本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
等差数列
一、基本说明
1模块:高中数学
2年级:高中一年级
3所用教材版本:《普通高中课程标准实验教科书·数学5》(人教版)
4所属的章节:第二章数列第二节等差数列第一课时。
5学时数: 45分钟
二、教学设计
1、教学目标:通过本节课的学习使学生能理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列,引导学生了解等差数列的通项公式的推导过程及思想,会求等差数列的公差及通项公式,能在解题中灵活应用,初步引入“数学建模”的思想方法并能运用;并在此过程中培养学生观察、分析、归纳、推理的能力,在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。在解决问题的过程中培养学生主动探索、勇于发现的求知精神;使学生认识事物的变化形态,养成细心观察、认真分析、善于总结的良好思维习惯。并通过一定的实例激发同学们的民族自豪感和爱国热情。
2、内容分析:
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。
三、教学过程
教学环节及时间 教师活动 学生活动 对学生学习过程的观察和考查及设计意图
创设情境问题引入 在日常生活中,人口增长、教育贷款、存款利息等等这些大家以后会接触得比较多的实际计算问题,都需要用到有关数列的知识来解决。今天我们就先学习一类特殊的数列。 由实际生活中的问题引入
探索研究 1.在现实生活中,我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,___,___,___,___,…2.2000年,在澳大利亚悉尼举行的奥运会上,女子举重被正式列为比赛项目。该项目共设置了7个级别。其中较轻的4个级别体重组成数列(单位:kg):48,53,58,63。3.水库的管理人员为了保证优质鱼类有良好的生活环境,用定期放水清理水库的杂鱼。如果一个水库的水位为18cm,自然放水每天水位降低2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m):18,15.5,13,10.5,8,5.54.我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。按照单利计算本利和的公式是:本利和=本金×(1+利率×寸期).例如,按活期存入10 000元钱,年利率是0.72%。那么按照单利,5年内各年末的本利和分别是:时间年初本金(元)年末本利和(元)第1年10 00010 072第2年10 00010 144第3年10 00010 216第4年10 00010 288第5年10 00010 360各年末的本利和(单位:元)组成了数列:10 072,10 144,10 216, 10 288,10 360。问题1:同学们观察一下上面的这四个数列:0,5,10,15,20,…… ①48,53,58,63 ②18,15.5,13,10.5,8,5.5 ③10 072,10 144,10 216, 10 288,10 360 ④看这些数列有什么共同特点呢?观察分析并得出答案: 学生从简单的题中得出对等差数列形成初步印象。 举出四个例子,引导学生积极思考例子中数列所具有的基本特征。
发现规律 引导学生观察相邻两项间的关系,得到: 对于数列①,从第2项起,每一项与前一项的差都等于 5 ; 对于数列②,从第2项起,每一项与前一项的差都等于 5 ; 对于数列③,从第2项起,每一项与前一项的差都等于 -2.5 ; 对于数列④,从第2项起,每一项与前一项的差都等于 72 ; 由学生归纳和概括出,以上四个数列从第2项起,每一项与前一项的差都等于同一个常数(即:每个都具有相邻两项差为同一个常数的特点)。 学生在老师的引导下发现规律。 学生总结这些数列的基本特征。
引入定义 对于以上几组数列我们称它们为等差数列。请同学们根据我们刚才分析等差数列的特征,尝试着给等差数列下个定义:等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,公差通常用字母d表示。那么对于以上四组等差数列,它们的公差依次是5,5,-2.5,72。问题2:如果在与中间插入一个数A,使,A,成等差数列数列,那么A应满足什么条件?a,A,b组成了一个等差数列,那么由定义可以知道:A-a=b-A所以就有 等差中项:由三个数a,A,b组成的等差数列可以看成最简单的等差数列,这时,A叫做a与b的等差中项。不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项。如数列:1,3,5,7,9,11,13…中5是3和7的等差中项,1和9的等差中项。9是7和11的等差中项,5和13的等差中项。问题3:对于以上的等差数列,我们能不能用通项公式将它们表示出来呢?由学生经过分析写出通项公式:①这个数列的第一项是5,第2项是10(=5+5),第3项是15(=5+5+5),第4项是20(=5+5+5+5),……由此可以猜想得到这个数列的通项公式是② 这个数列的第一项是48,第2项是53(=48+5),第3项是58(=48+5×2),第4项是63(=48+5×3),由此可以猜想得到这个数列的通项公式是③ 这个数列的第一项是18,第2项是15.5(=18-2.5),第3项是13(=18-2.5×2),第4项是10.5(=18-2.5×3),第5项是8(=18-2.5×4),第6项是5.5(=18-2.5×5)由此可以猜想得到这个数列的通项公式是④这个数列的第一项是10072,第2项是10144(=10172+72),第3项是10216(=10072+72×2),第4项是10288(=10072+72×3),第5项是10360(=10072+72×4),由此可以猜想得到这个数列的通项公式是问题4:如果任意给了一个等差数列的首项和公差d,它的通项公式是什么呢?引导学生根据等差数列的定义进行归纳: 所以 ……通项公式:由此我们可以猜想得出:以为首项,d为公差的等差数列的通项公式为 也就是说,只要我们知道了等差数列的首项和公差d,那么这个等差数列的通项就可以表示出来了。 总结归纳,得出等差数列的定义。 从例子中得出今天学习的内容:等差数列,得出等差数列的定义,并归纳出通项公式。
应用巩固 例1、⑴求等差数列8,5,2,…的第20项.⑵-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?分析:⑴要求出第20项,可以利用通项公式求出来。首项知道了,还需要知道的是该等差数列的公差,由公差的定义可以求出公差;⑵这个问题可以看成是上面那个问题的一个逆问题。要判断这个数是不是数列中的项,就是要看它是否满足该数列的通项公式,并且需要注意的是,项数是否有意义。解:⑴由=8,d=5-8=-3,n=20,得⑵由=-5,d=-9-(-5)=-4,得这个数列的通项公式为由题意知,本题是要回答是否存在正整数n,使得-401=-4n-1成立。解这个关于n的方程,得n=100,即-401是这个数列的第100项。总结:从该例题中可以看出,等差数列的通项公式其实就是一个关于、、d、n(独立的量有3个)的方程;另外,要懂得利用通项公式来判断所给的数是不是数列中的项,当判断是第几项的项数时还应看求出的项数是否为正整数,如果不是正整数,那么它就不是数列中的项。例2.某市出租车的计价标准为1.2元/km,起步价为10元,即最初的4km(不含4千米)计费10元。如果某人乘坐该市的出租车去往14km处的目的地,且一路畅通,等候时间为0,需要支付多少车费?解:根据题意,当该市出租车的行程大于或等于4km时,每增加1km,乘客需要支付1.2元.所以,我们可以建立一个等差数列来计算车费. 令=11.2,表示4km处的车费,公差d=1.2。那么当出租车行至14km处时,n=11,此时需要支付车费 答:需要支付车费23.2元。评述:这是等差数列用于解决实际问题的一个简单应用,要学会从实际问题中抽象出等差数列模型,用等差数列的知识解决实际问题。 学生与教师一起做例题。 讲解例题,巩固等差数列的相关知识。
随堂练习 课本39页“练习”第1,2,3题. 学生做练习。 学生练习,进一步巩固所学知识。
课堂小结 本节主要内容为:①等差数列定义:即(n≥2)②等差数列通项公式:(n≥1)推导出公式: 学生与教师一起小结 回顾本课,对所学内容作总结,学生再回忆一遍,加深印象。
四、教学反思
1、这节课上得比较成功。所选用的例子比较多,又贴近生活,所以学生学起来不吃力,很容易能接受所学内容,学习过程中学生的学习积极性一直很高。
2、本堂课内容较浅,由于时间问题,有些讨论的地方并没有预设的深入。其中需要完善的还有很多细节问题。
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网