第16课时6.1.1简单随机抽样(无答案)

文档属性

名称 第16课时6.1.1简单随机抽样(无答案)
格式 rar
文件大小 18.1KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2010-08-05 09:13:00

图片预览

文档简介

第6章 统计
一、知识结构
二、重点难点
重点:
三种常见抽样方法;总体分布的估计;总体特征数的估计;线性回归。
难点:
三种常见抽样方法的区别和特点;频率分布表;频率分布直方图、频率分布折线图、茎叶图的制作方法;平均数、方差、标准差的计算;变量之间的相关关系及线性回归方程的求法。
6.1 抽样方法
第16课时6.1.1 简单随机抽样
【学习导航】
知识网络
学习要求
1.明白样本、总体、样本容量等基本概念;
2.体会简单随机抽样的的概念及抽签法的基本步骤;
3.体会随机数表法也是等可能性抽样,感受用随机数表法进行抽样的基本步骤,并能熟运用。
【课堂互动】
自学评价
1. 基本概念:总体、个体、样本、样本的容量、总体平均数、样本平均数
在统计学里,我们把 叫做总体,其中的每一个考察对象叫做个体,从总体中所抽取的一部分个体叫做总体的一个样本,样本中个体的数目叫做样本的容量. 叫做总体平均数,
叫做样本平均数.
2.统计学的基本思想方法:
统计学的基本思想方法是 ,即 .因此,样本的抽取是否得当,对于研究总体来说就十分关键.究竟怎样从总体中抽取样本?怎样抽取的样本更能充分地反映总体的情况?下面,我们就通过案例来学习一种常用的基本的抽样:简单随机抽样.
案例1 为了了解高一(1)班50名学生的视力状况,从中抽取10名学生进行检查.如何抽取呢
【分析】
在这个案例中,总体容量较小,显然可以用同学们最常见的抽签法来抽取样本.关键问题在于:抽签法能使每一个人被抽到的机会均等吗?对每一个人都公平吗?
好吧,让我们一起实践一次抽签的过程。在实践中思考抽签法需要哪些必要的步骤。
3. 抽签法
用抽签法从个体个数为N的总体中抽取一个容量为k的样本的步骤为:
(1)将总体中的所有个体编号(号码可以从1到N);
(2) ;
(3) ;
(4)
;
(5)从总体中将与的签的编号相一致的个体取出。
注意:对个体编号时,也可以利用已有的编号,如从全班学生中抽取样本时,利用学生的学号作为编号;对某场电影的观众进行抽样调查时,利用观众的座位号用为编号等。
【小结】用抽签法抽取样本过程中,每一个剩余个体被抽到的机会是 的,这也是一个样本是否具有良好的代表性的关键前提.没有每个个体机会均等,就没有样本的公平性和科学性.当然,抽签法简单易行,适用于 的情形.
在案例1中,还可以用另一种方法 ——随机数表法来抽取样本,它可以有效地简化抽签法的过程。
先让我们一起体会一下随机数表法抽取样本的过程,再完成下面的空格。
4.随机数表法(random number table)
随机数表中的每个数都是用 产生的(称为 )。
按一定规则到随机数表中选取号码,从而获得样本的方法就称为随机数表法
随机数表的制作方法有抽签法、抛掷骰子法、计算机生成法等等。
用随机数表法抽取样本的步骤:
(1)对总体中的个体进行编号(每个号码位数一致);
(2) ;
(3)

(4)根据选定的号码抽取样本。
5.简单随机抽样
从个体数为N的总体中 地取出n个个体作为样本(n被取到,这样的抽样方法叫简单随机抽样。 和 都是简单随机抽样(simple random sampling)
【经典范例】
例1 某班共有60个班级,为了调查班级中男女学生所占比例情况,试抽取8个班级组成的一个样本。
【解】
例2 总体有8个个体,请用随机数表法从中抽取一个容量为5的样本。如何操作(随机数表参见教科书41页)
【解】
例3 某学校的高一年级共有200名学生,为了调查这些学生的某项身体素质达标状况,请使用随机数表法从总体中抽取一个容量为15的样本
【解】(完成空格)
第一步,将所有学生编号 :000,001,002,…,198,199。
第二步,选定随机数表中第一个数1作为开始。
第三步,从选定的数1开始按三个数字一组向右读下去,一行读完时按下一行自左向右继续读,将超过199或重复的三位数去掉,保留下来的三位数直到取足15个为止。得所要抽取的样本号码是

点评:1、在随机数表中,每一个位置上出现某一数字是等可能的,这就决定了从总体中抽到任何一个个体的号码也是等可能的。可见随机数表法属于简单随机抽样。
2、该题在用随机数表选号时,需要剔除大量不在个体编号范围内的号码数,这样挑号码不太方便,能否避免呢?
(可以规定所取的三位数中,凡在200~399者,均减200,凡400~599者,均减400…,使所有数组都小于200)
例4 假设一个总体有5个元素,分别记为a,b,c,d,e,从中采用不重复抽取样本的方法,抽取一个容量为2的样本,样本共有多少个?写出全部可能的样本。
【解】
追踪训练
1.某次考试有10000名学生参加,为了了解这10000名考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,在这个问题中,有以下四种说法:(1)1000名考生是总体的一个样本;(2)1000名考生数学成绩的平均数是总体平均数;(3)10000名考生是总体;(4)样本容量是1000,其中正确的说法有( )
A.1种  B.2种 C.3种 D.4种
2.关于简单的随机抽样,有下列说法:
(1)它要求被抽样本的总体的个数有限,以便对其中各个个体被抽取的可能性进行分析;
(2)它是从总体中逐个地进行抽取,以便在抽样实践中进行操作;
(3)它是一种不放回抽样;
(4)它是一种等可能抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种方法抽样的公平性.其中正确的命题有( )
A.(1)(2)(3) B.(1)(2)(4)
C.(1)(3)(4) D.(1)(2)(3)(4)
3.从100件电子产品中抽取一个容量为25的样本进行检测,试用随机数表法抽取样本。
【解】
4.为了分析某次考试情况,需要从2000份试卷中抽取100份作为样本,如何用随机数表法进行抽取?
【解】
统 计
抽样方法方法
总体分布的估计
总体特征数的估计
变量之间的关系
简单随机抽样
系统抽样方法
分层抽样方法
抽签法方法
随机数表法方法
频率分布表方法
频率分布直方图方法
折线图方法
茎叶图方法
平均数及其估计方法
方差方法
标准差方法
函数关系方法
相关关系方法
线性回归方法
线性回归方程方法
相关性检验与相关系数
简单随机抽样
随机数表法
抽签法