§15.2.1 同底数幂的乘法

文档属性

名称 §15.2.1 同底数幂的乘法
格式 rar
文件大小 39.5KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2010-08-19 16:30:00

图片预览

文档简介

本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
北城中学教师备课导学案
课  题 §15.2.1 同底数幂的乘法 第1课时 共5课时
主备人 张涛武 使用人
教学目标 教学目标 (一)教学知识点 1.理解同底数幂的乘法法则. 2.运用同底数幂的乘法法则解决一些实际问题. (二)能力训练要求 1.在进一步体会幂的意义时,发展推理能力和有条理的表达能力. 2.通过“同底数幂的乘法法则”的推导和应用,使学生初步理解特殊到一般,一般到特殊的认知规律. (三)情感与价值观要求 体味科学的思想方法,接受数学文化的熏陶,激发学生探索创新的精神.
重 点 正确理解同底数幂的乘法法则.
难 点 正确理解和应用同底数幂的乘法法则.
教具准备 投影片(或多媒体课件). 施教时间 2007年 月 日
Ⅰ.提出问题,创设情境 复习an的意义: an表示n个a相乘,我们把这种运算叫做乘方.乘方的结果叫幂;a叫做底数,n是指数.(出示投影片) 提出问题: (出示投影片) 问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算? [师]能否用我们学过的知识来解决这个问题呢? [生]运算次数=运算速度×工作时间 所以计算机工作103秒可进行的运算次数为:1012×103. [师]1012×103如何计算呢? [生]根据乘方的意义可知 1012×103=×(10×10×10)==1015. [师]很好,通过观察大家可以发现1012、103这两个因数是同底数幂的形式,所以我们把像1012×103的运算叫做同底数幂的乘法.根据实际需要,我们有必要研究和学习这样的运算──同底数幂的乘法. Ⅱ.导入新课 1.做一做 出示投影片: 你发现了什么?注意观察计算前后底数和指数的关系,并能用自己的语言描述. [师]根据乘方的意义,同学们可以独立解决上述问题. [生](1)25×22=(2×2×2×2×2)×(2×2) =27=25+2. 因为25表示5个2相乘,;22表示2个2相乘,根据乘方的意义,同样道理可得 a3·a2=(a·a·a)·(a·a)=a5=a3+2. 5m·5n= ×=5m+n. (让学生自主探索,在启发性设问的引导下发现规律,并用自己的语言叙述). [生]我们可以发现下列规律: (一)这三个式子都是底数相同的幂相乘. (二)相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和. 2.议一议 出示投影片 [师生共析] am·an表示同底数幂的乘法.根据幂的意义可得: am·an=·==am+n 于是有am·an=am+n(m、n都是正整数),用语言来描述此法则即为: “同底数幂相乘,底数不变,指数相加”.[师]请同学们用自己的语言解释“同底数幂相乘,底数不变,指数相加”的道理,深刻理解同底数幂的乘法法则. [生]am表示n个a相乘,an表示n个a相乘,am·an表示m个a相乘再乘以n个a相乘,也就是说有(m+n)个a相乘,根据乘方的意义可得am·an=am+n. [师]也就是说同底数幂相乘,底数不变,指数要降一级运算,变为相加. 3.例题讲解 出示投影片 [师]我们先来看例1,是不是可以用同底数幂的乘法法则呢? [生1](1)、(2)、(4)可以直接用“同底数幂相乘,底数不变,指数相加”的法则. [生2](3)也可以,先算2个同底数幂相乘,将其结果再与第三个幂相乘,仍是同底数幂相乘,再用法则运算就可以了. [师]同学们分析得很好.请自己做一遍.每组出一名同学板演,看谁算得又准又快. 生板演: (1)解:x2·x5=x2+5=x7. (2)解:a·a6=a1·a6=a1+6=a7. (3)解:2×24×23=21+4·23=25·23=25+3=28. (4)解:xm·x3m+1=xm+(3m+1)=x4m+1. [师]接下来我们来看例2.受(3)的启发,能自己解决吗?与同伴交流一下解题方法. 解法一:am·an·ap=(am·an)·ap =am+n·ap=am+n+p; 解法二:am·an·ap=am·(an·ap)=am·an+p=am+n+p. 解法三:am·an·ap=·· =am+n+p. 评析:解法一与解法二都直接应用了运算法则,同时还用了乘法的结合律;解法三是直接应用乘方的意义.三种解法得出了同一结果.我们需要这种开拓思维的创新精神. [生]那我们就可以推断,不管是多少个幂相乘,只要是同底数幂相乘,就一定是底数不变,指数相加. [师]是的,能不能用符号表示出来呢? [生]am1·am2·…·amn=am1+m2+mn [师]太棒了.那么例1中的第(3)题我们就可以直接应用法则运算了. 2×24×23=21+4+3=28. Ⅲ.随堂练习1.课本P170练习 Ⅳ.课时小结 [师]这节课我们学习了同底数幂的乘法的运算性质,请同学们谈一下有何新的收获和体会呢? [生]在探索同底数幂乘法的性质时,进一步体会了幂的意义.了解了同底数幂乘法的运算性质. [生]同底数幂的乘法的运算性质是底数不变,指数相加.应用这个性质时,我觉得应注意两点:一是必须是同底数幂的乘法才能运用这个性质;二是运用这个性质计算时一定是底数不变,指数相加,即am·an=am+n(m、n是正整数). Ⅴ.课后作业 1.课本P177习题15.2─1.(1)、(2),2.(1)、8.
板 书 设 计
教学反思 ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________
计算下列各式:
(1)25×22
(2)a3·a2
(3)5m·5n(m、n都是正整数)
am·an等于什么(m、n都是正整数)?为什么?
[例1]计算:
(1)x2·x5 (2)a·a6
(3)2×24×23 (4)xm·x3m+1
[例2]计算am·an·ap后,能找到什么规律?
§15.2.1 同底数幂的乘法
一、计算机运算次数:1012×103
计算1012×103=×(10×10×10)==10
二、算一算,找规律
1.25×22=(2×2×2×2×2)×(2×2)
==27;
2.a3·a2=(a·a·a)·(a·a)=a·a·a·a·a=a5;
3.5m·5n=×==5m+n
三、同底数幂的乘法法则:
同底数幂相乘,底数不变,指数相加.即am·an=am+n(m、n都是正整数)
四、例题讲解:(由学生板演)
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网