24.1.1 旋转 课件

文档属性

名称 24.1.1 旋转 课件
格式 zip
文件大小 1.3MB
资源类型 教案
版本资源 沪科版
科目 数学
更新时间 2016-11-03 22:16:32

图片预览

文档简介

课件20张PPT。第24章 圆24.1 旋转自转与公转
(1)上面情景中的转动现象,有什么共同的特征?
(2)钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?(1)上面情景中的转动现象,有什么共同的特征?
(2)钟表的指针、秋千在
转动过程中,其形状、大小、
位置是否发生变化呢?这个定点称为旋转中心,转动的角称为旋转角。在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。AoB平移和旋转的异同:
1.相同点:都是一种运动;运动前
后不改变图形的形状和大小BACO2.不同点 如图,如果把钟表的指针看做四边形AOBC,它绕O点旋转得 到四边形DOEF. 在这个旋转过程中:
(1)旋转中心是什么?
(2)经过旋转,点A、B分别移动到什么位置?
(3)旋转角是什么?
(4)AO与DO的长有什么关系?BO与EO呢?
(5)∠AOD与∠BOE有什么大小关系?议一议旋转中心是O点D和点E的位置AO=DO,BO=EO∠AOD=∠BOE∠AOD和∠BOE都是旋转角BACDEFO(4)对应点到旋转中心的距离相等.旋转的基本性质(1)旋转不改变图形的大小和形状.(2)图形上的每一点都绕旋转中心沿相同方向转动了相同的角度.(3)任意一对对应点与旋转中心的连线所成的角度都是旋转角.例1:钟表的分针匀速旋转一周需要60分.
(1)指出它的旋转中心;
(2)经过20分,分针旋转了多少度?(2)分针匀速旋转一周需要60
   分,因此旋转20分,分针
   旋转的角度为解:
(1)它的旋转中心是钟表的轴心;可以看做是一个花瓣连续4次旋转所形成的,每次旋转的角度分别等于72°, 144°, 216°, 288°思考题:香港区徽可以看做是什么“基本图案”通过怎样的旋转而得到的?随堂练习:本图案可以看做是一个菱形通过几次旋转得到的?每次旋转了多少度?也可以看做是二个相邻菱形通过几次旋转得到的?每次旋转了多少度? 还可以看做是几个菱形通过几次旋转得到的?每次旋转了多少度?3个 1次 180°2次 120°, 240° 5次 60°, 120°, 180°, 240°, 300°做一做:
在图中,正方形ABCD与正方形EFGH边长相等,这个图案可以看做是哪个“基本图案”通过旋转得到的?.ACBDEFGHo试一试 图中是否存在这样的两个三角形,其中一个是通过另一个旋转得到的? 简单的旋转作图AO点的旋转作法例1 将A点绕O点沿顺时针方向旋转60?.分析:作法:
1. 以点O为圆心,OA长为半径画圆;
2. 连接OA, 用量角器或三角板(限
特殊角)作出∠AOB,与圆周交
于B点;
3. B点即为所求作.B 简单的旋转作图AO线段的旋转作法例2 将线段AB绕O点沿顺时针方向旋转60?.分析:作法:
将点A绕点O顺时针旋转60?,得
点C;
2. 将点B绕点O顺时针旋转60 ?,得点D ;
3. 连接CD, 则线段CD即为所求作.CBD简单的旋转作图图形的旋转作法例3 如图,△ABC绕C点旋转后,顶点A得对应点为点D. 试确定顶点B对应点的位置以及旋转后的三角形.分析:作法:
1. 连接CD;
2. 以CB为一边,作∠BCE,使得∠BCE=∠ACD ;
3. 在射线CB上截取CE,使得CE=CB;
4. 连接DE,则△DEC即为所求作.CABDE 简单的旋转作图练习1
将下图中大写字母N绕它右下侧的顶点按顺时针方向旋转90?,作出旋转后的图案.课堂回顾:这节课,主要学习了什么?在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转旋转的概念:旋转的性质:1.旋转不改变图形的大小和形状.2.任意一对对应点与旋转中心的连线所成的
角都是旋转角,旋转角相等.3.对应点到旋转中心的距离相等