2.1 有理数 课件+教案+练习

文档属性

名称 2.1 有理数 课件+教案+练习
格式 zip
文件大小 998.4KB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2016-11-11 11:27:33

文档简介

登陆21世纪教育 助您教考全无忧
课题:有理数
教学目标:
一、 知识与技能目标:
1.知道什么是负数,并能用正、负数表示实际问题中的数量.
2.能说出负数表示的意义.
3.能说出有理数的概念,能将有理数正确分类.
二、过程与方法目标:
1.体验对有理数分类的探索过程,初步感受分类讨论的思想.
2.通过教师引导,学生自主探究,体验从实际问题中抽象出数学问题的过程,初步学会
数学的类比方法思想方法.
三、情感态度与价值观目标:
通过对负数和有理数的学习,体会到数学和现实的密切联系,能用所学解决实际问题.
重点:
掌握有理数的分类
难点
负数表示的意义、有理数的分类及分类标准
教学流程:
回顾旧知,情景导入
通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“数”够用了吗?21教育网
师:同学们,今天老师在来学校的路上,行驶了14.7km,遇到0只小狗、5个老人,其中一个高1.76m.那么同学们想一下,老师刚才说的一句话中,出现了哪些数,分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?2·1·c·n·j·y
学生活动:思考,交流
师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).那在生活中,仅有整数和分数够用了吗?【来源:21·世纪·教育·网】
请同学们完成课本第23页的表格,并思考老师刚才的问题.
师:(一起分析完表格之后)以前学过的数已经不够用了,我们需要一种前面带有“-”的新数来解决生活中的问题.那大家相互讨论一下生活中还有哪些用负数表示的量.
学生活动:讨论
解答困惑,讲授新知
学生回答,老师补充.
那么我们在生活中在表示温度、方向、价格时会有 “零上摄氏度和零下摄氏度”、“向东和向西”“上涨和下降”等词,这些都是表示相反意义的量,在数学中表示相反意义的量,可以规定其中一个为正,用正数表示;相反意义的量规定为负,用负数表示.
强调:用正、负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收入与支出;二是它们都是数量,而且是同类的量.
实例演练 深化认识
判断下列说法是否正确
1.零上5℃与零下5℃意思一样,都是5℃.( × )
2.正整数集合与负整数集合并在一起是整数集合. (× )
3.若-a是负数,则a是正数.(√ )
4.若+a是正数,则-a是负数. ( √ )
5.收入-2000元表示支出2000元.( √ )
1.某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?
沿顺时针转了12圈记作-12圈.
2.在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02g记作+0.02g,那么-0.03g表示什么?21cnjy.com
-0.03g表示乒乓球的质量低于标准质量0.03g.
3.某大米包装袋上标注着“净含量:10kg±150kg”这里的“10kg±150kg”表示什么?
每袋大米的标准质量应为10kg,但实际每袋大米可能有150g的误差,即最多超出标准质量150g,最少少于标准质量150g.21·cn·jy·com
四、提出问题,启发引导
现在我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.
问题:那么,有没有一种既不是正数又不是负数的数呢?
学生思考并讨论.
那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数.
延伸知识,分类思想
我们现在对学过的数进行分类,在上课开始的时候,大家说学过的数有整数和分数,那么在学习了正数和负数之后,整数可以分为什么?分数可以分为什么?
正整数 正分数
整数 0 分数
负整数 负分数
整数和分数统称为有理数
思考:有理数还可以怎么分类呢?
可以按照定义和符号性质分。
按照符号性质分为正有理数,0,负有理数。
达标检测
1.下列说法正确的是( )
A.正数、0、负数统称为有理数
B.分数和整数统称为有理数
C.正有理数、负有理数统称为有理数
D.以上都不对
选D.
解析:A正有理数、0、负有理数统称为有理数;B整数和分数统称为有理数正确;C选项还要有0.
2. 把下面各有理数填在相应的大括号里:
12,-3,+1,13,-1. 5,0,0.2,314,-435.
正数集合:{ …};
负数集 合:{ …};
整数集合:{ …};
分数集合:{ …};
正分数集合:{ …};
负分数集合:{ …}.
分析:根据正数、负数;整数、分 数;正分数、负分数的定义可完成本题.
解:正数集合: { 12,+1,13,0.2,314}
负数集合:{-3,-1.5,-435}
整数集合:{12,-3,+1,0}.
分数集合:{13,-1.5,0.2,314,-435}
正分数集合:{13,0.2,314}
负分数集合:{-1.5,-435}21世纪教育网版权所有
七、总结归纳
用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.0既不是正数也不是负数.有理数分为整数和分数.www.21-cn-jy.com
八、布置作业
26页2、3、5、6
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品资料·第 3 页 (共 4 页) 版权所有@21世纪教育网登陆21世纪教育 助您教考全无忧
有理数
班级:___________姓名:___________得分:__________
一、选择题(每小题8分,共40分)
1.下列说法正确的是( )
A.有理数就是整数和分数的统称 B.最小的有理数是0
C.一个数前面加上“-”号,这个数就是负数; D.零既是正数也是负数;
2. 如果某股票第一天跌了3.01%,应表示为(),第二天涨了4.21%,应表示为()
A.+3.01%,-4.21% B.-3.01%,-4.21%
C. +3.01%,+4.21% D.-3.01%,+4.21%
3. -a一定是( )
A、正数 B、负数 C、正数或负数 D、正数或零或负数
4.下列数中是正数的有()
①0 ②-9 ③ ④-7 ⑤28
A.①②⑤ B③⑤ C①③⑤ D②④
5.小兰的妈妈给了她10元,记作+10,那么-10表示()
A 欠妈妈10元 B 支出10元 C 收入10元
二、填空题(每小题8分,共40分)
6. -1, 0, 0.2, ,3中负数一共有____个
7.水位上升了180米,表示为+180,那么-199表示__________-
8. 写出4个数___________,同时满足三个条件:(1)其中1个数既不是正数也不是负数;(2)有2个数属于正整数集合;(3)1个数都属于负数集合21教育网
9.有理数包括_________和___________
10.华华从学校向南走了100米,记为+100,发现忘记带数学书掉在路上,于是她向北走了50米,找到数学书,那么向北走50米,应该记作_________21cnjy.com
简答题(共20分)
将下面的数填入集合中
-7,3.5,-π,0,,0.03,-3,8,-5
负数集合{ };
整数集合 { };
有理数集合{ };
非负数集合{ };
参考答案
一、选择题
1.B
【解析】A选项是正确的。B选项没有最小的有理数 。C选项0的前面加-,不是负数。D选项0既不是正数也不是负数。21世纪教育网版权所有
2.D
【解析】根据人们一贯规定的,涨为+,跌为-,所以跌了3.01%,表示为-3.01%,涨了4.21%,表示为+4.21%。www.21-cn-jy.com
故选D
3.D
【解析】A选项,当a是负数时,-a是正数;当a是负数时,-a是正数;当a是0时,-a是0,所以选D.21·cn·jy·com
4.B
【解析】①0既不是正数也不是负数②-9是负数③是正数④-7是负数⑤28是正数
是正数的有③⑤,选B
5.B
【解析】正负数表示相反意义的量,所以-10表示支出10元
二、6. 1个
【解析】0既不是正数也不是负数,有负号的是负数,所以负数只有-1,1个。
7.水位下降了199米
【解析】正负数表示相反意义的量,上升表示为+180,所以-199表示下降。
8.0,2,4,-5(答案不唯一)
【解析】 0既不是正数也不是负数,再写2个正整数和1个负数即可。
9.正数和分数
【解析】有理数的定义,整数和分数统称为有理数。
10.-50
【解析】向南走记为+,所以向北走记为-
三、负数集合{-7,-π,-3,-5 };
整数集合 { -7,0,8,-5 };
有理数集合{-7,3.5,-π,0,,0.03,-3,8,-5 };
非负数集合{ 3.5,0, ,0.03,8};
【解析】有理数包括整数和分数,非负数有0和正数。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品资料·第 1 页 (共 3 页) 版权所有@21世纪教育网(共19张PPT)
有理数
【义务教育教科书北师版七年级上册】
学校:________
教师:________
回顾旧知
行驶了14.7km,遇到0只小狗、5个老人,其中一个高1.76m.
问题1:出现了哪些数,分别是什么?
问题2:你能将这些数按以前学过的数的分类方法进行分类吗?
整数、小数
整数和分数(包括小数)
情景引入
某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基本分均为0分。两个队答题情况如下表:
答对
答错
不回答
答题情况
第一队
第二队
如果答对题所得的分数用正数表示,那么你能用正负数表示每个队答题得分情况吗?试完成下表。
答对题的得分 答错题的得分 未回答题的得分
第一队 +6
第二队 -2
情景引入
答对题的得分 答错题的得分 未回答题的得分
第一队 +6 -3 0
第二队 +8 -2 0
思考讨论
生活中还有哪些用负数表示的量?
温度:零上10℃表示为+10℃
零下5℃表示为 -5℃
价格:上涨3.3%表示为+3.3%
下降0.6%表示为-0.6%
方向:向东走5米,表示为+5m
向西走5米,表示为-5m
思考讨论
“零上摄氏度和零下摄氏度”
“向东走和向西走”
“价格上涨和下降”
表示相反意义的量
在数学中表示相反意义的量,可以规定其中一个为正,用正数表示;相反意义的量规定为负,用负数表示.
讲解新知
在正数前加符号“-”(负)号的数叫做负数
强调
用正、负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:
一是它们的意义相反,如向东与向西,收入与支出;
二是它们都是数量,而且是同类的量.
1.零上5℃与零下5℃意思一样,都是5℃.( )
2.正整数集合与负整数集合并在一起是整数集合. ( )
3.若-a是负数,则a是正数.( )
4.若+a是正数,则-a是负数. ( )
5.收入-2000元表示支出2000元.( )
实战演练
判断下列说法是否正确

×
×


实战演练
(1)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?
(2)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02g记作+0.02g,那么-0.03g表示什么?
解:沿顺时针转了12圈记作-12圈.
解:-0.03g表示乒乓球的质量低于标准质量0.03g.
实战演练
(3)某大米包装袋上标注着“净含量:10kg±150kg”这里的“10kg±150kg”表示什么?
解:每袋大米的标准质量应为10kg,但实际每袋大米可能有150g的误差,即最多超出标准质量150g,最少少于标准质量150g.
有没有一种既不是正数又不是负数的数呢?
思考
当温度是零度时,我们应该怎样表示呢?
0℃
它是正数还是负数呢?
既不是正数也不是负数
做一做
整数
正整数

负整数
分数
正分数
负分数
整数和分数统称为有理数
将所有学过的数分类
如:1,2,3,…
0
如:-1,-2,-3,…


思考
有理数还可以怎么分类?
有理数
正有理数
0
负有理数
有理数
整数
分数
按定义:
按符号性质:
达标检测
1.下列说法正确的是( )
A.正数、0、负数统称为有理数
B.分数和整数统称为有理数
C.正有理数、负有理数统称为有理数
D.以上都不对
解析:A正有理数、0、负有理数统称为有理数;B整数和分数统称为有理数正确;C选项还要有0.
D
达标检测
12,-3,+1,13,-1. 5,0,0.2,314,-435.
正数集合: { …};
负数集 合: { …};
整数集合: { …};
分数集合: { …};
正分数集合:{ …};
负分数集合:{ …}.
把下面各有理数填在相应的大括号里
达标检测
解:正数集合: { 12,+1,13,0.2,314}
负数集合:{-3,-1.5,-435}
整数集合:{12,-3,+1,0}.
分数集合:{13,-1.5,0.2,314,-435}
正分数集合:{13,0.2,314}
负分数集合:{-1.5,-435}
解析:根据正数、负数;整数、分 数;正分数、负分数的定义可完成本题
总结归纳
在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.
0既不是正数也不是负数.
整数和分数统称为有理数
布置作业
教材26页习题第2、3、5、6题。