本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
课 题: 33.4几 何 概 率
教学目标
知识与技能:理解几何概率的意义,会求简单事件的几何概率,会应用几何概率解决有关实际问题.
数学思考:经历猜想、探索等数学活动过程,积累数学活动经验,发展合情推理能力.
解决问题:能从数学的角度理解问题,能用几何概率等知识解决问题,发展应用意识.
情感态度与价值观:通过解决现实生活的问题,培养学生乐于应用数学的态度,有助于形成勤于探索的精神.
重点、难点
重点:理解几何概率的意义,能借助几何图形的度量求简单事件的概率.
难点:将实际问题转化为数学问题,建立几何概率模型.
透彻理解几何概率的意义.
教学过程设计
一、情境引入
借助多媒体演示转盘游戏.提出问题“转动圆盘,停下时,指针停留的位置有多少种?指向哪种颜色区域的可能性大?这个问题的概率和以往研究的概率类型一样吗?它有什么特点?”
通过此情境的创设使学生感受到几何概型的特点,及学习它的必要性.激发学生要学习几何概率的欲望.
二、猜想探究、形成概念
引例1:如图,转动圆盘,等停下时指针指向红色区域的概率是多大?
引例2:在数轴上0到60之间任取一点,那么该点落在40到60之间的概率是多大?
借助多媒体动画演示,进一步让学生感受几何概型的特点(事件的等可能结果不可数),对事件的概率得出猜想,并借助教具实验估算概率.
通过对以上两个引例共同特点的讨论,形成几何概率的概念.
几何概率:当实验的结果用线段或平面区域表示,事件的概率定义为部分线段的长度(部分区域的面积)和整条线段的长度(整个区域的面积)的比.这些概率与几何度量有关,数学上称为几何概率.
三、应用建模
例题1、 某人午睡醒后,发现手表停了,于是打开收音机等侯整点报时,那么等待时间不超过20分的概率是多大?
提问1、这是几何概率问题吗?(是)
2、该用怎样的图形表示 ?(用长为60的线段或一个圆来表示)
解:设A=“等待时间不超过20分钟”,
则P(A)===.
或P(A)== 或P(A)== .
例题2 我市海阳路与河北大街交叉路口,目前由东向西红绿灯时间设置是:红灯32秒,绿灯35秒,黄灯3秒.张明同学匀速骑车由东向西通过路口,可以直接通过的概率是多大?
分析:这是几何概率问题.可以把它转换到数轴上研究.用长为32的线段表示红灯的时间,用长为35的线段表示绿灯时间,用长为3的线段表示黄灯时间,在70秒中的任意一时刻该同学都可能经过路口,在绿灯时间内事件发生.
解:设A=“直接通过”,
则P(A)==.
四、巩固拓展,启迪思维
走进知识平台
1、某公共汽车站每隔10分钟有一辆车发往A地,李磊不定时地到车站等车去A地,求他等车时间不超过4分钟的概率.
分析:如图,用长为10的线段AB表示两车的间隔时间.
解:设A=“等待时间不超过4分钟”,
则P(A)===.
2、在一个5000㎞2的海域里有面积达40㎞2的大陆架蕴藏着石油,在这个海域里随意选定一点钻探,钻出石油的概率是多大?
解:设A=“钻出石油”,
则P(A)== .
此题组选名学生板演,其他学生在练习本上完成,然后师生共同评析反馈.
跨上知识阶梯
1、将长度为9㎝的细铁丝任意剪成两段,A表示“较长的一段大于或等于较短一段的2倍”求事件A的概率.
分析:可以把9㎝长的铁丝看作是长为9的线段CD,由于剪法的任意性,分点落在CD上任意一位置均可.当点落在CE或FD上时,事件A发生.
解:P(A)= == .
2、抛阶砖游戏;参与者将手上的“金币”抛落在离身边若干距离的阶砖平面上,抛出的硬币刚巧落在任何一个阶砖的范围内(不压阶砖相连的线)获胜.当正方形阶砖的边长为5cm,金币直径为2.5 cm时,请你计算“金币”落在阶砖范围内的概率.(提示:圆心落在正中间边长为2.5cm的正方形内,游戏获胜)
解:设A=“金币落在阶砖内”,
则P(A)== .
先分组讨论,然后全班交流,形成解决问题的方法.对于“抛阶砖”游戏,
教师借助多媒体动画演示,加深学生对这个问题的理解.
五、课堂反思
引导学生从知识获得途径、结论、应用等方面总结与反思本节课内容.(①、这节课你有哪些收获?②、你最感兴趣的地方是什么?③、你还有哪些想研究的问题?)
0
10
20
30
40
50
60
红
3
1
2
60
50
40
30
20
10
0
B
C
A
0
32
70
67
10
8
0
2
4
6
A
C
B
C
D
F
E
0
6
3
9
.
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网