《学练优》2017春冀教版九年级数学下第31单元 随机事件与概率(7份打包)

文档属性

名称 《学练优》2017春冀教版九年级数学下第31单元 随机事件与概率(7份打包)
格式 zip
文件大小 2.7MB
资源类型 教案
版本资源 冀教版
科目 数学
更新时间 2016-11-29 08:34:37

文档简介

课件20张PPT。31.1 确定事件和随机事件第三十一章
随机事件的概率学练优九年级数学下(JJ)
教学课件导入新课讲授新课当堂练习课堂小结1.会对必然事件,不可能事件和随机事件作出准确判断.
2.归纳出必然事件、不可能事件和随机事件的特点.(重点)
3.知道事件发生的可能性是有大小的.学习目标 相传古代有个王国,国王非常阴险而多疑,一位正直的大臣得罪了国王,被叛死刑,这个国家世代沿袭着一条奇特的法规:凡是死囚,在临刑前都要抽一次“生死签”(写着“生”和“死”的两张纸条),犯人当众抽签,若抽到“死”签,则立即处死,若抽到“生”签,则当众赦免.国王一心想处死大臣,与几个心腹密谋,想出一条毒计:嘿嘿,这次非让你死不可!生死签导入新课 暗中让执行官把“生死签”上都写成“死”,两死抽一,必死无疑.然而,在断头台前,聪明的大臣迅速抽出一张签纸塞进嘴里,等到执行官反应过来,签纸早已吞下,大臣故作叹息说:“我听天意,将苦果吞下,只要看剩下的签是什么字就清楚了.”剩下的当然写着“死”字,国王怕犯众怒,只好当众释放了大臣. 嘿嘿,这次非让你死不可!老臣自有妙计!(1)在原定的法规中,大臣一定会被处死吗?(2)在国王的阴谋中,大臣一定会被处死吗?(3)在大臣的计策中,大臣一定会被处死吗? 可能会,可能不会一定会不会活动1 五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.为了抽签,我们在盒中放五个完全一样的纸团,每个纸团里分别写着表示出场顺序的数字1,2,3,4,5.把纸团充分搅拌后,小颖先抽签,她任意(随机)从盒中抽取一个纸团.请考虑以下问题: 讲授新课(1)抽到的序号有几种可能的结果? (2)抽到的序号是0,可能吗? (3)抽到的序号小于6,可能吗? (4)抽到的序号是1,可能吗? 5种不可能一定会可能 活动2 掷三枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.请思考以下问题:掷一次骰子,在骰子向上的一面: (1)每枚骰子可能出现哪些点数? (2)三枚骰子出现的点数之和出现的点数是30,可能吗? (3)三枚骰子出现的点数之和大于0,可能吗? (4)三枚骰子出现的点数之和出现的点数是4,可能吗?1点,2点,3点,4点,5点,6点,共6种不可能一定会可能确定事件必然事件:不可能事件:在一定条件下,有些事件必然会发生.在一定条件下,有些事件必然不会发生.不确定事件:
(随机事件) 在一定条件下,可能发生也可能不发生的事件.事件你能说出几个与必然事件、随机事件、不可能事件相联系的成语吗?数量不限,尽力. 如:必然事件:
   随机事件:
   不可能事件:
种瓜得瓜,种豆得豆,黑白分明.海市蜃楼,守株待兔.海枯石烂,画饼充饥,拔苗助长.拓展提升 袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球. 摸球试验(1)这个球是白球还是黑球?(2)如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?答:可能是白球也可能是黑球.答:摸出黑球的可能性大. 结论:由于两种球的数量不等,所以“摸出黑球”和
“摸出白球”的可能性的大小是不一样的,且“摸出
黑球”的可能性大于“摸出白球”的可能性.53想一想:
能否通过改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?答:可以.例如:白球个数不变,拿出两个黑球或黑球个数不变,加入2个白球.通过以上从袋中摸球的试验,你能得到什么启示?一般地,
1.随机事件发生的可能性是有大小的;
2.不同的随机事件发生的可能性的大小有可能不同.1.下列事件是必然事件,不可能事件还是随机事件?(1)太阳从东边升起.(必然事件)(2)篮球明星林书豪投10次篮,次次命中.(随机事件)(3)打开电视正在播中国新航母舰载机训练的新闻片.(随机事件)(4)一个三角形的内角和为181度.(不可能事件)当堂练习2.如果袋子中有4个黑球和x个白球,从袋子中随机摸出一个,“摸出白球”与“摸出黑球”的可能性相同,则x= .3.已知地球表面陆地面积与海洋面积的比约为3:7,如果宇宙中飞来一块陨石落在地球上,“落在海洋里”发生的可能性( )“落在陆地上”的可能性.
A.大于 B.等于 C.小于 D.三种情况都有可能4A4. 桌上扣着背面图案相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取1张扑克牌.
(1)能够事先确定抽取的扑克牌的花色吗?
(2)你认为抽到哪种花色扑克牌的可能性大?
(3)能否通过改变某种花色的扑克牌的数量,使“抽到黑桃”和“抽到红桃”的可能性大小相同?解:(1)不能确定;
(2)黑桃;
(3)可以,去掉一张黑桃或增加一张红桃.随机事件事件确定事件特点:
事先不能预料事件是否发生,即事件的发生具有不确定性.
一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小可能不同. 不可能事件必然事件定义特点课堂小结见《学练优》本课时练习课后作业课件20张PPT。31.2 随机事件的概率学练优九年级数学下(JJ)
教学课件第1课时 概率的认识导入新课讲授新课当堂练习课堂小结第三十一章
随机事件的概率1.理解一个事件概率的意义.
2.会在具体情境中求出一个事件的概率.(重点)
3.会进行简单的概率计算及应用.(难点)必然事件:在一定条件下,必然会发生的事件;不可能事件:必然不会发生的事件;随机事件:可能会发生,也可能不发生的事件.也叫不确定性事件.1.什么是必然事件,不可能事件和随机事件?导入新课随机事件随机事件 我们都知道,跳水队一直被称为“梦之队”,所以在我们心中,她们就是冠军!据媒体赛前预测,她们获得冠军的机会高达百分之八十以上. 如图,是我国跳水运动员参加2016年里约奥运会的比赛现场,赛前我们知道她们能获得冠军的机会大吗?那么怎么确定
事件发生的大小呢?讲授新课思考 在同样条件下,随机事件可能发生,也可能不发生,那么它发生的可能性有多大呢?能否用数值进行刻画呢?活动:从袋子中有大小、质地完全相同的5个球,其中3个是红球,2个是黄球.从中任意摸出1个球,事件A=“摸到红球”,B=“摸到黄球”.问题1:事件A和B发生的可能性大小相同吗?问题2:分组做摸球试验,每摸出1个球,记下球的颜色后放回袋子中,搅匀后再进行下一次摸球.每组重复20次试验,记录事件A和B发生的次数.事件A和B发生次数占试验总次数百分比的大小有什么规律? 做n次重复试验,如果事件A发生了m次,那么数m叫做事件A发生的频数,比值 叫做事件A发生的频率.问题3:能用两个数分别刻画事件A和B发生的可能性大小吗?数值 和 刻画了实验中相应随机事件发生的可能性大小. 一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).概率的定义 一般地,如果在一次实验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包括其中的m种结果,那么事件A发生的概率
∴ 特别的事件A发生的结果种数试验的总共结果种数事件发生的可能性越来越大事件发生的可能性越来越小不可能发生必然发生概率的值事件发生的可能性越大,它的概率越接近1;反之,
事件发生的可能性越小,它的概率越接近0.例1 掷一个骰子,观察向上的一面的点数,求下列事件的概率:
(1)点数为2;
(2)点数为奇数;
(3)点数大于2小于5.解:(1)点数为2有1种可能,因此P(点数为2)= ;
例2:有10张正面分别写有1,2,…,10的卡片,背面图案相同.将卡片背面朝上充分混匀后,从中随机抽取1张卡片,得到一个数.设A=“得到的数是5”,B=“得到的数是偶数”,C=“得到的数能被3整除”,求时间A,B,C发生的概率.
解:试验共有10种可能结果,每个数被抽到的可能性相等,则A包含1种可能结果,B包含5种可能结果,C包含3种可能结果.所以
P(A)= , P(B)= , P(C)= .
1.袋子里有1个红球,3个白球和5个黄球,每一个球除颜色外都相同,从中任意摸出一个球,则P(摸到红球)= ;P(摸到白球)= ;P(摸到黄球)= .当堂练习B3.有一对酷爱运动的年轻夫妇给他们12个月大的婴儿拼排3块别写有“20”,“16”和“里约”的字块,如果婴儿能够排成“2016里约”或“里约2016”.则他们就给婴儿奖励,假设婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是_____.
4.掷两枚硬币,求下列事件的概率:
(1)两枚硬币全部正面朝上;
(2)两枚硬币全部反面朝上;
(3)一枚硬币正面朝上,一枚反面朝下.概率定义适用对象计算公式一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A). 等可能事件,其特点:
(1)有限个;(2)可能性一样.课堂小结见《学练优》本课时练习课后作业课件14张PPT。导入新课讲授新课当堂练习课堂小结学练优九年级数学下(JJ)
教学课件第2课时 概率的简单应用31.2 随机事件的概率第三十一章
随机事件的概率1.能判断某事件的每个结果出现的可能性是否相等;
2.会进行简单的概率计算及应用.(难点)学习目标 老师向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老师赢;如果落地后两面一样,你们赢.请问,你们觉得这个游戏公平吗?我们一起来做游戏导入新课情境引入讲授新课 同时掷两枚硬币,试求下列事件的概率:
(1)两枚硬币两面一样;
(2)一枚硬币正面朝上,一枚硬币反面朝上;探索交流“掷两枚硬币”所有结果如下:正正正反反正反反解:(1)两枚硬币两面一样包括两面都是正面,两面都是反面,共两种情形;所以学生赢的概率是(2)一枚硬币正面朝上,一枚硬币反面朝上,共有反正,正反两种情形;所以老师赢的概率是∵P(学生赢)=P(老师赢).∴这个游戏是公平的. 例1 一副扑克牌除去“大小王”后共有52张,充分洗匀后从中任意抽取1张牌.
(1)抽到红心牌的概率是多大?
(2)抽到A牌的概率是多大?
(3)抽到红色牌的概率是多大?.解:从52张扑克牌中任意抽取1张牌,共有52种等可能的结果,气走抽到红心牌的结果有13种,抽到A牌的结果有4种,抽到红色牌(红心牌13张、方块牌13张)的结果有26种.所以
P(抽到红心牌) ;
P(抽到A牌) ;
P(抽到红色牌) . 例2 如图所示是一个转盘,转盘分成7个相同的扇形,颜色分为红黄绿三种,指针固定,转动转盘后任其自由停止,某个扇形会停在指针所指的位置,(指针指向交线时当作指向右边的扇形)求下列事件的概率.
(1)指向红色;
(2)指向红色或黄色;
(3)不指向红色.解:一共有7种等可能的结果.
(1)指向红色有3种结果,
P(指向红色)=_____;
(2)指向红色或黄色一共有5种
等可能的结果,P( 指向红或黄)=_____;
(3)不指向红色有4种等可能的结果
P( 不指向红色)= ______.想一想 把这个例中的(1)、(3)两问及答案联系起来,你有什么发现?“指向红色或不指向红色”是必然事件,其概率为1.例3 话说唐僧师徒越过石砣岭,吃完午饭后,三徒弟商量着今天由谁来刷碗,可半天也没个好主意.还是悟空聪明,他灵机一动,扒根猴毛一吹,变成一粒骰子,对八戒说道:我们三人来掷骰子: 如果掷到2的倍数就由八戒来刷碗;
如果掷到3就由沙僧来刷碗;
如果掷到7的倍数就由我来刷碗;

徒弟三人洗碗的概率分别是多少!1.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初(1)班的概率是  .2.甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是  .
3.某一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为  .
当堂练习4.如图,能自由转动的转盘中, A、B、C、D四个扇形的圆心角的度数分别为180°、 30 °、 60 °、 90 °,转动转盘,当转盘停止时, 指针指向B的概率是_____,指向C或D的概率是_____.见《学练优》本课时练习课后作业课件22张PPT。31.3 用频率估计概率导入新课讲授新课当堂练习课堂小结学练优九年级数学下(JJ)
教学课件第三十一章
随机事件的概率学习目标1.理解试验次数较大时试验频率趋于稳定这一规律.
2.结合具体情境掌握如何用频率估计概率.(重点)
3.通过概率计算进一步比较概率与频率之间的关系.
导入新课 养鱼专业户为了估计他承包的鱼塘里有多少条鱼(假设这个塘里养的是同一种鱼),先捕上100条做上标记,然后放回塘里,过一段时间,待带标记的鱼完全和塘里的鱼混合后,再捕上100条,发现其中带标记的鱼有10条,塘里大约有鱼多少条?他用了什么数学方法?
怎样知道鱼塘里有多少条鱼?用样本的频率估计总体的频率讲授新课问题1 抛掷一枚硬币,正面(有数字的一面)向上的概率是二分之一,这个概率能否利用试验的方法──通过统计很多掷硬币的结果来得到呢? 掷硬币试验【试验要求】
1.全班同学分组,每组六名同学分为三小组,分别做投掷试验。
2.统计试验结果,按要求计算频率(频率结果保留两位小数),
向组长汇报,并由组长填写好表格.投掷试验的总次数不少于
100次.
3.组长将表格交给老师.
试验投掷时要细心、认真哟!
试验探究(以两个小组为例)0.46 0.52 0.510.5020.530.490.520.5100.500.51试验汇报:(以一组为例)0.5020.5100.5170.490.483149029950.5230.4970.50问题2 分析试验结果及下面数学家大量重复试验数据,
大家有何发现?问题3 分析试验结果及下面数学家大量重复试验数据,
大家有何发现?试验次数越多频率越接近0. 5,即频率稳定于概率.0数学史实人们在长期的实践中发现,在随机试验中,由于众多微小的偶然因素的影响,每次测得的结果虽不尽相同,但大量重复试验所得结果却能反应客观规律.这称为大数法则,亦称大数定律.由频率可以估计概率是由瑞士数学家雅各布·伯努利(1654-1705)最早阐明的,因而他被公认为是概率论的先驱之一.问题4 为什么可以用频率估计概率?问题5 频率与概率有什么区别与联系? 所谓频率,是在相同条件下进行重复试验时事件发生的次数与试验总次数的比值,其本身是随机的,在试验前不能够确定,且随着试验的不同而发生改变. 而一个随机事件发生的概率是确定的常数,是客观存在的,与试验次数无关. 从以上角度上讲,频率与概率是有区别的,但在大量的重复试验中,随机事件发生的频率会呈现出明显的规律性:随着试验次数的增加,频率将会越来越集中在一个常数附近,具有稳定性,即试验频率稳定于其理论概率.
当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,常常是通过统计频率来估计概率,即在同样条件下,大量重复试验所得到的随机事件发生的频率的稳定值来估计这个事件发生的概率.
0.1010.0970.0970.1030.1010.0980.0990.103填表:由上表可知:柑橘损坏率是 ,完好率是 .0.100.90典例精讲 例1 某水果公司以2元/千克的成本新进了10000千克柑橘,如果公司希望这些柑橘能够获得利润5000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?分析 根据上表估计柑橘损坏的概率为0.1,则柑橘完好的概率为0.9.当堂练习1.一水塘里有鲤鱼、鲫鱼、鲢鱼共1 000尾,一渔民通过多次捕获实验后发现:鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里有鲤鱼 尾,鲢鱼 尾.310270 2. 养鱼专业户为了估计他承包的鱼塘里有多少条鱼(假设这个塘里养的是同一种鱼),先捕上100条做上标记,然后放回塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后,再捕上100条,发现其中带标记的鱼有10条,鱼塘里大约有鱼多少条?解:设鱼塘里有鱼x条,根据题意可得 解得 x=1000.答:鱼塘里有鱼1000条. 3.抛掷硬币“正面向上”的概率是0.5.如果连续抛掷100次,而结果并不一定是出现“正面向上”和“反面向上”各50次,这是这什么?答:这是因为频数和频率的随机性以及一定的规律性.或者说概率是针对大量重复试验而言的,大量重复试验反映的规律并非在每一次试验中都发生. 4.某池塘里养了鱼苗10万条,根据这几年的经验知道,鱼苗成活率为95%,一段时间准备打捞出售,第一网捞出40条,称得平均每条鱼重 2.5千克,第二网捞出25条,称得平均每条鱼重2.2千克,第三网捞出35条,称得平均每条鱼重2.8千克,试估计这池塘中鱼的重量.解:先计算每条鱼的平均重量是:
(2.5×40+2.2×25+2.8×35)÷(40+25+35)=2.53(千克);
所以这池塘中鱼的重量是2.53×100000× 95%=240350(千克).课堂小结频率估计概率大量重复试验求非等可能性事件概率列举法
不能适应频率稳定
常数附近统计思想用样本(频率)估计总体(概率)一种关系频率与概率的关系频率稳定时可看作是概率
但概率与频率无关见《学练优》本课时练习课后作业课件16张PPT。31.4 用列举法求简单事件概率学练优九年级数学下(JJ)
教学课件第1课时 用列表法求简单事件的概率导入新课讲授新课当堂练习课堂小结第三十一章
随机事件的概率1.会正确“列表”表示出所有可能出现的结果.(难点)
2.知道如何利用“列表法”求随机事件的概率.(重点)导入新课 我们在日常生活中经常会做一些游戏,游戏规则制定是否公平,对游戏者来说非常重要,其实这是一个游戏双方获胜概率大小的问题.思考:那么求出概率
大小有什么方法呢问题1 利用直接列举法可以比较快地求出简单事件发生的概率,对于列举复杂事件的发生情况还有什么更好的方法呢?列表法讲授新课问题2 怎样列表格? 一个因素所包含的可能情况另一个因素所包含的可能情况两个因素所组合的所有可能情况,即n列表法中表格构造特点:典例精析例1 同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同;(2)两个骰子点数的和是9;(3)至少有一个骰子的点数为2.分析 当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现的结果数目较多时,为不重不漏地列出所有可能结果,通常采用列表法.把两个骰子分别标记为第1个和第2个,列表如下:注意有序数对要统一顺序解:由列表得,同时掷两枚骰子,可能出现的结果有36个,它们出现的可能性相等.
(1)满足两枚骰子的点数相同(记为事件A)的结果有6个,则P(A)= ;
(2)满足两枚骰子的点数之和是9(记为事件B)的结果有4个,则P(B)= ;
(3)满足至少有一枚骰子的点数为2(记为事件C)的结果有11个,则P(C)= . 我们发现:
与前面掷硬币问题一样,“同时掷两个质地相同的骰子”与“把一个骰子掷两次”,所得到的结果没有变化. 所以,当试验涉及两个因素时,可以“分步”对问题进行分析.
列表法求概率应注意的问题 确保试验中每种结果出现的可能性大小相等.列表法求概率的基本步骤练一练1. 小颖有两件上衣,分别红色和白色,有两条裤子,分别为黑色和白色,她随机拿出一件上衣和一条裤子穿上,恰好是白色上衣和白色裤子的概率是多少?解:将可能出现的结果列表如下:上衣裤子 由图中可知共有4种等可能结果,而白衣、黑裤只有1种可能,概率为 .当堂练习 1.小明与小红玩一次“石头、剪刀、布”游戏,则小明赢的概率是( )
2.某次考试中,每道单项选择题一般有4个选项,某同学有两道题不会做,于是他以“抓阄”的方式选定其中一个答案,则该同学的这两道题全对的概率是( )
CDA. B. C. D. A. B. C. D. 3.如果有两组牌,它们的牌面数字分别是1,2,3,那么从每组牌中各摸出一张牌.(1)摸出两张牌的数字之和为4的概念为多少?(2)摸出为两张牌的数字相等的概率为多少?321321课堂小结列举法关键常用
方法直接列举法列表法画树状图法(下节课学习)适用对象两个试验因素或分两步进行的试验.基本步骤列表;
确定m、n值
代入概率公式计算.在于正确列举出试验结果的各种可能性.确保试验中每种结果出现的可能性大小相等.前提条件见《学练优》本课时练习课后作业课件21张PPT。导入新课讲授新课当堂练习课堂小结学练优九年级数学下(JJ)
教学课件第2课时 用树形图法求简单事件的概率31.4 用列举法求简单事件概率第三十一章
随机事件的概率学习目标1.进一步理解等可能事件概率的意义.
2.学习运用树形图计算事件的概率.
3.进一步学习分类思想方法,掌握有关数学技能.导入新课问题引入1.通过上节课的学习,你掌握了用什么方法求概率?
2.刚才老师提的这个问题有很多同学举手想来回答.
①如果老师就从甲、乙、丙三位同学中随机地选择一位来回答,那么选中丙同学的概率是多少?直接列举法、列表法.②如果老师想从甲和乙两位同学中选择一位同学回答,且由甲和乙两位同学以猜拳一次(剪刀、锤子、布)的形式谁获胜就谁来回答,那么你能用列表法求得甲同学获胜的概率吗?布锤剪布锤剪解:由表可以看出,甲和乙两位同学猜拳可能出现的结果有9个,它们出现的可能性相等.其中能确定胜负的结果有6个,而满足甲同学赢(记为事件B)的结果有3个,即:锤剪 , 布锤 , 剪布,所以
思考 上述问题如果老师想让甲、乙、丙三位同学猜拳(剪刀、锤子、布) ,由最先一次猜拳就获胜的同学来回答,那么你能用列表法算出甲同学获胜的概率吗?
若再用列表法表示所有结果已经不方便!讲授新课树形图的画法一个试验第一个因素第二个因素如一个试验中涉及2个因数,第一个因数中有2种可能情况;第二个因数中有3种可能的情况.AB123123则其树形图如图.n=2×3=6画树形图法:按事件发生的次序,列出事件可能出现的结果.例 甲、乙、丙三个盒中分别装有大小、形状、质地相同的小球若干,甲盒中装有2个小球,分别写有字母A和B;乙盒中装有3个小球,分别写有字母C、D和E;丙盒中装有2个小球,分别写有字母H和I;现要从3个盒中各随机取出1个小球.典例精析IHAB(1)取出的3个小球中恰好有1个,2个,3个写有元音字母的概率各是多少?甲乙丙ACDEHIHIHIBCDEHIHIHI解:由树形图得,所有可能出现的结果有12个,它们出现的可能性相等.(2)取出的3个小球上全是辅音字母的概率是多少?甲乙丙ACDEHIHIHIBCDEHIHIHI用树形图列举的结果看起来一目了然,当事件要经过多个(三个或三个以上)步骤完成时,用树形图法求事件的概率很有效.画树形图求概率的基本步骤(1)明确一次试验的几个步骤及顺序;
(2)画树形图列举一次试验的所有可能结果;
(3)数出随机事件A包含的结果数m,试验的所有可能结果数n;
(4)用概率公式进行计算.
方法归纳 当试验包含两步时,列表法比较方便;当然,此时也可以用树形图法;
当事件要经过多个(三个或三个以上)步骤完成时,应选用树形图法求事件的概率.经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,求三辆汽车经过这个十字路口时,下列事件的概率:
(1)三辆车全部继续直行;
(2)两车向右,一车向左;
(3)至少两车向左.第一辆左右左右左直右第二辆第三辆直直左右直左右直左直右左直右左直右左直右左直右左直右左直右左直右共有27种行驶方向(2)P(两车向右,一车向左)= ;
(3) P(至少两车向左)= 当堂练习1.a、b、c、d四本不同的书放入一个书包,至少放一本,最多放2本,共有 种不同的放法.2.三女一男四人同行,从中任意选出两人,其性别不同的概率为( )3.在一个不透明的布袋中装有2个白球和n个黄球,它们除颜色外,其余均相同,若从中随机摸出一个球,摸到黄球的概率为 ,则n= .
6B8A. B. C. D. 4.在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同.先从盒子里随机取出一个小球,记下数字后放回盒子里,摇匀后再随机取出一个小球,记下数字.请你用列表或画树形图的方法求下列事件的概率.
(1)两次取出的小球上的数字相同;
(2)两次取出的小球上的数字之和大于10.(1)两次取出的小球上的数字相同的可能性只有3种,所以P(数字相同)=(2)两次取出的小球上的数字之和大于10的可能性只有4种,所以P(数字之和大于10)=解:根据题意,画出树形图如下 5.现有A、B、C三盘包子,已知A盘中有两个酸菜包和一个糖包,B盘中有一个酸菜包和一个糖包和一个韭菜包,C盘中有一个酸菜包和一个糖包以及一个馒头.老师就爱吃酸菜包,如果老师从每个盘中各选一个包子(馒头除外),那请你帮老师算算选的包子全部是酸菜包的概率是多少?解:根据题意,画出树形图如下 由树形图得,所有可能出现的结果有18个,它们出现的可能性相等.选的包子全部是酸菜包有2个,所以选的包子全部是酸菜包的概率是:课堂小结用画树形图
求简单事件的概率步骤用法是一种解决试验有多步(或涉及多个因素)的好方法.注意弄清试验涉及试验因素个数或试验步骤分几步;
在摸球试验一定要弄清“放回”还是“不放回”.关键要弄清楚每一步有几种结果;
在树形图下面对应写着所有可能的结果;
利用概率公式进行计算.见《学练优》本课时练习课后作业课件18张PPT。小结与复习学练优九年级数学下(JJ)
教学课件第三十一章
随机事件的概率要点梳理考点讲练课堂小结课后作业一、事件的分类要点梳理事件随机事件确定事件必然事件不可能事件 1.在一定条件下必然发生的事件,叫做必然事件;
 2.在一定条件下不可能发生的事件,叫做不可能事件;
 3.在一定条件下可能发生也可能不发生的事件,叫做随机事件.二、事件的概念 1.概率:一般地,在大量重复试验下,随机事件A发生的频率 会稳定在某个常数p附近.于是我们用一个事件发生的频率
来估计这一事件发生的概率.
2、概率P(A)的取值范围:3、必然事件的概率:0≤ P(A)≤1P(A)=1三、事件的概率4、不可能事件的概率:5、随机事件的概率:P(A)=00<P(A)<11(100%)四、随机事件的概率的求法 (1)一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中k种结果,那么事件A发 生的概率为P(A)= (2)当实验的所有结果不是有限个;或各种可能结果发生的可能性不相等时,我们用大量重复试验随机事件发生的稳定频率来估计概率,即:P(A)=p(3)当无法用公式计算或直接试验困难很大时用模拟试验的方法求随机事件的概率.(4)为了帮助我们有序地思考,不重复、不遗漏地 找到问题出现的所有不同结果,我们常用的方法是列表法和树形图法. 当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为了不重不漏的列出所有可能的结果,通常采用列表法.一个因素所包含的可能情况 另一个因素所包含的可能情况两个因素所组合的所有可能情况,即n 在所有可能情况n中,再找到满足条件的事件的个数m,最后代入公式计算.列表法中表格构造特点: 当一次试验中涉及3个因素或更多的因素时,怎么办?五、列表法 当一次试验中涉及2个因素或更多的因素时, 为了不重不漏地列出所有可能的结果,通常采用“树形图”.树形图的画法:一个试验第一个因数第二个第三个 如一个试验中涉及2个或3个因数,第一个因数中有2种可能情况;第二个因数中有3种可能的情况;第三个因数中有2种可能的情况.AB123123ababababababn=2×3×2=12六、树形图 例1 在成语“瓮中捉鳖”、“拔苗助长”、“守株待兔”和“水中捞月”描述的事件中,分别是什么事件?考点讲练解:“瓮中捉鳖”是必然事件,“拔苗助长”和“水中捞月”是不可能事件,“守株待兔”是随机事件.1.“闭上眼睛从布袋中随机地摸出1个球,恰是红球的概率是 ”
的意思是( )
A.布袋中有2个红球和5个其他颜色的球
B.如果摸球次数很多,那么平均每摸7次,就有2次摸中红球
C.摸7次,就有2次摸中红球
D.摸7次,就有5次摸不中红球B 例2 如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是( )
A. B. C. D. A【解析】列表可知,任意闭合其中两个开关的结果有12种,其中小灯泡能发光的结果有6种,所以P(任意闭合其中两个开关小灯泡发光)= . 例3 如图所示,有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k,第二次从余下的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b.
(1)写出k为负数的概率;
(2)求一次函数y=kx+b的图象经过
二、三、四象限的概率.解:(1)P(k为负数)= . 【解析】(1)因为-1,-2,3中有两个负数,故k为负数的概率为 ;(2)由于一次函数y=kx+b的图象经过二、三、四象限时,k,b均为负数,所以在画树形图列举出k、b取值的所有情况后,从中找出所有k、b均为负数的情况,即可得出答案.(2)画树形图如右:
由树形图可知,k、b的取值共有6种情况,其中k<0且b<0的情况有2种,
∴P(一次函数y=kx+b的图象经过第二、三、四象限)=
.针对训练 2. 一个袋中装有2个黑球3个白球,这些球除颜色外,大小、形状、质地完全相同,在看不到球的情况下,随机的从这个袋子中摸出一个球不放回,再随机的从这个袋子中摸出一个球,两次摸到的球颜色相同的概率是(  )
A. B. C. D. A例4 某篮球运动员在最近的几场大赛中罚球投篮的结果如下:【解析】观察这位运动员多次进球的频率可以发现在0.75上下徘徊,于是可以估计他投篮一次进球的概率是0.75.(1)把表格补充完整.
(2)这位运动员投篮一次,进球的概率是多少?0.750.80.780.70.750.753.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球.如果口袋中装有3个红球且摸到红球的概率为,那么口袋中球的总个数为_____.解析:设口袋中球的总个数为x,则摸到红球的概率为
,所以x=15.课堂小结 见《学练优》河北中考热点专练课后作业