北京英才苑 高三数学第二轮复习教案
第6讲 立体几何问题的题型与方法
(4课时)
一、考试内容:9(A)直线、平面、简单几何体 考试内容
平面及其基本性质,平面图形直观图的画法。
平行直线,对应边分别平行的角,异面直线所成的角,异面直线的公垂线,异面直线的距离。
直线和平面平行的判定与性质,直线和平面垂直的判定与性质,点到平面的距离,斜线在平面上的射影,直线和平面所成的角,三垂线定理及其逆定理。
平行平面的判定与性质,平行平面间的距离,二面角及其平面角,两个平面垂直的判定与性质。
多面体、棱柱、棱锥、正多面体、球。
二、考试要求
(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图,能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。
(2)了解空两条直线的位置关系,掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念(对于异面直线的距离,只要求会计算已给出公垂线时的距离)。
(3)了解空间直线和平面的位置关系,掌握直线和平面平行的判定定理和性质定理,理解直线和平面垂直的判定定理和性质定理,掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念,了解三垂线定理及其逆定理。
(4)了解平面与平面的位置关系,掌握两个平面平行的判定定理和性质定理。掌握二面角、二面角的平面角、两个平面间的距离的概念,掌握两个平面垂直的判定定理和性质定理。
(5)会用反证法证明简单的问题。
(6)了解多面体的概念,了解凸多面体的概念。
(7)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。
(8)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。
(9)了解正多面体的概念,了解多面体的欧拉公式。
(10)了解球的概念,掌握球的性质,掌握球的表面积、体积公式。
三、复习目标
1.在掌握直线与平面的位置关系(包括直线与直线、直线与平面、平面与平面间的位置关系)的基础上,研究有关平行和垂直的的判定依据(定义、公理和定理)、判定方法及有关性质的应用;在有关问题的解决过程中,进一步了解和掌握相关公理、定理的内容和功能,并探索立体几何中论证问题的规律;在有关问题的分析与解决的过程中提高逻辑思维能力、空间想象能力及化归和转化的数学思想的应用.
2.在掌握空间角(两条异面直线所成的角,平面的斜线与平面所成的角及二面角)概念的基础上,掌握它们的求法(其基本方法是分别作出这些角,并将它们置于某个三角形内通过计算求出它们的大小);在解决有关空间角的问题的过程中,进一步巩固关于直线和平面的平行垂直的性质与判定的应用,掌握作平行线(面)和垂直线(面)的技能;通过有关空间角的问题的解决,进一步提高学生的空间想象能力、逻辑推理能力及运算能力.
3.通过复习,使学生更好地掌握多面体与旋转体的有关概念、性质,并能够灵活运用到解题过程中.通过教学使学生掌握基本的立体几何解题方法和常用解题技巧,发掘不同问题之间的内在联系,提高解题能力.
4.在学生解答问题的过程中,注意培养他们的语言表述能力和“说话要有根据”的逻辑思维的习惯、提高思维品质.使学生掌握化归思想,特别是将立体几何问题转化为平面几何问题的思想意识和方法,并提高空间想象能力、推理能力和计算能力.
5.使学生更好地理解多面体与旋转体的体积及其计算方法,能够熟练地使用分割与补形求体积,提高空间想象能力、推理能力和计算能力.
四、双基透视
高考立体几何试题一般共有4道(选择、填空题3道, 解答题1道), 共计总分27分左右,考查的知识点在20个以内. 选择填空题考核立几中的计算型问题, 而解答题着重考查立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展.从历年的考题变化看, 以多面体和旋转体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题.
1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力.
2. 判定两个平面平行的方法:
(1)根据定义——证明两平面没有公共点;
(2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面;
(3)证明两平面同垂直于一条直线。
3.两个平面平行的主要性质:
⑴由定义知:“两平行平面没有公共点”。
⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。
⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那
么它们的交线平行”。
⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
⑸夹在两个平行平面间的平行线段相等。
⑹经过平面外一点只有一个平面和已知平面平行。
以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为“性质定理”,但在解题过程中均可直接作为性质定理引用。
4.空间的角和距离是空间图形中最基本的数量关系,空间的角主要研究射影以及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解决.
空间的角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系进行定量分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线所成的角
θ∈(0,],直线与平面所成的角θ∈,二面角的大小,可用它们的平面角来度量,其平面角θ∈(0,π].
对于空间角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的,因此求这些角的过程也是直线、平面的平行与垂直的重要应用.通过空间角的计算和应用进一步培养运算能力、逻辑推理能力及空间想象能力.
如求异面直线所成的角常用平移法(转化为相交直线);求直线与平面所成的角常利用射影转化为相交直线所成的角;而求二面角-l-的平面角(记作)通常有以下几种方法:
(1) 根据定义;
(2) 过棱l上任一点O作棱l的垂面,设∩=OA,∩=OB,则∠AOB=(图1);
(3) 利用三垂线定理或逆定理,过一个半平面内一点A,分别作另一个平面的垂线AB(垂足为B),或棱l的垂线AC(垂足为C),连结AC,则∠ACB= 或∠ACB=-(图2);
(4) 设A为平面外任一点,AB⊥,垂足为B,AC⊥,垂足为C,则∠BAC=或∠BAC=-(图3);
(5) 利用面积射影定理,设平面内的平面图形F的面积为S,F在平面内的射影图形的面积为S,则cos=.
图 1 图 2 图 3
5.空间的距离问题,主要是求空间两点之间、点到直线、点到平面、两条异面直线之间(限于给出公垂线段的)、平面和它的平行直线、以及两个平行平面之间的距离.
求距离的一般方法和步骤是:一作——作出表示距离的线段;二证——证明它就是所要求的距离;三算——计算其值.此外,我们还常用体积法求点到平面的距离.
6.棱柱的概念和性质
⑴理解并掌握棱柱的定义及相关概念是学好这部分知识的关键,要明确“棱柱 直棱柱 正棱柱”这一系列中各类几何体的内在联系和区别。
⑵平行六面体是棱柱中的一类重要的几何体,要理解并掌握“平行六面体 直平行六面体 长方体 正四棱柱 正方体”这一系列中各类几何体的内在联系和区别。
⑶须从棱柱的定义出发,根据第一章的相关定理对棱柱的基本性质进行分析推导,以求更好地理解、掌握并能正确地运用这些性质。
⑷关于平行六面体,在掌握其所具有的棱柱的一般性质外,还须掌握由其定义导出的一些其特有的性质,如长方体的对角线长定理是一个重要定理并能很好地掌握和应用。还须注意,平行六面体具有一些与平面几何中的平行四边形相对应的性质,恰当地运用平行四边形的性质及解题思路去解平行六面体的问题是一常用的解题方法。
⑸多面体与旋转体的问题离不开构成几何体的基本要素点、线、面及其相互关系,因此,很多问题实质上就是在研究点、线、面的位置关系,与《直线、平面、简单几何体》第一部分的问题相比,唯一的差别就是多了一些概念,比如面积与体积的度量等.从这个角度来看,点、线、面及其位置关系仍是我们研究的重点.多面体与旋转体的体积问题是《直线、平面、简单几何体》课程当中相对独立的课题.体积和面积、长度一样,都是度量问题.常用“分割与补形”,算出了这些几何体的体积.
7.欧拉公式:如果简单多面体的顶点数为V,面数F,棱数E,那么V+F-E=2.
计算棱数E常见方法:
(1)E=V+F-2;
(2)E=各面多边形边数和的一半;
(3)E=顶点数与共顶点棱数积的一半。
8.经纬度及球面距离
⑴根据经线和纬线的意义可知,某地的经度是一个二面角的度数,某地的纬度是一个线面角的度数,设球O的地轴为NS,圆O是0°纬线,半圆NAS是0°经线,若某地P是在东经120°,北纬40°,我们可以作出过P的经线NPS交赤道于B,过P的纬线圈圆O1交NAS于A,那么则应有:∠AO1P=120°(二面角的平面角) ,∠POB=40°(线面角)。
⑵两点间的球面距离就是连结球面上两点的大圆的劣弧的长,因此,求两点间的球面距离的关键就在于求出过这两点的球半径的夹角。
例如,可以循着如下的程序求A、P两点的球面距离。
线段AP的长 ∠AOP的弧度数 大圆劣弧AP的长
9.球的表面积及体积公式
S球表=4πR2 V球=πR3
⑴球的体积公式可以这样来考虑:我们把球面分成若干个边是曲线的小“曲边三角形”;以球心为顶点,以这些小曲边三角形的顶点为底面三角形的顶点,得到若干个小三棱锥,所有这些小三棱锥的体积和可以看作是球体积的近似值.当小三棱锥的个数无限增加,且所有这些小三棱锥的底面积无限变小时,小三棱锥的体积和就变成球体积,同时小三棱锥底面面积的和就变成球面面积,小三棱锥高变成球半径.由于第n个小三棱锥的体积=Snhn(Sn为该小三棱锥的底面积, hn 为小三棱锥高),所以V球=S球面·R=·4πR2·R=πR3.
⑵在应用球体积公式时要注意公式中给出的是球半径R,而在实际问题中常给出球的外径(直径).
⑶球与其它几何体的切接问题,要仔细观察、分析、弄清相关元素的位置关系和数量关系,选择最佳角度作出截面,以使空间问题平面化。
10.主要题型:
⑴以棱柱、棱锥为载体,考查线面平行、垂直,夹角与距离等问题。
⑵利用欧拉公式求解多面体顶点个数、面数、棱数。
⑶求球的体积、表面积和球面距离。解题方法:求球面距离一般作出相应的大圆,转化为平面图形求解。
五、注意事项
1. 须明确《直线、平面、简单几何体》中所述的两个平面是指两个不重合的平面。
2. 与“直线与直线平行”、“直线与平面平行”的概念一样“平面与平面平行”是
指“二平面没有公共点”。由此可知,空间两个几何元素(点、直线、平面称为空间三个几何元素)间“没有公共点”时,它们间的关系均称为“互相平行”。要善于运用平面与平面平行的定义所给定的两平面平行的最基本的判定方法和性质。
3.注意两个平行平面的画法——直观地反映两平面没有公共点,将表示两个平面的平行四边形画成对应边平行。两个平面平行的写法与线、线平行,线、面平行的写法一议,即将“平面平行于平面”,记为“∥”。
4.空间两个平面的位置关系有且只有“两平面平行”和“两平面相交”两种关系。
5.在明确“两个平行平面的公垂线”、“两个平行平面的公垂线段”、“两个平行平面的距离”的概念后,应该注意到,两平行平面间的公垂线段有无数条,但其长度都相等——是唯一确定的值,且两平行平面间的公垂线段,是夹在两平行平面间的所有线段中最短的线段,此外还须注意到,两平行平面间的距离可能化为“其中一个平面内的直线到另一个平面的距离”又可转化为“其中一个面内的一个点到另一个平面的距离。
6.三种空间角,即异面直线所成角、直线与平面所成角。平面与平面所成二面角。它们的求法一般化归为求两条相交直线的夹角,通常“线线角抓平移,线面角找射影,面面角作平面角”而达到化归目的,有时二面角大小出通过cos=来求。
7.有七种距离,即点与点、点到直线、两条平行直线、两条异面直线、点到平面、平行于平面的直线与该平面、两个平行平面之间的距离,其中点与点、点与直线、点到平面的距离是基础,求其它几种距离一般化归为求这三种距离,点到平面的距离有时用“体积法”来求。
六、范例分析
例1、⑴已知水平平面内的两条相交直线a, b所成的角为,如果将角的平分线绕着其顶点,在竖直平面内作上下转动, 转动到离开水平位值的处,且与两条直线a,b都成角,则与的大小关系是 ( )
A. 或 B. >或 <
C. > D. <
⑵已知异面直线a,b所成的角为70,则过空间一定点O,与两条异面直线a,b都成60角的直线有 ( )条.
A. 1 B. 2 C. 3 D. 4
⑶异面直线a,b所成的角为,空间中有一定点O,过点O有3条直线与a,b所成角都是60,则的取值可能是 ( ).
A. 30 B. 50 C. 60 D. 90
⑷一个凸多面体有8个顶点,①如果它是棱锥,那么它有 条棱, 个面;②如果它是棱柱,那么它有 条棱 个面.
分析与解答:
⑴ 如图1所示,易知直线上点A在平面上的射影是ι上的点B,过点B作BC⊥b,
则AC⊥b. 在Rt△OBC和Rt△OAC中,tg=,tg=.显然,AC>BC,
∴tan> tan,又、(0,,∴ >.故选C.
⑵如图2所示,过空间一点O分别作∥a,∥b, ι
则所求直线即为过点O且与都成60角的直线。
∵=110,∴∴将两对对顶角的平分线绕 图1
O点分别在竖直平面内转动,总能得到与 都成
60角的直线。故 过点 O与a,b都成60角的直线有4条,
70.从而选 D. O
⑶过点O分别作∥a,∥b,则过点O有三条直线与
a,b所成角都为60,等价于过点O有三条直线与 图2
所成角都为60,如图3示,如果或
则或,过 O点只有两条直线与 O
都成60角。如果=90,则,那么过点 O有四
条直线与所成角都为60。如果=60,则, 图 3
此时过点 O有三条直线与所成角都为60。其中一条
正是角的平分线.
⑷①如果它是棱锥,则是七棱锥,有14条棱,8个面②如果它是棱柱,则是四棱柱,有12条棱,6个面.
说明: 本组新题主要考查空间直线与直线、直线与平面、平面与平面间的位直关系,考查空间想象和转化能力,以及周密的分析问题和解决问题
例2、如图1,设ABC-ABC是直三棱柱,F是AB的中点,且
(1)求证:AF⊥AC; (2)求二面角C-AF-B的大小.
分析:先来看第1问,我们“倒过来”分析.如果已经证得AF⊥AC,则注意到因为AB=2AA=2a,ABC-ABC是直三棱柱,从而若设E是AB的中点,就有AE⊥AF,即AF⊥平面ACE.那么,如果我们能够先证明AF⊥平面ACE,则就可以证得AF⊥AC,而这由CE⊥平面AABB立得.
再来看第2问.为计算二面角C-AF-B的大小,我们需要找到二面角C-AF-B的平面角.由前面的分析知,CE⊥平面AABB,而AF⊥AE,所以,若设G是AF与AE的中点,则∠CGE即为二面角C-AF-B的平面角,再计算△CGE各边的长度即可求出所求二面角的大小.
解:(1)如图2,设E是AB的中点,连接CE,EA.由ABC-ABC是直三棱柱,知AA⊥平面ABC,而CE平面ABC,所以CE⊥AA,
∵AB=2AA=2a,∴AA=a,AA⊥AE,知AAFE是正方形,从而AF⊥AE.而AE是AC在平面AAFE上的射影,故AF⊥AC;
(2)设G是AB与A1E的中点,连接CG.因为CE⊥平面AABB,AF⊥AE,由三垂线定理,CG⊥AF,所以∠CGE就是二面角C-AF-B的平面角.∵AAFE是正方形,AA=a,
∴, ∴,
∴tan∠CGE=,∠CGE=,从而二面角C-AF-B的大小为。
说明:假设欲证之结论成立,“倒着”分析的方法是非常有效的方法,往往能够帮助我们迅速地找到解题的思路.《直线、平面、简单几何体》关于平行与垂直的问题都可以使用这种分析方法.但需要注意的是,证明的过程必须是“正方向”的,防止在证明过程中用到欲证之结论,从而形成“循环论证”的逻辑错误.
例3、 一条长为2的线段夹在互相垂直的两个平面、之间,AB与成45o角,与成角,过A、B两点分别作两平面交线的垂线AC、BD,求平面ABD与平面ABC所成的二面角的大小.
以CD为轴,将平 以AB为轴,将平
面BCD旋转至与 面ABD旋转至与
平面ACD共面 平面ABC共面
图 1 图 2 图 3
解法1、过D点作DE⊥AB于E,过E作EF⊥AB交BC于F(图1),连结DF,则∠DEF即为二面角D-AB-C的平面角.
为计算△DEF各边的长,我们不妨画出两个有关的移出图.在图2中,可计算得DE=1,EF=,BF==.在移出图3中,
∵ cosB==,
在△BDF中,由余弦定理:
DF 2=BD 2+BF 2-2BD BF cosB
=()2+()2 -2 =.
(注:其实,由于AB⊥DE,AB⊥EF,∴ AB⊥平面DEF,∴ AB⊥DF.
又∵ AC⊥平面, ∴ AC⊥DF. ∴ DF⊥平面ABC, ∴ DF⊥BC,即DF是Rt△BDC斜边BC上的高,于是由BC DF=CD BD可直接求得DF的长.)
在△DEF中,由余弦定理:
cos∠DEF===.
∴ ∠DEF=arccos.此即平面ABD与平面ABC所成的二面角的大小.
解法2、过D点作DE⊥AB于E,过C作CH⊥AB于H,则HE是二异面直线CH和DE的公垂线段,CD即二异面直线上两点C、D间的距离.运用异面直线上两点间的距离公式,得:
CD 2=DE 2+CH 2+EH 2-2DE CH cos (*)
(注:这里的是平面ABD与平面ABC所成的二面角的大小,当0< o≤90o, 亦即异面直线CH与DE所成的角;当90o< <180o,异面直线所成的角为180o- .)
∵ CD=DE=1,CH=,HE=,
从而算得 cos=, ∴ =arccos.
说明:(1)解空间图形的计算问题,首先要解决定位问题(其中最基本的是确定点在直线、点在平面上的射影),其次才是定量问题.画空间图形的“平面移出图”是解决定位难的有效方法,必须熟练掌握.
(2) 解法2具有普遍意义,特别是公式(*),常可达到简化运算的目的.
例4、如图1,直三棱柱ABC-ABC的各条棱长都相等,
D为棱BC上的一点,在截面ADC中,若∠ADC=,
求二面角D-AC 1-C的大小.
解:由已知,直三棱柱的侧面均为正方形, 图 7
∵ ∠ADC1=90o,即AD⊥C1D.又CC1⊥平面ABC,
∴ AD⊥CC1. ∴ AD⊥侧面BC1,∴ AD⊥BC, 图1
∴ D为BC的中点.
过C作CE⊥C1D于E,∵ 平面ADC1⊥侧面BC1,
∴ CE⊥平面ADC1.取AC1的中点F,连结CF,则CF⊥AC1.
连结EF,则EF⊥AC1(三垂线定理)
∴ ∠EFC是二面角D-AC1-C的平面角.
在Rt△EFC中,sin∠EFC=. ∵ BC=CC1=a
易求得 CE=,CF=.
∴ sin∠EFC=, ∴ ∠EFC=arcsin.
∴ 二面角D-AC1-C的大小为arcsin.
例5、已知PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.
(1)求证:MN⊥AB;
(2)设平面PDC与平面ABCD所成的二面角为锐角θ,问能否确定θ使直线MN是异
面直线AB与PC的公垂线?若能,求出相应θ的值;若不能,说明理由.
解:(1)∵PA⊥矩形ABCD,BC⊥AB,∴PB⊥BC,PA⊥AC,即△PBC和△PAC都是
以PC为斜边的直角三角形,,又M为AB的中点,
∴MN⊥AB.
(2)∵AD⊥CD,PD⊥CD.∴∠PDA为所求二面角的平面角,即∠PDA=θ.
设AB=a,PA=b,AD=d,则,
设PM=CM则由N为PC的中点,
∴MN⊥PC由(1)可知MN⊥AB,∴MN为
PC与AB的公垂线,这时PA=AD,∴θ=45°。
例6、 四棱锥P—ABCD的底面是边长为a的正方形,PB⊥面ABCD.
(1)若面PAD与面ABCD所成的二面角为60°,求这个四棱锥的体积;
(2)证明无论四棱锥的高怎样变化,面PAD与面PCD所成的二面角恒大于90°
解:(1)正方形ABCD是四棱锥P—ABCD的底面, 其面积
为从而只要算出四棱锥的高就行了.
面ABCD,
∴BA是PA在面ABCD上的射影.又DA⊥AB, ∴PA⊥DA,
∴∠PAB是面PAD与面ABCD所成的二面角的平面角,
∠PAB=60°.
而PB是四棱锥P—ABCD的高,PB=AB·tan60°=a,
.
(2)不论棱锥的高怎样变化,棱锥侧面PAD与PCD恒为全等三角形.
作AE⊥DP,垂足为E,连结EC,则△ADE≌△CDE,
是面PAD与面PCD所成的二面角的平面角.
设AC与DB相交于点O,连结EO,则EO⊥AC,
在
故平面PAD与平面PCD所成的二面角恒大于90°.
说明:本小题主要考查线面关系和二面角的概念,以及空间想象能力和逻辑推理能力, 具有一定的探索性, 是一道设计新颖, 特征鲜明的好题.
例7、如图,直三棱柱ABC-A1B1C1的底面ABC为等腰直角三角形,∠ACB=900,AC=1,C点到AB1的距离为CE=,D为AB的中点.
(1)求证:AB 1⊥平面CED;
(2)求异面直线AB1与CD之间的距离;
(3)求二面角B1—AC—B的平面角.
解:(1)∵D是AB中点,△ABC为等腰直角三角形,
∠ABC=900,∴CD⊥AB又AA1⊥平面ABC,∴CD⊥AA1.
∴CD⊥平面A1B1BA ∴CD⊥AB1,又CE⊥AB1,
∴AB1⊥平面CDE;
(2)由CD⊥平面A1B1BA ∴CD⊥DE
∵AB1⊥平面CDE ∴DE⊥AB1,
∴DE是异面直线AB1与CD的公垂线段
∵CE=,AC=1 , ∴CD=∴;
(3)连结B1C,易证B1C⊥AC,又BC⊥AC ,
∴∠B1CB是二面角B1—AC—B的平面角.
在Rt△CEA中,CE=,BC=AC=1,∴∠B1AC=600
∴, ∴,
∴ , ∴.
说明:作出公垂线段和二面角的平面角是正确解题的前提, 当然, 准确地作出应当有严格的逻辑推理作为基石.
例8、 如图,在三棱锥中,平面,,,D为BC的中点.
(1)判断AD与SB能否垂直,并说明理由;
(2)若三棱锥的体积为,且为 钝角,求二面角的平面角的正切值;
(3)在(Ⅱ)的条件下,求点A到平面SBC的距离.
解:(1)因为SB在底面ABC上的射影AB与AD不垂直,否则与AB=AC且D为BC的中点矛盾,所以AD与SB不垂直;
(2)设,则
解得 ,所以(舍),.
平面ABC,AB=AC,D为BC的中点
,
则是二面角S—BC—A的平面角.
在中,,
故二面角的正切值为4;
(3)由(2)知,平面SDA,所以平面SBC平面SDA,过点A作AESD,则AE平面SBC,于是点A到平面SBC的距离为AE,
从而即A到平面SBC的距离为.
例9、如图a—l—是120°的二面角,A,B两点在棱上,AB=2,D在内,三角形ABD是等腰直角三角形,∠DAB=90°,C在内,ABC是等腰直角三角形∠ACB=
(I) 求三棱锥D—ABC的体积;
(2)求二面角D—AC—B的大小;
(3)求异面直线AB、CD所成的角.
解: (1) 过D向平面做垂线,垂足为O,连强OA并延长至E.
为二面角a—l—的平面角..
是等腰直角三角形,斜边AB=2.又D到平面的距离DO=
(2)过O在内作OM⊥AC,交AC的反向延长线于M,连结DM.则AC⊥DM.∴∠DMO 为二面角D—AC—B的平面角. 又在△DOA中,OA=2cos60°=1.且
(3)在平在内,过C作AB的平行线交AE于F,∠DCF为异面直线AB、CD所成的角. 为等腰直角三角形,又AF等于C到AB的距离,即△ABC斜边上的高,
异面直线AB,CD所成的角为arctan
例10、在平面几何中有如下特性:从角的顶点出发的一条射线上任意一点到角两边的距离之比为定值。类比上述性质,请叙述在立体几何中相应地特性,并画出图形。不必证明。
类比性质叙述如下 :
解:立体几何中相应地性质:
⑴从二面角的棱出发的一个半平面内任意一点到二面角的两个面的的距离
之比为定值。
⑵从二面角的棱上一点出发的一条射线上任意一点到二面角的两个面
的距离之比为定值。
⑶在空间,从角的顶点出发的一条射线上任意一点到角两边的距离
之比为定值。
⑷在空间,射线上任意一点到射线、、的距离之比不变。
⑸在空间,射线上任意一点到平面、、的
距离之比不变。
说明:(2)——(5)还可以有其他的答案。
例11、已知圆锥的侧面展开图是一个半圆,它被过底面中心O1且平行于母线AB的平面所截,若截面与圆锥侧面的交线是焦参数(焦点到准线的距离)
为p的抛物线.
(1)求圆锥的母线与底面所成的角;
(2)求圆锥的全面积.
解: (1)设圆锥的底面半径为R,母线长为l,
由题意得:,
即,
所以母线和底面所成的角为
(2)设截面与圆锥侧面的交线为MON,其中O为截面与
AC的交点,则OO1//AB且
在截面MON内,以OO1所在有向直线为y轴,O为原点,建立坐标系,则O为抛物的顶点,所以抛物线方程为x2=-2py,点N的坐标为(R,-R),代入方程得
R2=-2p(-R),得R=2p,l=2R=4p.
∴圆锥的全面积为.
说明:将立体几何与解析几何相链接, 颇具新意, 预示了高考命题的新动向. 类似请思考如下问题:
一圆柱被一平面所截,截口是一个椭圆.已知椭圆的长轴长为5,短轴长为4,被截后几何体的最短侧面母
线长为1,则该几何体的体积等于 .
例12、在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,S D=,在线段SA上取一点E(不含端点)使EC=AC,截面CDE与SB交于点F。
(1)求证:四边形EFCD为直角梯形;
(2)求二面角B-EF-C的平面角的正切值;
(3)设SB的中点为M,当的值是多少时,能使△DMC
为直角三角形?请给出证明.
解:(1)∵ CD∥AB,AB平面SAB ∴CD∥平面SAB
面EFCD∩面SAB=EF,
∴CD∥EF ∵
又面
∴ 平面SAD,∴又
为直角梯形
(2)平面∥平面SAD
即为二面角D—EF—C的平面角
中
而且
为等腰三角形,
(3)当时,为直角三角形 .
,
平面平面.
在中,为SB中点,.
平面平面 为直角三角形。
例13、如图,几何体ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a, DC=a,F、G分别为EB和AB的中点.
(1)求证:FD∥平面ABC;
(2)求证:AF⊥BD;
(3) 求二面角B—FC—G的正切值.
解: ∵F、G分别为EB、AB的中点,
∴FG=EA,又EA、DC都垂直于面ABC, FG=DC,
∴四边形FGCD为平行四边形,∴FD∥GC,又GC面ABC,
∴FD∥面ABC.
(2)∵AB=EA,且F为EB中点,∴AF⊥EB ① 又FG∥EA,EA⊥面ABC
∴FG⊥面ABC ∵G为等边△ABC,AB边的中点,∴AG⊥GC.
∴AF⊥GC又FD∥GC,∴AF⊥FD ②
由①、②知AF⊥面EBD,又BD面EBD,∴AF⊥BD.
(3)由(1)、(2)知FG⊥GB,GC⊥GB,∴GB⊥面GCF.
过G作GH⊥FC,垂足为H,连HB,∴HB⊥FC.
∴∠GHB为二面角B-FC-G的平面角.
易求.
例14、如图,正方体ABCD—A1B1C1D1的棱长为1,
P、Q分别是线段AD1和BD上的点,
且D1P∶PA=DQ∶QB=5∶12.
(1) 求证PQ∥平面CDDC;
(2) 求证PQ⊥AD;
(3) 求线段PQ的长.
解:(1)在平面AD内,作PP∥AD与DD交于点P,在平面AC内,作
QQ1∥BC交CD于点Q,连结PQ.
∵ , ∴PP1QQ .?
由四边形PQQP为平行四边形, 知PQ∥PQ,而PQ平面CDDC,
所以PQ∥平面CDDC?
(2)AD⊥平面DDCC, ∴AD⊥PQ,?又∵PQ∥PQ, ∴AD⊥PQ.?
(3)由(1)知PQ PQ,
,而棱长CD=1. ∴DQ=. 同理可求得 PD=.
在Rt△PDQ中,应用勾股定理, 立得PQ=
.?
做为本题的深化, 我们提出这样的问题: P, Q分别是BD, 上的动点,试求的最小值, 请应用函数方法计算, 并与如下2002年全国高考试题做以对照, 可以得到一些启示。
如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直。点M在AC上移动,点N在BF上移动,若CM=BN=
(1) 求MN的长;
(2) 当为何值时,MN的长最小;
(3) 当MN长最小时,求面MNA与面MNB所成的二面角的大小。
立体几何知识是复课耗时较多, 而考试得分偏底的题型. 只有放底起点, 依据课本, 熟化知识, 构建空间思维网络, 掌握解三角形的基本工具, 严密规范表述, 定会突破解答立几考题的道道难关.
例15、(2004年北京春季高考题)如图,
四棱锥的底面是边长为1的正方形,
SD垂直于底面ABCD,。
(I)求证;
(II)求面ASD与面BSC所成二面角的大小;
(III)设棱SA的中点为M,求异面直线DM与SB所成角的大小。
分析:本小题主要考查直线与平面的位置关系等基本知识,考查空间想象能力、逻辑思维能力和运算能力。
(I)证明:如图1
图1
底面ABCD是正方形
底面ABCD DC是SC在平面ABCD上的射影
由三垂线定理得
(II)解:底面ABCD,且ABCD为正方形
可以把四棱锥补形为长方体,如图2
面ASD与面BSC所成的二面角就是面与面所成的二面角,
又 为所求二面角的平面角
在中,由勾股定理得 在中,由勾股定理得
即面ASD与面BSC所成的二面角为
图2 图3
(III)解:如图3
是等腰直角三角形 又M是斜边SA的中点
面ASD,SA是SB在面ASD上的射影
由三垂线定理得 异面直线DM与SB所成的角为
例16、在边长为a的正三角形的三个角处各剪去一个四边形.这个四边形是由两个全等的直角三角形组成的,并且这三个四边形也全等,如图①.若用剩下的部分折成一个无盖的正三棱柱形容器,如图②.则当容器的高为多少时,可使这个容器的容积最大,并求出容积的最大值.
图① 图②
解: 设容器的高为x.则容器底面正三角形的边长为,
.
当且仅当 .
故当容器的高为时,容器的容积最大,其最大容积为
用导数的方法,三次函数的最值问题用导数求解最方便,不妨一试. 另外,本题的深化似乎与2002年全国高考文科数学压轴题有关. 类似的问题是:
某企业设计一个容积为V的密闭容器,下部是圆柱形,上部是半球形,当圆柱的底面半径r和圆柱的高h为何值时,制造这个密闭容器的用料最省(即容器的表面积最小).
七、强化训练
1.下列命题中错误的是 ( )
A.若一直线垂直于一平面,则此直线必垂直于这一平面内所有直线
B.若一平面经过另一平面的垂线,则两个平面互相垂直
C.若一条直线垂直于平面内的一条直线,则此直线垂直于这一平面
D.若平面内的一条直线和这一平面的一条斜线的射影垂直,则它也和这条斜线垂直
2.设α、β是不重合的两个平面,l和m是不重合的两条直线,那么α∥β的一个充分条件是( )
A.lα,mα,且l∥β,m∥β B.lα,mβ,且l∥m
C.l⊥α,m⊥β,且l∥m D.l∥α,m∥β,且l∥m
3.正方体ABCD-A1B1C1D1中,E、F分别是AB、BB1的中点,那么A1E和C1F所成的角是( )
A.60° B.arccos C.arcsin D.45°
4.下列四个命题:
(1)如果两个平面垂直于同一个平面,那么这两个平面平行;
(2)直线a∥平面α,直线b∥平面α,且a、b都在平面β内,则平面α∥平面β;
(3)一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角
必相等或互补;
(4)两个二面角的面分别对应平行时,它们的平面角相等或互补;
其中正确的有 ( )
A.0个 B.1个 C.2个 D.3个
5.从P点出发的三条射线PA、PB、PC两两成60°角,则PC与面PAB所成角的余弦值为( )
A. B. C. D.以上都不对
6. (2004年北京春季高考)一个圆锥的侧面积是其底面积的2倍,则该圆锥的母线与底面所成的角为 ( )
A. B. C. D.
7. (2004年北京春季高考)两个完全相同的长方体的长、宽、高分别为5cm,4cm,3cm,把它们重叠在一起组成一个新长方体,在这些新长方体中,最长的对角线的长度是( )
A. B. C. D.
8.球面上有3个点,其中任意两点的球面积距离都等于大圆周长的,经过这三点的小圆周长为4π,那么这个球的半径为 ( )
A.4 B.2 C.2 D.
9.正三棱锥底面边长为a,侧棱与底面所成角为60°,过底面一边作一截面使其与底面成
30°的二面角,则此截面面积为 ( )
A. B. C. D.以上答案都不对
10.二面角α—a—β的平面角为120°,在面α内,AB⊥a于B,AB=2在平面β内,CD⊥a
于D,CD=3,BD=1,M是棱a上的一个动点,则AM+CM的最小值为 ( )
A.2 B.2 C. D.2
11.如右图是一个无盖的正方体盒子展开后的平面图,A、B、C是展开图
上的三点,则在正方体盒子中,∠ABC的值为 ( )
A.180° B.120° C.60° D.45°
12.如图的多面体是过正四棱柱的底面ABCD的点A作载面
AB1C1D1而截得的,且BB1=DD1.已知截面AB1C1D1与
底面ABCD成30°的二面角,AB=1,
则这个多面体的体积为 ( )
A. B. C. D.
13.在三棱锥A—BCD中,P、Q分别是棱AC、BD上的点,连AQ、CQ、BP、DP、PQ,
若三棱锥A—BPQ、B—CPQ、C—DPQ的体积分别为6、2、8,则三棱锥A—BCD的
体积是 ( )
A.20 B.28 C.40 D.88
14.若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是 ( )
(A)三棱锥 (B)四棱锥 (C)五棱锥 (D)六棱锥
15.已知三棱锥中,顶点在底面的射影是三角形的内心,关于这个三棱锥有三个命题:①侧棱;②侧棱两两垂直;③各侧面与底面所成的二面角相等。其中错误的是 ( )
(A)①② (B)①③ (C)②③ (D)①②③
16.若一棱台上、下底面面积分别是和,它的中截面面积是,则 ( )
(A) (B) (C) (D)
17.两两相交的三个平面将空间分成___________个部分。
18.正四棱柱的底面边长为,高为,一蚂蚁从顶点出发,沿正四棱柱的表面爬到顶点,那么这只蚂蚁所走过的最短路程为_________。
19.正四棱锥的高与底面边长都是1,侧棱与底面所成的角是,则________。
20.在三棱锥的四个面中,直角三角形最多可以有_________个。
21.空间四边形中,,,分别是边上的点,且为平行四边形,则四边形的周长的取值范围是____________。
22.若的中点到平面的距离为,点到平面的距离为,则点到平面 的距离为_________。
23.三棱锥中,侧棱两两垂直,底面内一点到三个侧面的距离分别是,那么________。
24.直三棱柱中,,,是上的一点,则到截面的距离等于__________。
25.正四面体中,分别是的中点,那么与平面所成的角的大小为___________。
26.正三棱锥的底面边长为,侧棱,则二面角的大小是______。
27.设棱长为4的平行六面体的体积为,分别是棱
上的点,且,则三棱锥的体积_______。
28.一个透明密闭的正方体容器中,恰好盛有该容器一半容积的水,任意转动这个正方体,则水面在容器中的形状可以是:(1)三角形;(2)菱形;(3)矩形;(4)正方形;(5)正六边形。其中正确的结论是___________________。(把你认为正确的序号都填上)
29.在球面上有四个点P、A、B、C,如果PA、PB、PC两两互相垂直,且PA=PB=PC=a,
那么这个球面的表面积是 .
30.正三棱锥S—ABC的侧棱长为1,两条侧棱的夹角为45°,过顶点A作一截面交SB于D,交SC于E,则△ADE的周长的最长小值是 .
31.α,β是两个不同的平面,m , n 是平面α及β之外的两条不同直线,给出四个论断:
①m⊥n; ②α⊥β;③n⊥β; ④m⊥α,以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题 .
32.设是空间的不同直线或不同平面,且直线不在平面内,下列条件中能保证“若
,且”为真命题的是 (填所有正确条件的代号)
①x为直线,y,z为平面 ②x,y,z为平面
③x,y为直线,z为平面 ④x,y为平面,z为直线
⑤x,y,z为直线
33.三棱锥中,,其余棱长均为1。
(1)求证:;
(2)求三棱锥的体积的最大值。
34.直二面角中,分别是线段上的点(不包括端点),
且,。
(1)若与平面所成的角为,求的值;
(2)求函数的解析式及定义域、值域。
35. 如图,平面∩平面=MN,
二面角A-MN-B为60o,点A∈,
B∈,C∈MN,∠ACM=∠BCN=45o.
AC=1,
(1) 求点A到平面的距离;
(2) 求二面角A-BC-M的大小. 第35题图
36. 已知直三棱柱ABC-A1B1C1中,AB=AC,F为BB1上的一点,BF=BC=2a,
FB1=a.
(1) 若D为BC的中点,E为AD上不同于A、D的任一点,求证:EF⊥FC1;
(2) 若A1B1=3a,求FC1与平面AA1B1B所成角的大小.
37. 如图1,直角梯形ABCD中,∠BAD=∠D=90o,AD=CD=a,AB=2a,
将△ADC沿AC折起,使点D到D.
(1) 若二面角D-AC-B为直二面角(图2),求二面角D-BC-A的大小;
(2) 若二面角D-AC-B为60o(图3),求三棱锥D-ABC的体积.
图1 图2 图3
38.(’85广东)已知直三棱柱ABC-A1B1C1的侧棱AA1=4cm,
它的底面△ABC中有AC=BC=2cm,∠C=90o,E是AB的
中点.
(1) 求证:CE和AB1所在的异面直线的距离等于cm;
(2) 求截面ACB1与侧面ABB1A1所成的二面角的大小.
39.已知三棱锥P—ABC中,PC⊥底面ABC,AB=BC,
D、F分别为AC、PC的中点,DE⊥AP于E.
(1)求证:AP⊥平面BDE;
(2)求证:平面BDE⊥平面BDF;
(3)若AE∶EP=1∶2,求截面BEF分三棱锥
P—ABC所成两部分的体积比.
40.已知ABC—A1B1C1为正三棱柱,D是AC
的中点.
(Ⅰ)证明:AB1//平面DBC1;
(Ⅱ)若AB1⊥BC1,BC=2.
①求二面角D—BC1—C的大小;
②若E为AB1的中点,求三棱锥E—BDC1的体积.
41.在三棱柱ABC—A′B′C′中,四边形A′ABB′是菱形,四边形BCC′B′
矩形,C′B′⊥AB.
(Ⅰ)求证:平面CA′B⊥平面A′AB B′;
(Ⅱ)若C′B′=3,AB=4,∠ABB′=60O,求直线AC′与平面BCC′B′所成角以及三棱锥A—BB′C′的体积.
42、直三棱柱中,,,分别是棱、
上的点,且。
(1)求直三棱柱中的高及的长;
(2)动点在上移动,问在何位置时,的面积才能取得最小值。
43.一个正多面体各个面的内角和为,求它的面数、顶点数和棱数。
八、参考答案
1-5.CCBBB; 6-10.CCBCC; 11-15.CDCDA; 16.C
17.6,7,8; 18.; 19.; 20.4个; 21.;
22.2或14; 23.7 ; 24. ; 25.;26.;
27.; 28.(2)(3)(4)(5); 29. ; 30.
31. ①m⊥n ③n⊥β ④m⊥α②α⊥β(或②α⊥β③n⊥β④m⊥α①m⊥n)
32. ①③④
33.解:(1)取中点,∵与均为正三角形,∴,
∴平面。
(2)当平面时,三棱锥的高为,此时。
34.解:(1)作于,则平面,∴,。
,,由。
(2)函数解析式,定义域,值域.
35. (1); (2)arctan(提示:求出点A在平面 的射影到直线BC的距离为).
36. (2) arcsin.
37. (1) 45o; (2).
38. (3) arccos.
39.解: (1)∵PC⊥底面ABC,BD平面ABC,∴PC⊥BD.
由AB=BC,D为AC的中点,得BD⊥AC.又PC∩AC=C,∴BD⊥平面PAC. 又PA平面、PAC,∴BD⊥PA.由已知DE⊥PA,DE∩BD=D,∴AP⊥平面BDE.
(2)由BD⊥平面PAC,DE平面PAC,得BD⊥DE.由D、F分别为AC、PC的中点,得DF//AP.
由已知,DE⊥AP,∴DE⊥DF. BD∩DF=D,∴DE⊥平面BDF.
又DE平面BDE,∴平面BDE⊥平面BDF.
(3)设点E和点A到平面PBC的距离分别为h1和h2.则
h1∶h2=EP∶AP=2∶3,
故截面BEF分三棱锥P—ABC所成两部分体积的比为1∶2或2∶1
说明:值得注意的是, “截面BEF分三棱锥P—ABC所成两部分的体积比”并没有说明先后顺序, 因而最终的比值答案一般应为两个,不要犯这种“会而不全”的错误.
40.解:(Ⅰ)连结CB1交BC1于O,连结OD
(Ⅱ)①
②
41.(Ⅰ)证明 在三棱柱ABC—A′B′C′中,C′B′//CB,
∵C′B′⊥AB,∴CB⊥AB.
又四边形BCC′B′是矩形,CB⊥B′B,∴CB⊥平面A′AB B′.
而CB平面CA′B ,故平面CA′B⊥平面A′A B B′.
(Ⅱ)解 过A作AH⊥BB′于H,连C′H.
∵CB⊥平A′AB B′,CB平面BC C′B′,
∴平面BCC′B′⊥平面A′AB B′.
∴AH⊥平面BCC′B′.
∴∠AC′H为AC′与平面BCC′B′所成的角.
连结A′B交于A′B于O,由四边形A′ABB′是菱形,ABB′=60O,
可知△ABB′为等边三角形, AB′=AB =4,而H为BB中点,于是AH=2
在Rt△C′B′A中,
AC′=,
在Rt△AH C′中,
故直线AC′与平面BCC′B′所成的角为
又AH⊥平面BCC′B′.
∴点A到平面BCC′的距离即为AH=2.
= .
42.答案:(1),。
(2)即当与重合时,的面积才能取得最小值。
43.解:由题意设每一个面的边数为,则,∴,
∵,∴,将其代入欧拉公式,得,设过每一个顶点的棱数为,则,得,即(1),
∵,∴,又,
∴的可能取值为,,,
当或时(1)中无整数解;
当,由(1)得,
∴, ∴,
综上可知:,,.
C
A
B
C1
C
B1
B
A
D
D1
P
C
B
A
N
⌒
⌒
⌒
⌒
⌒
A
B
C
D
M
N
N
M
C
B
A
M
D
C
B
A
B
P
O
α
β
γ
A
图
B
A
C
O
PAGE
25