本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
课 题:1.5一元二次不等式(2)
高次不等式、分式不等式解法
教学目的:
1.巩固一元二次方程、一元二次不等式与二次函数的关系,掌握掌握简单的分式不等式和特殊的高次不等式的解法;
2.培养数形结合的能力,一题多解的能力,培养抽象概括能力和逻辑思维能力;
3.激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会从不同侧面观察同一事物思想
教学重点:简单的分式不等式和特殊的高次不等式的解法
教学难点:正确串根(根轴法的使用)
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
内容分析:
1.本小节首先对照学生已经了解的一元二次方程、一元二次不等式与二次函数的图象,找出一元二次方程、一元二次不等式与二次函数的关系,进而得到利用二次函数图象求解一元二次不等式的方法说明一元二次不等式可以转化为一元一次不等式组,由此引出简单的分式不等式的解法
2.本节课学习简单的分式不等式和特殊的高次不等式的解法,这是这小节的重点,关键是弄清简单的分式不等式和特殊的高次不等式解法的根轴法的使用
教学过程:
一、复习引入:
1.一元二次方程、一元二次不等式与二次函数的关系
2.一元二次不等式的解法步骤
一元二次不等式的解集:
设相应的一元二次方程的两根为,,则不等式的解的各种情况如下表:(课本第19页)
二次函数()的图象 ( http: / / www.21cnjy.com / ) ( http: / / www.21cnjy.com / ) ( http: / / www.21cnjy.com / )
一元二次方程 有两相异实根 有两相等实根 无实根
R
引言:今天我们来研究一元二次不等式的另外解法,以及特殊的高次不等式、分式不等式的解法
二、讲解新课:
⒈ 一元二次不等式与特殊的高次不等式解法
例1 解不等式.
分析一:利用前节的方法求解;
分析二:由乘法运算的符号法则可知,若原不等式成立,则左边两个因式必须异号,∴原不等式的解集是下面两个不等式组:与的解集的并集,即{x|}∪}=φ∪{x|-4
解二:∵(x-1)(x+4)<0HYPERLINK "http://www.21cnjy.com/"或
x∈φ或-4∴原不等式的解集是{x|-4小结:
一元二次不等式的代数解法:设一元二次不等式相应的方程
的两根为,
则;
①若
当时,得或;当时,得.
②若
当时,得;当时,得.
分析三:由于不等式的解与相应方程的根有关系,因此可求其根并由相应的函数值的符号表示出来即可求出不等式的解集.
解:①求根:令(x-1)(x+4)=0,解得x(从小到大排列)分别为-4,1,这两根将x轴分为三部分:(-,-4)(-4,1)(1,+);
②分析这三部分中原不等式左边各因式的符号
(-,-4) (-4,1) (1,+)
x+4 - + +
x-1 - - +
(x-1)(x+4) + - +
③由上表可知,原不等式的解集是{x|-4例2:解不等式:(x-1)(x+2)(x-3)>0;
解:①检查各因式中x的符号均正;
②求得相应方程的根为:-2,1,3;
③列表如下:
-2 1 3
x+2 - + + +
x-1 - - + +
x-3 - - - +
各因式积 - + - +
④由上表可知,原不等式的解集为:{x|-23}.
小结:此法叫列表法,解题步骤是:
①将不等式化为(x-x1)(x-x2)…(x-xn)>0(<0)形式(各项x的符号化“+”),令(x-x1)(x-x2)…(x-xn)=0,求出各根,不妨称之为分界点,一个分界点把(实数)数轴分成两部分,n个分界点把数轴分成n+1部分……;
②按各根把实数分成的n+1部分,由小到大横向排列,相应各因式纵向排列(由对应较小根的因式开始依次自上而下排列);
③计算各区间内各因式的符号,下面是乘积的符号;
④看下面积的符号写出不等式的解集.
练习:解不等式:x(x-3)(2-x)(x+1)>0. {x|-1思考:由函数、方程、不等式的关系,能否作出函数图像求解
直接写出解集:{x|-23}. {x|-1在没有技术的情况下:
可大致画出函数图形求解,称之为根轴法(零点分段法)
①将不等式化为(x-x1)(x-x2)…(x-xn)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)
②求根,并在数轴上表示出来;
③由右上方穿线,经过数轴上表示各根的点(为什么?);
④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.
HYPERLINK "http://www.21cnjy.com/" EMBED PBrush
注意:奇过偶不过
例3 解不等式:(x-2)2(x-3)3(x+1)<0.
解:①检查各因式中x的符号均正;
②求得相应方程的根为:-1,2,3(注意:2是二重根,3是三重根);
③在数轴上表示各根并穿线,每个根穿一次(自右上方开始奇过偶不过),如下图:HYPERLINK "http://www.21cnjy.com/" EMBED PBrush
④∴原不等式的解集为:{x|-1说明:∵3是三重根,∴在C处过三次,2是二重根,∴在B处过两次,结果相当于没过.由此看出,当左侧f(x)有相同因式(x-x1)n时,n为奇数时,曲线在x1点处穿过数轴;n为偶数时,曲线在x1点处不穿过数轴,不妨归纳为“奇过偶不过”.
练习:解不等式:(x-3)(x+1)(x2+4x+4)0.
解:①将原不等式化为:(x-3)(x+1)(x+2)20;
②求得相应方程的根为:-2(二重),-1,3;
③在数轴上表示各根并穿线,如图:
④∴原不等式的解集是{x|-1x3或x=-2}.
说明:注意不等式若带“=”号,点画为实心,解集边界处应有等号;另外,线虽不穿过-2点,但x=-2满足“=”的条件,不能漏掉.
2.分式不等式的解法
例4 解不等式:.
错解:去分母得HYPERLINK "http://www.21cnjy.com/" EMBED Equation.3 ∴原不等式的解集是HYPERLINK "http://www.21cnjy.com/" EMBED Equation.3 .
解法1:化为两个不等式组来解:
∵HYPERLINK "http://www.21cnjy.com/"HYPERLINK "http://www.21cnjy.com/"HYPERLINK "http://www.21cnjy.com/"x∈φ或HYPERLINK "http://www.21cnjy.com/" EMBED Equation.3 HYPERLINK "http://www.21cnjy.com/"HYPERLINK "http://www.21cnjy.com/" EMBED Equation.3 ,
∴原不等式的解集是HYPERLINK "http://www.21cnjy.com/" EMBED Equation.3 .
解法2:化为二次不等式来解:
∵HYPERLINK "http://www.21cnjy.com/"HYPERLINK "http://www.21cnjy.com/"HYPERLINK "http://www.21cnjy.com/"HYPERLINK "http://www.21cnjy.com/" EMBED Equation.3 ,
∴原不等式的解集是HYPERLINK "http://www.21cnjy.com/" EMBED Equation.3
说明:若本题带“=”,即(x-3)(x+7)0,则不等式解集中应注意x-7的条件,解集应是{x| -7小结:由不等式的性质易知:不等式两边同乘以正数,不等号方向不变;不等式两边同乘以负数,不等号方向要变;分母中有未知数x,不等式两边同乘以一个含x的式子,它的正负不知,不等号方向无法确定,无从解起,若讨论分母的正负,再解也可以,但太复杂.因此,解分式不等式,切忌去分母.
解法是:移项,通分,右边化为0,左边化为HYPERLINK "http://www.21cnjy.com/" EMBED Equation.3 的形式.
例5 解不等式:.
解法1:化为不等式组来解较繁.
解法2:∵HYPERLINK "http://www.21cnjy.com/"HYPERLINK "http://www.21cnjy.com/"HYPERLINK "http://www.21cnjy.com/"
,
∴原不等式的解集为{x| -1也可以直接用根轴法(零点分段法)求解: ( http: / / www.21cnjy.com / )
练习:1.课本P21练习:3⑴⑵;2.解不等式.
答案:1.⑴{x|-5-1/2};2.{x|-132解不等式:.(答:{x|x0或1三、小结:
1.特殊的高次不等式即右边化为0,左边可分解为一次或二次式的因式的形式不等式,一般用区间法解,注意:①左边各因式中x的系数化为“+”,若有因式为二次的(不能再分解了)二次项系数也化为“+”,再按我们总结的规律作;②注意边界点(数轴上表示时是“0”还是“.”).
2.分式不等式,切忌去分母,一律移项通分化为HYPERLINK "http://www.21cnjy.com/" EMBED Equation.3 >0(或HYPERLINK "http://www.21cnjy.com/" EMBED Equation.3 <0)的形式,转化为:,即转化
为一次、二次或特殊高次不等式形式 .
也可以直接用根轴法(零点分段法)求解
3.一次不等式,二次不等式,特殊的高次不等式及分式不等式,我们称之为有理不等式.
4.注意必要的讨论.
5.一次、二次不等式组成的不等式组仍要借助于数轴.
四、、布置作业
五、思考题:
1. 解关于x的不等式:(x-x2+12)(x+a)<0.
解:①将二次项系数化“+”为:(x2-x-12)(x+a)>0,
②相应方程的根为:-3,4,-a,现a的位置不定,应如何解?
③讨论:
ⅰ当-a>4,即a<-4时,各根在数轴上的分布及穿线如下:
( http: / / www.21cnjy.com / )∴原不等式的解集为{x| -3-a}.
ⅱ当-3<-a<4,即-4( http: / / www.21cnjy.com / )∴原不等式的解集为{x| -34}.
ⅲ当-a<-3,即a>3时,各根在数轴上的分布及穿线如下:
( http: / / www.21cnjy.com / )∴原不等式的解集为{x| -a4}.
ⅳ当-a=4,即a=-4时,各根在数轴上的分布及穿线如下:
( http: / / www.21cnjy.com / )∴原不等式的解集为{x| x>-3}.
ⅴ当-a=-3,即a=3时,各根在数轴上的分布及穿线如下:
( http: / / www.21cnjy.com / )∴原不等式的解集为{x| x>4}.
2.若不等式对于x取任何实数均成立,求k的取值范围.(提示:4x2+6x+3恒正)(答:1六、板书设计(略)
七、课后记:
www.
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网