O2
O1
D
n°
C
A
图2
B
B
O2
O
O1
A
图1
B
C
A
(图②)
(图①)
PAGE
1应用题
(含图像、表格信息问题)
——— 马铁汉
应用题是中考重点和难点,解题时要认真读题,正确建模,灵活解答分析。读题时,文字信息要注意关键词语、隐含条件;读表格图像时,要结合文字信息理解,将信息转化为实际意义。建模、分析见以下例题。
1、 方程型
1、(股票问题)(09四川凉山)我国沪深股市交易中,如果买、卖一次股票均需付交易金额的0.5%作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)
提示:一元一次方程型
2、(增长率问题)(09广州市)
为了拉动内需,广东启动“家电下乡”活动。某家电公司销售给农户的Ⅰ型冰箱和Ⅱ型冰箱在启动活动前一个月共售出960台,启动活动后的第一个月销售给农户的Ⅰ型和Ⅱ型冰箱的销量分别比启动活动前一个月增长30%、25%,这两种型号的冰箱共售出1228台。
(1)在启动活动前的一个月,销售给农户的Ⅰ型冰箱和Ⅱ型冰箱分别为多少台?
(2)若Ⅰ型冰箱每台价格是2298元,Ⅱ型冰箱每台价格是1999元,根据“家电下乡”的有关政策,政府按每台冰箱价格的13%给购买冰箱的农户补贴,问:启动活动后的第一个月销售给农户的1228台Ⅰ型冰箱和Ⅱ型冰箱,政府共补贴方程了多少元(结果保留2个有效数字)?
提示:一元一次方程型
3、(传染问题)(09广东省)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?
提示:一元二次方程型
4、(09广东东营)为了贯彻落实国务院 ( http: / / baike. / view / 17491.htm" \t "_blank )关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电 ( http: / / baike. / view / 154243.htm" \t "_blank )、冰箱 ( http: / / baike. / view / 9392.htm" \t "_blank )(含冰柜 ( http: / / baike. / view / 136016.htm" \t "_blank ))、手机 ( http: / / baike. / view / 1455.htm" \t "_blank )三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.
(1)求2007年同期试点产品类家电销售量为多少万台(部)?
(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,手机每部800元,已知销售的冰箱(含冰柜 ( http: / / baike. / view / 136016.htm" \t "_blank ))数量是彩电数量的倍,求彩电 ( http: / / baike. / view / 154243.htm" \t "_blank )、冰箱 ( http: / / baike. / view / 9392.htm" \t "_blank )、手机 ( http: / / baike. / view / 1455.htm" \t "_blank )三大类产品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元?
提示:一元一次方程与二元一次方程型
2、 不等式型
5、(方案设计)(09河南)某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共l5台.三种家电的进价和售价如下表所示:
(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案
(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下.
如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元
提示:不等式组型
3、 函数型
近几年常考分段函数。关于二次函数最值的考查有些变化,由直接求最值,到求取值范围内最值,或求整数点最值;若为分段函数也有比较各段最值确定最值。其它还有考查自变量取值范围,二次函数对称轴性质,函数增减性等。详情见后面例题。
6、(优化方案)(09恩施州)某超市经销A、B两种商品,A种商品每件进价20元,售价30元;B种商品每件进价35元,售价48元.
(1)该超市准备用800元去购进A、B两种商品若干件,怎样购进才能使超市经销这两种商品所获利润最大(其中B种商品不少于7件)?
(2)在“五·一”期间,该商场对A、B两种商品进行如下优惠促销活动:
打折前一次性购物总金额 优惠措施
不超过300元 不优惠
超过300元且不超过400元 售价打八折
超过400元 售价打七折
促销活动期间小颖去该超市购买A种商品,小华去该超市购买B种商品,分别付款210元与268.8元. 促销活动期间小明决定一次去购买小颖和小华购买的同样多的商品,他需付款多少元?
提示:注意隐含条件-----件数是整数、一次函数、一元一次方程
7、(图像信息问题)(2009 黑龙江大兴安岭)邮递员小王从县城出发,骑自行车到A村投递,途中遇到县城中学的学生李明从A村步行返校.小王在A村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结果小王比预计时间晚到1分钟.二人与县城间的距离(千米)和小王从县城出发后所用的时间(分)之间的函数关系如图,假设二人之间交流的时间忽略不计,求:
(1)小王和李明第一次相遇时,距县城多少千米?请直接写出答案.
(2)小王从县城出发到返回县城所用的时间.
(3)李明从A村到县城共用多长时间?
建议:读图像信息时:
1、读横轴、纵轴意义
2、读特殊点的意义
3、读每一段图像特征
4、读整体图像特征
提示: (1)法一 (解析法)求线段解析式 再求函数值;法二 (几何法)利用图中相似性直接求所需线段长
(2)图文结合读题意
(3)法同(1)
8、(图像信息问题)(2009年衡阳市)在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t(h),两组离乙地的距离分别为S1(km)和S2(km),图中的折线分别表示S1、S2与t之间的函数关系.
(1)甲、乙两地之间的距离为 km,
乙、丙两地之间的距离为 km;
(2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?
(3)求图中线段AB所表示的S2与t间的函数关系式,并写出自变量t的取值范围.
提示:注意坐标轴意义、将图像信息转化为实际意义。
9、(2009年江苏省)某加油站五月份营销一种油品的销售利润(万元)与销售量(万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:
(1)求销售量为多少时,销售利润为4万元;
(2)分别求出线段AB与BC所对应的函数关系式;
(3)我们把销售每升油所获得的利润称为利润率,那么,在OA、AB、BC三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)
提示:图文结合读懂题意、文字信息与图像信息相互转化;分段函数、一次函数、读懂
各段之间联系。
10、(分段函数)(09山西太原)、两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往城,乙车驶往城,甲车在行驶过程中速度始终不变.甲车距城高速公路入口处的距离(千米)与行驶时间(时)之间的关系如图.
(1)求关于的表达式;
(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为(千米).请直接写出关于的表达式;
(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度.在下图中画出乙车离开城高速公路入口处的距离(千米)与行驶时间(时)之间的函数图象.
提示:注意坐标轴意义
11、(2009年牡丹江市)甲、乙两车同时从地出发,以各自的速度匀速向地行驶.甲车先到达地,停留1小时后按原路以另一速度匀速返回,直到两车相遇.乙车的速度为每小时60千米.下图是两车之间的距离(千米)与乙车行驶时间(小时)之间的函数图象.
(1)请将图中的( )内填上正确的值,并直接写出甲车从到的行驶速度;
(2)求从甲车返回到与乙车相遇过程中与之间的函数关系式,并写出自变量的取值范围.
(3)求出甲车返回时行驶速度及、两地的距离.
(分析)行程问题:注意坐标轴的意义,将图像信息转化为实际意义进行解答
【类似于08南京中考题】
12、(2009河池)为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量(毫克)与时间(分钟)成正比例;药物释放完毕后,与成反比例,如图所示.根据图中提供的信息,解答下列问题:
(1)写出从药物释放开始,与之间的两个函数关系式及相应的自变量取值范围;
(2)据测定,当空气中每立方米的含药量降低到0.45毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?
提示:分段函数、一次函数、反比例函数;考查函数自变量范围。
13、(2009年山东青岛市)某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价(元)与销售月份(月)满足关系式,而其每千克成本(元)与销售月份(月)满足的函数关系如图所示.
(1)试确定的值;
(2)求出这种水产品每千克的利润(元)与销售月份(月)之间的函数关系式;
(3)“五·一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?
提示:两函数相减得二次函数(整点)、求最值、
14、(08潍坊)一家化工厂原来每月利润为120万元,从今年1月起安装使用回收净化设备(安装时间不计),一方面改善了环境,另一方面大大降低原料成本.据测算,使用回收净化设备后的1至x月(1≤x≤12)的利润的月平均值w(万元)满足w=10x+90,第二年的月利润稳定在第1年的第12个月的水平。
(1)设使用回收净化设备后的1至x月(1≤x≤12)的利润和为y,写出y关于x的函数关系式,并求前几个月的利润和等于700万元?
(2)当x为何值时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x个月的利润和相等?
(3)求使用回收净化设备后两年的利润总和。
提示:二次函数、一元二次方程、第(3)问,先求第1 年第12月利润即为第二年每月利润。
15、(07黄冈)我市高新技术开发区的某公司,用480万元购得某种产品的生产技术后,并进一步投入资金1520万元购买生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格每增加10元,年销售量将减少1万件.设销售单价为x(元),年销售量为y(万件),年获利为w(万元).(年获利=年销售额—生产成本—投资成本)
(1)直接写出y与x之间的函数关系式;
(2)求第一年的年获利w与x间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?
(3)若该公司希望到第二年底,除去第一年的最大盈利(或最小亏损)后,两年的总盈利不低于1842元,请你确定此时销售单价的范围.在此情况下,要使产品销售量最大,销售单价应定为多少元?
提示:
(1)分段一次函数,两段之间有内在联系,承上启下,即第二段起点是第一段终点;
(2)分段二次函数,求最值或区间内最值;
(3)第二年没有投资成本,所以与第一年获利函数关系式不一样;求自变量取值范围。
16、(08黄冈)四川汶川大地震发生后,我市某工厂车间接到生产一批帐篷的紧急任务,要求必须在12天(含12天)内完成.已知每顶帐篷的成本价为800元,该车间平时每天能生产帐篷20顶.为了加快进度,车间采取工人分批日夜加班,机器满负荷运转的生产方式,生产效率得到了提高.这样,第一天生产了22顶,以后每天生产的帐篷都比前一天多2顶.由于机器损耗等原因,当每天生产的帐篷数达到30顶后,每增加1顶帐篷,当天生产的所有帐篷,平均每顶的成本就增加20元.设生产这批帐篷的时间为天,每天生产的帐篷为顶.
(1)直接写出与之间的函数关系式,并写出自变量的取值范围.
(2)若这批帐篷的订购价格为每顶1200元,该车间决定把获得最高利润的那一天的全部利润捐献给灾区.设该车间每天的利润为元,试求出与之间的函数关系式,并求出该车间捐款给灾区多少钱?
提示:
(1) 一次函数
(2) 分段一次、二次函数,求区间内最值
17、(09湖北黄冈)新星电子科技公司积极应对2008年世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线.由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次).公司累积获得的利润y(万元)与销售时间第x(月)之间的函数关系式(即前x个月的利润总和y与x之间的关系)对应的点都在如图所示的图象上.该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线的一部分,且点A,B,C的横坐标分别为4,10,12
(1)求该公司累积获得的利润y(万元)与时间第x(月)之间的函数关系式;
(2)直接写出第x个月所获得S(万元)与时间x(月)之间的函数关系式(不需要写出计算过程);
(3)前12个月中,第几个月该公司所获得的利润最多?最多利润是多少万元?
提示:分段函数、一次函数、二次函数、
注意坐标轴意义(y轴为累积利润)、
第(3)问分段转化求出最值再比较。
18、(09安徽)已知某种水果的批发单价与批发量的函数关系如图(1)所示.
(1)请说明图中①、②两段函数图象的实际意义.
(2)写出批发该种水果的资金金额w(元)
与批发量m(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.
(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.
提示:分段函数、一次函数、二次函数及其最值、优化方案
19、(2009年重庆市江津区)某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。
(1)请建立销售价格y(元)与周次x之间的函数关系;
(2)若该品牌童装于进货当周售完,且这种童装每件进价z(元)与周次x之间的关系为, 1≤ x ≤11,且x为整数,那么该品牌童装在第几周售出后,每件获得利润最大?并求最大利润为多少?
提示:理解开始计数为第一周、分段函数、求区间内最值
20、(08武汉)某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查反映:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件.设每件涨价x元(x为非负整数),每星期的销量为y件.(1)求y与x的函数关系式及自变量x的取值范围;(2)如何定价才能使每星期的利润最大且每星期销量较大?每星期的最大利润是多少?
提示:分段函数、两个一次函数乘得二次函数、求整数点最值
21、(08天门)一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店日净收入.(日净收入=每天的销售额-套餐成本-每天固定支出)
(1)求y与x的函数关系式;
(2)若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元?
(3)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?
提示:不等式、分段函数、一次函数、二次
函数(整数点求最值)
4、 综合型
22、(09鄂州市)
某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售。按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据下表提供的信息,解答以下问题
(1)设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,求y与x之间的函数关系式.
(2)如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种 并写出每种安排方案。
(3)若要使此次销售获利最大,应采用(2)中哪种安排方案 并求出最大利润的值。
土特产种类 甲 乙 丙
每辆汽车运载量(吨) 8 6 5
每吨土特产获利(百元) 12 16 10
提示:一次函数、不等式、方案设计
23、(09哈尔滨)跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.
(1)求每个甲种零件、每个乙种零件的进价分别为多少元?
(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.
提示:分式方程、不等式、方案设计
24、(09湖北荆州)由于国家重点扶持节能环保产业,某种节能产品的销售市场逐渐回暖.某经销商销售这种产品,年初与生产厂家签订了一份进货合同,约定一年内进价为0.1万元/台,并预付了5万元押金。他计划一年内要达到一定的销售量,且完成此销售量所用的进货总金额加上押金控制在不低于34万元,但不高于40万元.若一年内该产品的售价(万元/台)与月次(且为整数)满足关系是式: HYPERLINK "http://www./" EMBED Equation.DSMT4 ,一年后发现实际每月的销售量(台)与月次之间存在如图所示的变化趋势.
⑴ 直接写出实际每月的销售量(台)与月次之间的函数关系式;
⑵ 求前三个月中每月的实际销售利润(万元)与月次之间的函数关系式;
⑶ 试判断全年哪一个月的的售价最高,并指出最高售价;
⑷ 请通过计算说明他这一年是否完成了年初计划的销售量.
提示:分段函数(整点)、一次函数、两函数相乘得二次函数、不等式组
25、(09湖南长沙)为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量(万件)与销售单价(元)之间的函数关系如图所示.
(1)求月销售量(万件)与销售单价(元)之间的函数关系式;
(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额-生产成本-员工工资-其它费用),该公司可安排员工多少人?
(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?
提示:分段函数、一次函数、一元一次方程、二次函数及其最值(分类讨论)
26、(2009武汉)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨元(为正整数),每个月的销售利润为元.
(1)求与的函数关系式并直接写出自变量的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?
提示:一元二次方程、两函数相乘得二次函数(整数点、最值)
27、(08黄石)某公司有型产品40件,型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:
型利润 型利润
甲店 200 170
乙店 160 150
(1)设分配给甲店型产品件,这家公司卖出这100件产品的总利润为(元),求关于的函数关系式,并求出的取值范围;
(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;
(3)为了促销,公司决定仅对甲店型产品让利销售,每件让利元,但让利后型产品的每件利润仍高于甲店型产品的每件利润.甲店的型产品以及乙店的型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?
提示:一次函数、方案设计、对参数字母分类讨论求最值。
28、(08扬州)红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)的关系如下表:
时间t(天) 1 3 6 10 36 …
日销售量m(件) 94 90 84 76 24 …
未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为(且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系式为(且t为整数)。下面我们就来研究销售这种商品的有关问题:
(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的关系式;
(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?
(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程。公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围。
提示:
(1)一次函数,
(2)分段二次函数,分别求顶点最值和区间内最值;
(3)含参数字母的二次函数,考查对称轴范围求参数范围。不等式。
五 几何实际应用题
29、(2009年广西南宁)如图21,要设计一个等腰梯形的花坛,花坛上底长米,下底长米,上下底相距米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等.设甬道的宽为米.
(1)用含的式子表示横向甬道的面积;
(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽;
(3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?
30、(2009年湖北荆州)安装在屋顶的太阳能热水器的横截面示意图如图所示.已知集热管AE与支架BF所在直线相交与水箱横截面⊙O的圆心O,⊙O的半径为0.2m,AO与屋面AB的夹角为32°,与铅垂线OD的夹角为40°,BF⊥AB于B,OD⊥AD于D,AB=2m,求屋面AB的坡度和支架BF的长.
(参考数据:)
提示:解直角三角形和圆相关
31、(2009年黄冈市)如图,在海面上生产了一股强台风,台风中心(记为点M)位于海滨城市(记作点A)的南偏西15°,距离为千米,且位于临海市(记作点B)正西方向千米处.台风中心正以72千米/时的速度沿北偏东60°的方向移动(假设台风在移动过程中的风力保持不变),距离台风中心60千米的圆形区域内均会受到此次强台风的侵袭.
(1)滨海市.临海市是否会受到此次台风的侵袭?请说明理由.
(2)若受到此次台风侵袭,该城市受到台风侵袭的持续时间有多少小时?
近三年黄冈中考数学
函数综合应用题特点分析
(马铁汉)
07 08 09
实际背景 公司经营、利润 工厂生产经营、利润 公司经营、利润
信息模式 文字信息(要反复阅读,注意关键词语,读懂题意;结合实际背景联想数学模型,建模时注意自变量取值范围) 文字信息 文字信息、图像图像信息(注意坐标轴意义)
数学模式 分段函数:一次函数二次函数(一元二次方程) 分段函数:一次函数二次函数 分段函数:一次函数二次函数
考点 ①求分段函数关系式,②求函数最值(先分段求最值后比较即得);③求自变量取值范围; ①求分段函数关系式,②求函数最值(先分段求最值后比较即得); ①求分段函数关系式,②求函数最值,
特点 ①一次函数两段之间有内在联系,第二段起点是第一段终点;自变量发生单位变化时函数随之变化; ②求区间内函数最值;③第二年没有投资成本,所以与第一年函数关系不一样。 ①求区间内函数最值;②自变量是整数。 ①纵坐标是累量;②累量与单量互化;
三年共同点:①利润问题,②分段函数,段与段之间有明显的直接联系或隐含的内在联系,③求函数关系式、区间内最值,④背景是当年社会热点焦点。
大趋势:文字+表格+图像信息(坐标轴意义在变、图像信息不全待求);求分段函数(段与段之间联系隐蔽);求函数最值(区间内最值或整数点最值)、自变量取值范围;累量与单量互化。
1
2
33
43
53
60
120
180
240
300
360
O
/千米
/时
金额w(元)
O
批发量m(kg)
300
200
100
20
40
60
O
60
20
4
批发单价(元)
5
批发量(kg)
①
②
第23题图(1)
O
6
2
40
日最高销量(kg)
80
零售价(元)
第23题图(2)
4
8
(6,80)
(7,40)
O
y
(万件)
(元)
x
80
60
40
1
2
4
36
4月
20
40
O
(台)
12月
(第18题图)
O
1 2 3 4 5 6 7 8 9 10 11 12
x(月)
y2(元)
24
25
图21
(分钟)
12
(毫克)
9
O
2·
4·
6·
8·
S(km)
2
0
t(h)
A
B
y(千米)
x(小时)
4.4
3
120
( )
O
F
E
O
D
C
B
A
N
C
D
E
F
PAGE
1旋转问题
考查三角形全等、相似、勾股定理、特殊三角形和四边形的性质与判定等。
旋转性质----对应线段、对应角的大小不变,对应线段的夹角等于旋转角。注意旋转过程中三角形与整个图形的特殊位置。
1、 直线的旋转
1、(2009年浙江省嘉兴市)如图,已知A、B是线段MN上的两点,,,.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设.
(1)求x的取值范围;
(2)若△ABC为直角三角形,求x的值;
(3)探究:△ABC的最大面积?
2、(2009年河南)如图,在Rt△ABC中,∠ACB=90°, ∠B =60°,BC=2.点0是AC的中点,过点0的直线l从与AC重合的位置开始,绕点0作逆时针旋转,交AB边于点D.过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.
(1)①当α=________度时,四边形EDBC是等腰梯形,此时AD的长为_________;
②当α=________度时,四边形EDBC是直角梯形,此时AD的长为_________;
(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.
3、(2009年北京市)
在中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转得到线段EF(如图1)
(1)在图1中画图探究:
①当P为射线CD上任意一点(P1不与C重合)时,连结EP1 绕点E逆时针旋转得到线段EC1.判断直线FC1与直线CD的位置关系,并加以证明;
②当P2为线段DC的延长线上任意一点时,连结EP2,将线段EP2绕点E 逆时针旋转得到线段EC2.判断直线C1C2与直线CD的位置关系,画出图形并直接写出你的结论.
(2)若AD=6,tanB=,AE=1,在①的条件下,设CP1=,S=,求与之间的函数关系式,并写出自变量的取值范围.
分析:此题是综合开放题-------已知条件、问题结论、解题依据、解题方法这四个要素中缺少两个或两个以上,条件需要补充,结论需要探究,解题方法、思考方向有待搜寻。
解决此类问题,一般要经过观察、实验、分析、比较、类比、归纳、推断等探究活动来寻找解题途径。可从简单、特殊的情况入手,由此获得启发和感悟,进而找到解决问题的正确途径,是我们研究数学问题,进行猜想和证明的思维方法。华罗庚说:善于退,足够地退,退到最原始而不失重要性的地方,这是学好数学的一个诀窍。
提示:(1)运用三角形全等,
(2)按CP=CE=4将x取值分为两段分类讨论;发现并利用好EC、EF相等且垂直。
4、(2009 黑龙江大兴安岭)
已知:在中,,动点绕的顶点逆时针旋转,且,连结.过、的中点、作直线,直线与直线、分别相交于点、.
(1)如图1,当点旋转到的延长线上时,点恰好与点重合,取的中点,连结、,根据三角形中位线定理和平行线的性质,可得结论(不需证明).
(2)当点旋转到图2或图3中的位置时,与有何数量关系?请分别写出猜想,并任选一种情况证明.
2、 角的旋转
5、(2009年中山)(1)如图1,圆心接中,,、为的半径,于点,于点求证:阴影部分四边形的面积是的面积的.
(2)如图2,若保持角度不变,
求证:当绕着点旋转时,由两条半径和的两条边围成的图形(图中阴影部分)面积始终是的面积的.
(2009襄樊市)如图,在梯形中,点是的中点,是等边三角形.
(1)求证:梯形是等腰梯形;
(2)动点、分别在线段和上运动,且保持不变.设求与的函数关系式;
(3)在(2)中:
①当动点、运动到何处时,以点、和点、、、中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;
②当取最小值时,判断的形状,并说明理由.
提示:第(3)①问,两种情形----
PM∥AB , PM∥CD
第(3)②问, 求出y最小值为3,此时x=PC=2,点P到BC中点,PM⊥BC .
6、(2009年重庆市)已知:如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.
(1)求过点E、D、C的抛物线的解析式;
(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;
(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
提示:第(3)问,△PGC为等腰三角形按哪两边相等分类讨论,求出点P坐标,再求点Q坐标。
3、 三角形的旋转
7、(2009年邵阳市)如图,将Rt△ABC(其中∠B=34,∠C=90)绕A点按顺时针方向旋转到△AB1 C1的位置,使得点C、A、B1 在同一条直线上,那么旋转角最小等于( )
A.56 B.68 C.124 D.180
8、(2009年包头)如图,已知与是两个全等的直角三角形,量得它们的斜边长为10cm,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点在同一条直线上,且点与点重合,将图(1)中的绕点顺时针方向旋转到图(2)的位置,点在边上,交于点,则线段的长为 cm(保留根号).
9、(2009河池)如图9,的顶点坐标分别为.若将绕点顺时针旋转,得到,则点的对应点的坐标为 .
10、(2009年郴州市)如图,桌面上平放着一块三角板和一把直尺,小明将三角板的直角顶点紧靠直尺的边缘,他发现无论是将三角板绕直角顶点旋转,还是将三角板沿直尺平移,与的和总是保持不变,那么与的和是_______度.
11、(2009年台州市)如图,三角板中,,,.
三角板绕直角顶点逆时针旋转,当点的对应点落在边的起始位置上时即停止转动,则点转过的路径长为 .
12、(2009年凉山州)将绕点逆时针旋转到使在同一直线上,若,,则图中阴影部分面积为 cm2.
13、(2009年郴州市)如图6,在下面的方格图中,将ABC先向右平移四个单位得到AB1C1,再将AB1C1绕点A1逆时针旋转得到AB2C2,请依次作出AB1C1和AB2C2。
14、(2009年达州)如图7,在△ABC中,AB=2BC,点D、点E分别为AB、AC的中点,连结DE,将△ADE绕点E旋转180得到△CFE.试判断四边形BCFD的形状,并说明理由.
15、(2009襄樊市)如图所示,在中,将绕点顺时针方向旋转得到点在上,再将沿着所在直线翻转得到连接
(1)求证:四边形是菱形;
(2)连接并延长交于连接请问:四边形是什么特殊平行四边形?为什么?
16、(2009年株洲市)如图,在中,,,将绕点沿逆时针方向旋转得到.
(1)线段的长是 ,
的度数是 ;
(2)连结,求证:四边形是平行四边形;
(3)求四边形的面积.
17、(2009烟台市)如图,直角梯形ABCD中,,,且,过点D作,交的平分线于点E,连接BE.
(1)求证:;
(2)将绕点C,顺时针旋转得到,连接EG..求证:CD垂直平分EG.
(3)延长BE交CD于点P.求证:P是CD的中点.即.
18、(2009年山西省)
在中,将绕点顺时针旋转角得交于点,分别交于两点.
(1)如图1,观察并猜想,在旋转过程中,线段与有怎样的数量关系?并证明你的结论;
(2)如图2,当时,试判断四边形的形状,并说明理由;
(3)在(2)的情况下,求的长.
提示:(1)考查三角形旋转过程中的不变量再导出图形各线段间的各种关系;
(2)在特殊条件下,
得到线段间的特殊关系。
19、(2009年牡丹江)
已知中,为边的中点,绕点旋转,它的两边分别交、(或它们的延长线)于、当绕点旋转到于时(如图1),易证
当绕点旋转到不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,、、又有怎样的数量关系?请写出你的猜想,不需证明.
分析:此类题的特点是-----提供问题的一个特殊的情况(给出命题的题设、结论),让你探索使结论成立的证明过程,然后通过运动变换,使题设条件改变,图形随之发生变化产生新的问题情景,再去探究新情景中原来的结论是否成立,还是又有新的关系。
解题方法思路一般是----先探究特殊情景下的解题方法,再内化感悟、类比、猜想与探究。(针对特殊情景解题方法需添加什么辅助线,用到什么定理,是什么方法思想,能否直接模仿,还是要创新)
提示:图2、图3按退还到图1位置作辅助线,证明方法思路一样。
20、(2009年常德市)
如图9,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形.
(1)当把△ADE绕A点旋转到图10的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由;
(2)当△ADE绕A点旋转到图11的位置时,△AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由.
提示:(1)抓住不变量易解,
(2)能证得△ADC 与 △AEB是直角三角形,再用勾股定理和相似三角形的性质求解。
21、(2009东营)
已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
(1)求证:EG=CG;
(2)将图①中△BEF绕B点逆时针旋转45 ,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)
提示:考查三角形的中线、三角形全等、矩形的性质等。(2)作适当辅助线,构造全等三角形。也可连接GA,得GC=GA,过点G作AB的垂线,证GE=GA.
22、(2009年甘肃庆阳)(8分)如图14,在平面直角坐标系中,等腰Rt△OAB斜边OB在y轴上,且OB=4.
(1)画出△OAB绕原点O顺时针旋转90°后得到的三角形;
(2)求线段OB在上述旋转过程中所扫过部分图形的面积(即旋转前后OB与点B轨迹所围成的封闭图形的面积).
23、(2009年广西梧州)如图(9)-1,抛物线经过A(,0),C(3,)两点,与轴交于点D,与轴交于另一点B.
(1)求此抛物线的解析式;
(2)若直线将四边形ABCD面积二等分,求的值;
(3)如图(9)-2,过点E(1,1)作EF⊥轴于点F,将△AEF绕平面内某点旋转180°得△MNQ(点M、N、Q分别与点A、E、F对应),使点M、N在抛物线上,作MG⊥轴于点G,若线段MG︰AG=1︰2,求点M,N的坐标.
提示:第(3)问类似09武汉中考压轴题,利用好中心对称的性质-----对应边平行且相等。
4、 四边形的旋转
24、(2009年山东青岛市)如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转,则这两个正方形重叠部分的面积是 .
25、(2009呼和浩特)如图所示,正方形的边在正方形的边上,连接.
(1)求证:.
(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,说出旋转过程;若不存在,请说明理由.
26、(2009年济宁市)在平面直角坐标中,边长为2的正方形的两顶点、分别在轴、轴的正半轴上,点在原点.现将正方形绕点顺时针旋转,当点第一次落在直线上时停止旋转,旋转过程中,边交直线于点,边交轴于点(如图).
(1)求边在旋转过程中所扫过的面积;
(2)旋转过程中,当和平行时,求正方形旋转的度数;
(3)设的周长为,在旋转正方形的过程中,值是否有变化?请证明你的结论.
提示:延长BA交y轴于点E。第(3)问,
证明△OAE≌△OCN , △OMN≌△OME,
得MN=AM+CN.
27、(2009年宁波市)
如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为,直线BC经过点,,将四边形OABC绕点O按顺时针方向旋转度得到四边形,此时直线、直线分别与直线BC相交于点P、Q.
(1)四边形OABC的形状是 ,
当时,的值是 ;
(2)①如图1,当四边形的顶点落在轴正半轴时,求的值;
②如图,当四边形的顶点落在直线上时,求的面积.
(3)在四边形OABC旋转过程中,当时,是否存在这样的点P和点Q,使?若存在,请直接写出点P的坐标;若不存在,请说明理由.
提示:第(3)问,过点Q作QH⊥OA'于H,连接OQ,则QH=OC'=OC,易证PQ=OP,
设BP=x,BQ=2x;按旋转时点P在点B左、右两种情况分类讨论。
28、(2009年湖北荆州)
如图①,已知两个菱形ABCD和EFGH是以坐标原点O为位似中心的位似图形(菱形ABCD与菱形EFGH的位似比为2︰1),∠BAD=120°,对角线均在坐标轴上,抛物线经过AD的中点M.
⑴填空:A点坐标为 ,D点坐标为 ;
⑵操作:如图②,固定菱形ABCD,将菱形EFGH绕O点顺时针方向旋转度角,并延长OE交AD于P,延长OH交CD于Q.
探究1:在旋转的过程中是否存在某一角度,使得四边形AFEP是平行四边形?若存在,请推断出的值;若不存在,说明理由;
探究2:设AP=,四边形OPDQ的面积为,求与之间的函数关系式,并指出的取值范围.
5、 抛物线的旋转
29、(2009年宁德市)如图,已知抛物线C1:的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.
(1)求P点坐标及a的值;
(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;
(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.
30、(2009年四川凉山州)如图,已知抛物线经过,两点,顶点为.
(1)求抛物线的解析式;
(2)将绕点顺时针旋转90°后,点落到点的位置,将抛物线沿轴平移后经过点,求平移后所得图象的函数关系式;
(3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标.
C1
A
B
C
B1
34
图9
x
y
C
B
A
O
7
6
5
4
3
2
1
9
8
7
6
5
4
3
2
1
图(2)
D
(F)
C
(第27题)
(备用图)
x
y
O
A
B
C
y
(图1)
P
x
O
A
B
C
Q
y
(图2)
P
x
O
A
B
(Q)
图①
G
E
C
D
A
B
A
E
C
F
B
D
图1
图3
A
D
F
E
C
B
A
D
B
C
E
图2
F
图②
G
E
C
D
A
B
F
图③
E
C
A
B
F
D
F
B
C
E
G
D
A
F
C
E
B
D
A
F
C
E
B
D
A
图6
图9 图10 图11
图8
图22
y
x
A
O
B
P
N
图2
C1
C4
Q
E
F
图(2)
y
x
A
O
B
P
M
图1
C1
C2
C3
图(1)
E
B
C
D
A
B
G
E
C
F
D
A
N
M
C
B
A
O
P
Q
O
y
x
图②
A
B
C
D
E
F
G
H
图①
A
B
C
D
E
F
G
H
M
O
y
x
C
B
A
D
G
F
E
(N)
图1
图3
图2
B
A
C
图(9)-1
y=kx+1
C
y
x
A
B
O
D
Q
图(9)-2
y
x
A
B
O
G
N
M
F
E
(12题)
30°
A
B
C
30°
O
E
E
A
C
B
D
x
y
6题图
y
x
B
A
O
D
(第30题)
(第1题)
M
N
B
A
C
Q
M
P
B
C
D
A
60°
PAGE
1最短路线问题
(广水 马铁汉)
考查知识点----“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。
原型----“饮马问题”,“造桥选址问题”。考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。
解题总思路----找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。
以下主要对09中考“饮马问题”试题进行汇编,希望能对即将中考的同学们有所帮助。
1、(2009年达州)在边长为2㎝的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为____________㎝(结果不取近似值).
2、(2009年抚顺市)如图所示,正方形的面积为12,是等边三角形,点在正方形内,在对角线上有一点,使的和最小,则这个最小值为( )
A. B.
C.3 D.
3、(2009年鄂州)已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P在BC上移动,则当PA+PD取最小值时,△APD中边AP上的高为( )
A、 B、
C、 D、3
(动点,作A关于BC的对称点A',连A'D交BC于P,涉及勾股定理,相似)
4、(07南通)已知等腰三角形ABC的两个顶点分别是A(0,1)、B(0,3),第三个顶点C在x轴的正半轴上.关于y轴对称的抛物线y=ax2+bx+c经过A、D(3,-2)、P三点,且点P关于直线AC的对称点在x轴上.
(1)求直线BC的解析式;
(2)求抛物线y=ax2+bx+c的解析式及点P的坐标;
(3)设M是y轴上的一个动点,求PM+CM的取值范围.
5、(09年新疆乌鲁木齐市)如图,在矩形中,已知、两点的坐标分别为,为的中点.设点是平分线上的一个动点(不与点重合).
(1)试证明:无论点运动到何处,总造桥与相等;
(2)当点运动到与点的距离最小时,试确定过三点的抛物线的解析式;
(3)设点是(2)中所确定抛物线的顶点,当点运动到何处时,的周长最小?求出此时点的坐标和的周长;
(4)设点是矩形的对称中心,是否存在点,使?若存在,请直接写出点的坐标.
6、(09湖北荆门)一次函数的图象与x、y轴分别交于点A(2,0),B(0,4).
(1)求该函数的解析式;
(2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PC+PD的最小值,并求取得最小值时P点坐标.
7、(2009年济南)已知:抛物线的对称轴为与轴交于两点,与轴交于点其中、
(1)求这条抛物线的函数表达式.
(2)已知在对称轴上存在一点P,使得的周长最小.请求出点P的坐标.
(3)若点是线段上的一个动点(不与点O、点C重合).过点D作交轴于点连接、.设的长为,的面积为.求与之间的函数关系式.试说明是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.
8、、(2009年衢州市)
如图,已知点A(-4,8)和点B(2,n)在抛物线上.
(1) 求a的值及点B关于x轴对称点P的坐标,并在x轴上找一点Q,使得AQ+QB最短,求出点Q的坐标;
(2) 平移抛物线,记平移后点A的对应点为A′,点B的对应点为B′,点C(-2,0)和点D(-4,0)是x轴上的两个定点.
① 当抛物线向左平移到某个位置时,A′C+CB′ 最短,求此时抛物线的函数解析式;
② 当抛物线向左或向右平移时,是否存在某个位置,使四边形A′B′CD的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.
提示:
第(2)问,是“饮马问题”的变式运用,涉及到抛物线左移。答案见参考图。
1 方法一,A′关于x轴对称点A〞,要使
A′C+CB′最短,点C应在直线A〞B′上;
方法二,由(1)知,此时事实上,点Q移到点C位置,求CQ=14/5,即抛物线左移14/5单位;
②设抛物线左移b个单位,则A'(-4-b,8)、B'(2-b,2)。∵CD=2,∴B'左移2个单位得到B″(-b,2)位置,要使A′D+C B'最短,只要A′D+DB″最短。则只有点D在直线
A″B″上。
9、(2009年北京市)如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为
,,,延长AC到点D,使CD=,过点D作DE∥AB交BC的延长线于点E.
(1)求D点的坐标;
(2)作C点关于直线DE的对称点F,分别连结DF、EF,若过B点的直线将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;
(3)设G为y轴上一点,点P从直线与y轴的交点出发,先沿y轴到达G点,再沿GA到达A点,若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短。(要求:简述确定G点位置的方法,但不要求证明)
提示:第(2)问,平分周长时,直线过菱形的中心;
第(3)问,“确定G点的位置,使P点按照上述要求到达A点所用的时间最短”转化为点G到A的距离加G到(2)中直线的距离和最小是“饮马问题”的变式运用;发现(2)中直线与x轴夹角为60°很关键.
10、(2009恩施市)
恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷和世界级自然保护区星斗山位于笔直的沪渝高速公路同侧,、到直线的距离分别为和,要在沪渝高速公路旁修建一服务区,向、两景区运送游客.小民设计了两种方案,图(1)是方案一的示意图(与直线垂直,垂足为),到、的距离之和,图(2)是方案二的示意图(点关于直线的对称点是,连接交直线于点),到、的距离之和.
(1)求、,并比较它们的大小;
(2)请你说明的值为最小;
(3)拟建的恩施到张家界高速公路与沪渝高速公路垂直,建立如图(3)所示的直角坐标系,到直线的距离为,请你在旁和旁各修建一服务区、,使、、、组成的四边形的周长最小.并求出这个最小值.
提示:涉及勾股定理、点对称、设计方案。
第(3)问是“三折线”转“直”问题 。
再思考-------设计路线要根据需要设计,是P处分别往A、B两处送呢,还是可以先送到A接着送到B。本题是对所给方案进行分析,似乎还容易一些,若要你设计方案,还需考虑一个方案路线,P→A→B。
11、(09陕西) 如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是____.
12、(2009年浙江省绍兴市)定义一种变换:平移抛物线得到抛物线,使经过的顶点.设的对称轴分别交于点,点是点关于直线的对称点.
(1)如图1,若:,经过变换后,得到:,点的坐标为,则①的值等于______________;
②四边形为( )
A.平行四边形 B.矩形C.菱形 D.正方形
(2)如图2,若:,经过变换后,点的坐标为,求的面积;
(3)如图3,若:,经过变换后,,点是直线上的动点,求点到点的距离和到直线的距离之和的最小值.
((2)①图)
4
x
2
2
A′
8
-2
O
-2
-4
y
6
B′
C
D
-4
4
A′′
4
x
2
2
A
8
-2
O
-2
-4
y
6
B
C
D
-4
4
((2)②图)
4
x
2
2
A′
8
-2
O
-2
-4
y
6
B′
C
D
-4
4
A′′
B′′
B
D
P
x
O
y
A
D
E
P
B
C
第6题
A
B
O
(第28题图)
D
x
y
y
x
D
(第4题图)
O
B
A
图(2)
X
P
A
B
图(3)
O
P
Q
A
B
X
Y
图(1)
X
P
A
B
O
B
y
x
C
A
O
B
y
x
C
A
PAGE
1折叠问题
折叠对象有三角形、矩形、正方形、梯形等;考查问题有求折点位置、求折线长、折纸边长周长、求重叠面积、求角度、判断线段之间关系等;解题时,灵活运用轴对称性质和背景图形性质。轴对称性质-----折线是对称轴、折线两边图形全等、对应点连线垂直对称轴、对应边平行或交点在对称轴上。
压轴题是由一道道小题综合而成,常常伴有折叠;解压轴题时,要学会将大题分解成一道道小题;那么多作折叠的选择题填空题,很有必要。
1、(2009年浙江省绍兴市)如图,分别为的,边的中点,将此三角形沿折叠,使点落在边上的点处.若,则等于( )
A. B. C . D.
( http: / / www. / )
2、(2009湖北省荆门市)如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则( )
A.40° B.30°
C.20° D.10°
3、(2009年日照市)
将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是 .
4、(2009年衢州)在△ABC中,AB=12,AC=10,BC=9,AD是BC边上的高.将△ABC按如图所示的方式折叠,使点A与点D重合,折痕为EF,则△DEF的周长为
A.9.5 B.10.5 C.11 D.15.5
5、(2009泰安)如图,在Rt△ABC中,
∠ACB=90°,∠A<∠B,沿△ABC的中线CM将△CMA折叠,使点A落在点D处, 若CD恰好与MB垂直,则tanA的值 为 .
6、(2009年上海市)在中,为边上的点,联结(如图3所示).如果将沿直线翻折后,点恰好落在边的中点处,那么点到的距离是 .
7、(2009宁夏) 如图:在中,,是边上的中线,将沿边所在的直线折叠,使点 落在点处,得四边形.
求证:.
8、(2009年清远)如图,已知一个三角形纸片,边的长为8,边上的高为,和都为锐角,为一动点(点与点不重合),过点作,交于点,在中,设的长为,上的高为.
(1)请你用含的代数式表示.
(2)将沿折叠,使落在四边形所在平面,设点落在平面的点为,与四边形重叠部分的面积为,当为何值时,最大,最大值为多少?
9、(2009恩施市)如图,在中,的面积为25,点为边上的任意一点(不与、重合),过点作,交于点.设,以为折线将翻折(使落在四边形所在的平面内),所得的与梯形重叠部分的面积记为.
(1)用表示的面积;
(2)求出时与的函数关系式;
(3)求出时与的函数关系式;
(4)当取何值时,的值最大?最大值是多少?
提示:相似、二次函数
10、(2009年天津市)
已知一个直角三角形纸片,其中.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边交于点,与边交于点.
(Ⅰ)若折叠后使点与点重合,求点的坐标;提示:画出图形,图中性质
△ACD≌△BCD,△BDC∽△BOA,BC=AC
(Ⅱ)若折叠后点落在边上的点为,设,,试写出关于的函数解析式,并确定的取值范围;
提示:画图,△COB'中由勾股定理得出函数关系式,由x取值范围确定y范围。
(Ⅲ)若折叠后点落在边上的点为,且使,求此时点的坐标.
提示:画图,△COB'∽△BOA
11、(2009年湖南长沙)如图,二次函数()的图象与轴交于两点,与轴相交于点.连结两点的坐标分别为、,且当和时二次函数的函数值相等.
(1)求实数的值;
(2)若点同时从点出发,均以每秒1个单位长度的速度分别沿边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为秒时,连结,将沿翻折,点恰好落在边上的处,求的值及点的坐标;
(3)在(2)的条件下,二次函数图象的对称轴上是否存在点,使得以为项点的三角形与相似?如果存在,请求出点的坐标;如果不存在,请说明理由.
提示:第(2)问发现
特殊角∠CAB=30°,∠CBA=60°
特殊图形四边形BNPM为菱形;
第(3)问注意到△ABC为直角三角形后,按直角位置对应分类;先画出与△ABC相似的△BNQ ,再判断是否在对称轴上。
12、(2009年浙江省湖州市)
已知抛物线()与轴相交于点,顶点为.直线分别与轴,轴相交于两点,并且与直线相交于点.
(1)填空:试用含的代数式分别表示点与的坐标,则;
(2)如图,将沿轴翻折,若点的对应点′恰好落在抛物线上,′与轴交于点,连结,求的值和四边形的面积;
(3)在抛物线()上是否存在一点,使得以为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,试说明理由.
13、(2009成都)如图,将矩形ABCD沿BE折叠,若∠CBA′=30°则∠BEA′=_____.
14、(2009年凉山州)如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是( )
A. B.
C.
D.
15、(2009年衡阳市)如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为( )
A.1 B.
C. D.2
16、(2009东营)如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=65°,则∠AED′等于 ( )
(A)70°(B)65°(C)50°(D) 25°
17、(2009年淄博市)矩形纸片ABCD的边长AB=4,AD=2.将矩形纸片沿EF折叠,使点A与点C重合,折叠后在其一面着色(如图),则着色部分的面积为( )
A. 8 B. C. 4 D.
18、(09四川绵阳)如图,四边形ABCD是矩形,AB:AD = 4:3,把矩形沿直线AC折叠,点B落在点E处,连接DE,则
DE:AC =( )
A.1:3 B.3:8 C.8:27 D.7:25
19、(2009仙桃)将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB=,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC的长为( ).
A、 B、2 C、3 D、
20、(2009年佳木斯)如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.
(1)试找出一个与△AED全等的三角形,并加以证明.
(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.
21、(2009年鄂州市)如图27所示,将矩形OABC沿AE折叠,使点O恰好落在BC上F处,以CF为边作正方形CFGH,延长BC至M,使CM=|CF—EO|,再以CM、CO为边作矩形CMNO
(1)试比较EO、EC的大小,并说明理由
(2)令,请问m是否为定值?若是,请求出m的值;若不是,请说明理由
(3)在(2)的条件下,若CO=1,CE=,Q为AE上一点且QF=,抛物线y=mx2+bx+c经过C、Q两点,请求出此抛物线的解析式.
(4)在(3)的条件下,若抛物线y=mx2+bx+c与线段AB交于点P,试问在直线BC上是否存在点K,使得以P、B、K为顶点的三角形与△AEF相似 若存在,请求直线KP与y轴的交点T的坐标 若不存在,请说明理由。
22、(2009年湖北荆州)如图,将边长为8㎝的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是( )
A.3cm B.4cm C.5cm D.6cm
23、(2009年温州)如图,已知正方形纸片ABCD的边长为8,⊙0的半径为2,圆心在正方形的中心上,将纸片按图示方式折叠,使EA恰好与⊙0相切于点A ′(△EFA′与⊙0除切点外无重叠部分),延长FA′交CD边于点G,则A′G的长是
24、(2009年北京市)如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,将纸片的一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M、N分别是AD、BC边的中点,则A′N= ; 若M、N分别是AD、BC边的上距DC最近的n等分点(,且n为整数),则A′N= (用含有n的式子表示)
( http: / / www. / )
25、(2009山西省太原市)
问题解决
如图(1),将正方形纸片折叠,使点落在边上一点(不与点,重合),压平后得到折痕.当时,求的值.
类比归纳
在图(1)中,若则的值等于 ;若则的值等于 ;
若(为整数),则的值等于 .(用含的式子表示)
联系拓广
如图(2),将矩形纸片折叠,使点落在边上一点(不与点重合),压平后得到折痕设则的值等于 .(用含的式子表示)
26、(2009年哈尔滨)如图,梯形ABCD中,AD∥BC,DC⊥BC,将梯形沿对角线BD折叠,点A恰好落在DC边上的点A 处,若∠A BC=20°,则∠A BD的度数为( ).
(A)15°(B)20°(C)25°(D)30°
27、(2009年抚顺市)如图所示,已知:中,.
(1)尺规作图:作的平分线交于点(只保留作图痕迹,不写作法);
(2)在(1)所作图形中,将沿某条直线折叠,使点与点重合,折痕交于点,交于点,连接,再展回到原图形,得到四边形.
试判断四边形的形状,并证明;
若,求四边形的周长和的长.
E
D
B
C
A
B
C
A
A
C
B
D
G
A′
E
D
C
B
A
B
C
A
D
D
A
B
C
E
D
E
F
M
N
C
B
A
E
B
A
D
C
N
M
F
E
D
C
B
A
D′
C
F
C′
B
D
E
A
图(1)
方法指导:
为了求得的值,可先求、的长,不妨设:=2
图(2)
N
A
B
C
D
E
F
M
A
M
P
B
N
C
x
O
y
第2题图
F
(17题)
F
G
E
D
C
B
A
C
M
B
图3
A
(第12题)
备用图
N
M
A
O
C
B
y
x
N′
N
M
A
D
O
C
B
y
x
第(2)题
A
O
B
y
x
A
O
B
y
x
A
O
B
y
x
B
C
N
M
A
B
C
A
PAGE
1动点问题
题型方法归纳
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)
动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、
相似三角形、平行四边形、梯形、特殊角或
其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点
1、(2009年齐齐哈尔市)直线与坐标轴分别交于两点,动点同时从点出发,同时到达点,运动停止.点沿线段 运动,速度为每秒1个单位长度,点沿路线→→运动.
(1)直接写出两点的坐标;
(2)设点的运动时间为秒,的面积为,求出与之间的函数关系式;
(3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标.
提示:第(2)问按点P到拐点B所有时间分段分类;
第(3)问是分类讨论:已知三定点O、P、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP为边、OQ为边,②OP为边、OQ为对角线,③OP为对角线、OQ为边。然后画出各类的图形,根据图形性质求顶点坐标。
2、(2009年衡阳市)
如图,AB是⊙O的直径,弦BC=2cm,
∠ABC=60 .
(1)求⊙O的直径;
(2)若D是AB延长线上一点,连结CD,当BD长为多少时,CD与⊙O相切;
(3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速度从B点出发沿BC方向运动,设运动时间为,连结EF,当为何值时,△BEF为直角三角形.
注意:第(3)问按直角位置分类讨论
3、(2009重庆綦江)如图,已知抛物线经过点,抛物线的顶点为,过作射线.过顶点平行于轴的直线交射线于点,在轴正半轴上,连结.
(1)求该抛物线的解析式;
(2)若动点从点出发,以每秒1个长度单位的速度沿射线运动,设点运动的时间为.问当为何值时,四边形分别为平行四边形?直角梯形?等腰梯形?
(3)若,动点和动点分别从点和点同时出发,分别以每秒1个长度单位和2个长度单位的速度沿和运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为,连接,当为何值时,四边形的面积最小?并求出最小值及此时的长.
注意:发现并充分运用特殊角∠DAB=60°
当△OPQ面积最大时,四边形BCPQ的面积最小。
2、 特殊四边形边上动点
4、(2009年吉林省)如图所示,菱形的边长为6厘米,.从初始时刻开始,点、同时从点出发,点以1厘米/秒的速度沿的方向运动,点以2厘米/秒的速度沿的方向运动,当点运动到点时,、两点同时停止运动,设、运动的时间为秒时,与重叠部分的面积为平方厘米(这里规定:点和线段是面积为的三角形),解答下列问题:
(1)点、从出发到相遇所用时间是 秒;
(2)点、从开始运动到停止的过程中,当是等边三角形时的值是 秒;
(3)求与之间的函数关系式.
提示:第(3)问按点Q到拐点时间B、C所有时间分段分类 ; 提醒----- 高相等的两个三角形面积比等于底边的比 。
5、(2009年哈尔滨)如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.
(1)求直线AC的解析式;
(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);
(3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.
注意:第(2)问按点P到拐点B所用时间分段分类;
第(3)问发现∠MBC=90°,∠BCO与∠ABM互余,画出点P运动过程中,
∠MPB=∠ABM的两种情况,求出t值。
利用OB⊥AC,再求OP与AC夹角正切值.
6、(2009年温州)如图,在平面直角坐标系中,点A(,0),B(3 HYPERLINK "http://www./" EMBED Equation.3 ,2),C(0,2).动点D以每秒1个单位的速度从点0出发沿OC向终点C运动,同时动点E以每秒2个单位的速度从点A出发沿AB向终点B运动.过点E作EF上AB,交BC于点F,连结DA、DF.设运动时间为t秒.
(1)求∠ABC的度数;
(2)当t为何值时,AB∥DF;
(3)设四边形AEFD的面积为S.
①求S关于t的函数关系式;
②若一抛物线y=x2+mx经过动点E,当S<2时,求m的取值范围(写出答案即可).
注意:发现特殊性,DE∥OA
7、(07黄冈)已知:如图,在平面直角坐标系中,四边形ABCO是菱形,且
∠AOC=60°,点B的坐标是,点P从点C开始以每秒1个单位长度的速度在线段CB上向点B移动,同时,点Q从点O开始以每秒a(1≤a≤3)个单位长度的速度沿射线OA方向移动,设秒后,直线PQ交OB于点D.
(1)求∠AOB的度数及线段OA的长;
(2)求经过A,B,C三点的抛物线的解析式;
(3)当时,求t的值及此时直线PQ的解析式;
(4)当a为何值时,以O,P,Q,D为顶点的三角形与相似?当a 为何值时,以O,P,Q,D为顶点的三角形与不相似?请给出你的结论,并加以证明.
8、(08黄冈)已知:如图,在直角梯形中,,以为原点建立平面直角坐标系,三点的坐标分别为,点为线段的中点,动点从点出发,以每秒1个单位的速度,沿折线的路线移动,移动的时间为秒.
(1)求直线的解析式;
(2)若动点在线段上移动,当为何值时,四边形的面积是梯形面积的?
(3)动点从点出发,沿折线的路线移动过程中,设的面积为,请直接写出与的函数关系式,并指出自变量的取值范围;
(4)当动点在线段上移动时,能否在线段上找到一点,使四边形为矩形?请求出此时动点的坐标;若不能,请说明理由.
9、(09年黄冈市)如图,在平面直角坐标系xoy中,抛物线与x轴的交点为点A,与y轴的交点为点B. 过点B作x轴的平行线BC,交抛物线于点C,连结AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒)
(1)求A,B,C三点的坐标和抛物线的顶点的坐标;
(2)当t为何值时,四边形PQCA为平行四边形 请写出计算过程;
(3)当0<t<时,△PQF的面积是否总为定值 若是,求出此定值, 若不是,请说明理由;
(4)当t为何值时,△PQF为等腰三角形 请写出解答过程.
提示:第(3)问用相似比的代换,
得PF=OA(定值)。
第(4)问按哪两边相等分类讨论
①PQ=PF,②PQ=FQ,③QF=PF.
3、 直线上动点
8、(2009年湖南长沙)如图,二次函数()的图象与轴交于两点,与轴相交于点.连结两点的坐标分别为、,且当和时二次函数的函数值相等.
(1)求实数的值;
(2)若点同时从点出发,均以每秒1个单位长度的速度分别沿边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为秒时,连结,将沿翻折, 点恰好落在边上的处,求的值及点的坐标;
(3)在(2)的条件下,二次函数图象的对称轴上是否存在点,使得以为项点的三角形与相似?如果存在,请求出点的坐标;如果不存在,请说明理由.
提示:第(2)问发现
特殊角∠CAB=30°,∠CBA=60°
特殊图形四边形BNPM为菱形;
第(3)问注意到△ABC为直角三角形后,按直角位置对应分类;先画出与△ABC相似的△BNQ ,再判断是否在对称轴上。
9、(2009眉山)如图,已知直线与轴交于点A,与轴交于点D,抛物线与直线交于A、E两点,与轴交于B、C两点,且B点坐标为 (1,0)。
⑴求该抛物线的解析式;
⑵动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标P。
⑶在抛物线的对称轴上找一点M,使的值最大,求出点M的坐标。
提示:第(2)问按直角位置分类讨论后画出图形----①P为直角顶点AE为斜边时,以AE为直径画圆与x轴交点即为所求点P,②A为直角顶点时,过点A作AE垂线交x轴于点P,③E为直角顶点时,作法同②;
第(3)问,三角形两边之差小于第三边,那么等于第三边时差值最大。
10、(2009年兰州)如图①,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4), 点C在第一象限.动点P在正方形 ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.
(1)当P点在边AB上运动时,点Q的横坐标(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;
(2)求正方形边长及顶点C的坐标;
(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;
(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.
注意:第(4)问按点P分别在AB、BC、CD边上分类讨论;求t值时,灵活运用等腰三角形“三线合一”。
11、(2009年北京市)如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为
,,,延长AC到点D,使CD=,过点D作DE∥AB交BC的延长线于点E.
(1)求D点的坐标;
(2)作C点关于直线DE的对称点F,分别连结DF、EF,若过B点的直线将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;
(3)设G为y轴上一点,点P从直线与y轴的交点出发,先沿y轴到达G点,再沿GA到达A点,若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短。(要求:简述确定G点位置的方法,但不要求证明)
提示:第(2)问,平分周长时,直线过菱形的中心;
第(3)问,转化为点G到A的距离加G到(2)中直线的距离和最小;发现(2)中直线与x轴夹角为60°.见“最短路线问题”专题。
12、(2009年上海市)
已知∠ABC=90°,AB=2,BC=3,AD∥BC,P为线段BD上的动点,点Q在射线AB上,且满足(如图1所示).
(1)当AD=2,且点与点重合时(如图2所示),求线段的长;
(2)在图8中,联结.当,且点在线段上时,设点之间的距离为,,其中表示△APQ的面积,表示的面积,求关于的函数解析式,并写出函数定义域;
(3)当,且点在线段的延长线上时(如图3所示),求的大小.
注意:第(2)问,求动态问题中的变量取值范围时,先动手操作找到运动始、末两个位置变量的取值,然后再根据运动的特点确定满足条件的变量的取值范围。当PC⊥BD时,点Q、B重合,x获得最小值; 当P与D重合时,x获得最大值。
第(3)问,灵活运用SSA判定两三角形相似,即两个锐角三角形或两个钝角三角形可用SSA来判定两个三角形相似;或者用同一法;或者证∠BQP=∠BCP,得B、Q、C、P四点共圆也可求解。
13、(08宜昌)如图,在Rt△ABC中,AB=AC,P是边AB(含端点)上的动点.过P作BC的垂线PR,R为垂足,∠PRB的平分线与AB相交于点S,在线段RS上存在一点T,若以线段PT为一边作正方形PTEF,其顶点E,F恰好分别在边BC,AC上.
(1)△ABC与△SBR是否相似,说明理由;
(2)请你探索线段TS与PA的长度之间的关系;
(3)设边AB=1,当P在边AB(含端点)上运动时,请你探索正方形PTEF的面积y的最小值和最大值.
提示:第(3)问,关键是找到并画出满足条件时最大、最小图形;当p运动到使T与R重合时,PA=TS为最大;当P与A重合时,PA最小。此问与上题中求取值范围类似。
14、(2009年河北)如图,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)当t = 2时,AP = ,点Q到AC的距离是 ;
(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)
(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;
(4)当DE经过点C 时,请直接写出t的值.
提示:(3)按哪两边平行分类,按要求画出图形,再结合图形性质求出t值;有二种成立的情形,
DE∥QB,PQ∥BC;
(4)按点P运动方向分类,按要求画出图形再结合图形性质求出t值;有二种情形,
CQ=CP=AQ=t时,
QC=PC=6-t时.
15、(2009年包头)已知二次函数()的图象经过点,,,直线()与轴交于点.
(1)求二次函数的解析式;
(2)在直线()上有一点(点在第四象限),使得为顶点的三角形与以为顶点的三角形相似,求点坐标(用含的代数式表示);
(3)在(2)成立的条件下,抛物线上是否存在一点,使得四边形为平行四边形?若存在,请求出的值及四边形的面积;若不存在,请说明理由.
提示:
第(2)问,按对应锐角不同分类讨论,有两种情形;
第(3)问,四边形ABEF为平行四边形时,E、F两点纵坐标相等,且AB=EF,对第(2)问中两种情形分别讨论。
4、 抛物线上动点
16、(2009年湖北十堰市)如图①, 已知抛物线(a≠0)与轴交于点A(1,0)和点B (-3,0),与y轴交于点C.
(1) 求抛物线的解析式;
(2) 设抛物线的对称轴与轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
(3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.
注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平分线与对称轴交点即为所求点P。
第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值); 方法二,先求与BC平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。
17、(2009年黄石市)正方形在如图所示的平面直角坐标系中,在轴正半轴上,在轴的负半轴上,交轴正半轴于交轴负半轴于,,抛物线过三点.
(1)求抛物线的解析式;
(2)是抛物线上间的一点,过点作平行于轴的直线交边于,交所在直线于,若,则判断四边形的形状;
(3)在射线上是否存在动点,在射线上是否存在动点,使得且,若存在,请给予严格证明,若不存在,请说明理由.
注意:第(2)问,发现并利用好NM∥FA且NM=FA;
第(3)问,将此问题分离出来单独解答,不受其它图形的干扰。需分类讨论,先画出合适的图形,再证明。
近三年黄冈中考数学
“坐标几何题”(动点问题)分析
(马铁汉)
07 08 09
动点个数 两个 一个 两个
问题背景 特殊菱形两边上移动 特殊直角梯形三边上移动 抛物线中特殊直角梯形底边上移动
考查难点 探究相似三角形 探究三角形面积函数关系式 探究等腰三角形
考点 ①菱形性质②特殊角三角函数③求直线、抛物线解析式④相似三角形⑤不等式 ①求直线解析式②四边形面积的表示③动三角形面积函数④矩形性质 ①求抛物线顶点坐标②探究平行四边形③探究动三角形面积是定值④探究等腰三角形存在性
特点 ①菱形是含60°的特殊菱形;△AOB是底角为30°的等腰三角形。②一个动点速度是参数字母。③探究相似三角形时,按对应角不同分类讨论;先画图,再探究。④通过相似三角形过度,转化相似比得出方程。⑤利用a、t范围,运用不等式求出a、t的值。 ①观察图形构造特征适当割补表示面积②动点按到拐点时间分段分类③画出矩形必备条件的图形探究其存在性 ①直角梯形是特殊的(一底角是45°)②点动带动线动③线动中的特殊性(两个交点D、E是定点;动线段PF长度是定值,PF=OA)④通过相似三角形过度,转化相似比得出方程。⑤探究等腰三角形时,先画图,再探究(按边相等分类讨论)
三年共同点:
①特殊四边形为背景;
②点动带线动得出动三角形;
③探究动三角形问题(相似、等腰三角形、面积函数关系式);
④求直线、抛物线解析式;
⑤探究存在性问题时,先画出图形,再根据图形性质探究答案。
大趋势:
x
A
O
Q
P
B
y
图(3)
A
B
C
O
E
F
A
B
C
O
D
图(1)
A
B
O
E
F
C
图(2)
x
y
M
C
D
P
Q
O
A
B
P
Q
A
B
C
D
D
E
Q
P
B
C
(第13题)
(第13题)
O
M
B
H
A
C
x
y
图(2)
O
M
B
H
A
C
x
y
图(1)
y
O
x
C
N
B
P
M
A
A
D
P
C
B
Q
图1
D
A
P
C
B
(Q)
)
图2
图3
C
A
D
P
B
Q
F
C
D
A
E
B
x
y
O
A
B
A
C
D
P
O
Q
x
y
A
B
D
C
O
x
y
(此题备用)
A
B
D
C
O
P
x
y
PAGE
1