11.1.3 三角形的稳定性
通过观察和操作得到三角形具有稳定性,四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的应用.
重、难点:了解三角形稳定性在生产、生活中的实际应用.
一、自学指导
自学:自学课本P6-7页,掌握三角形的稳定性及应用,完成下列填空.(5分钟)
将准备好的木条做成的三角形木架、四边形木架取出进行操作并观察:
(1)如图①,扭动三角形木架,它的形状会改变吗?
(2)如图②,扭动四边形木架,它的形状会改变吗?
总结归纳:由上面的操作我们发现,三角形木架的形状不会改变,而四边形木架的形状会改变.
(3)如图③,斜钉一根木条的四边形木架的形状不会改变.想一想其中的道理是什么?
总结归纳:三角形是具有稳定性的图形,而四边形没有稳定性.
二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)
1.课本P7页练习题第1题.
2.请例举生活中关于三角形的稳定性与四边形的不稳定性的应用实例.
小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)
探究1 要使四边形不变形,最少需要加1条线段,五边形最少需要加2条线段,六边形最少需要加3条线段……n边形(n>3)最少需要加(n-3)条线段才具有稳定性.
点拨精讲:过一点把一个多边形分成若干个三角形最少需要几条线段.
探究2 等腰三角形一腰上的中线将此等腰三角形分成9
cm,15
cm两部分,求此等腰三角形的周长是多少?
解:设等腰三角形的腰长为x
cm,底边长为y
cm,依题意得,当x>y时,解得当x<y时,解得∵6+6=12,不符合三角形的三边关系,故舍去.∴此三角形的周长为10+10+4=24(cm).
答:此等腰三角形的周长为24
cm.
点拨精讲:此题用到分类思想,同时要考虑三角形的三边关系.
学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)
1.课本P9页第10题.
2.下列图形具有稳定性的有(C)
A.梯形 B.长方形
C.三角形
D.正方形
3.体育馆屋顶的横梁用钢筋焊出了无数个三角形,是因为:三角形具有稳定性.
4.已知AD,AE分别是△ABC的中线、高,且AB=5
cm,AC=3
cm,则△ABD与△ADC的周长之差为2_cm;△ABD与△ADC的面积关系是相等.
5.如图,D是△ABC中BC边上的一点,DE∥AC交AB边于E,DF∥AB交AC边于F,且∠ADE=∠ADF.求证:AD是△ABC的角平分线.
证明:∵DE∥AC,DF∥AB,∴∠ADE=∠DAC,∠ADF=∠DAB,又∵∠ADE=∠ADF,∴∠DAC=∠DAB,∴AD是△ABC的角平分线.
(1分钟)
三角形的稳定性与四边形的不稳定性在日常生活中非常常用.
(学生总结本堂课的收获与困惑)(2分钟)
(12分钟)