人教B版选修2-3独立重复试验与二项分布

文档属性

名称 人教B版选修2-3独立重复试验与二项分布
格式 rar
文件大小 203.9KB
资源类型 教案
版本资源 人教新课标B版
科目 数学
更新时间 2010-08-30 19:40:00

图片预览

文档简介

课件19张PPT。独立重复试验与二项分布说课流程教材分析教学目标教法与学法分析过程与设计意图评价分析教 材 分 析(一)教材的地位与作用
概率:随机现象规律本节:独立重复试验 —— 二项分布两点分布
超几何分布基础:离散型随机变量的分布条件概率、事件相互独立性下节:离散型随机变量的期望与方差.选修2-3第二章第二单元
第三课时 (人教A版)(二)教学重点 难点
重点: 独立重复试验、二项分布的理解及应用
二项分布模型解决一些简单的实际问题难点: 二项分布模型的构建关键:二项分布的特征.教 学 目 标2.过程与方法:3.情感态度与价值观:1.知识与技能: 独立重复试验模型
理解:
二项分布.
培养:自主学习能力、数学建模能力通过主动探究、自主合作、相互交流,从具体事例中归纳出数学概念,使学生充分体验知识的发现过程,并渗透由特殊到一般,由具体到抽象的数学思想方法实际问题.使学生体会数学的理性与严谨,了解数学来源于实际,应用于实际的唯物主义思想,培养学生对新知识的科学态度,勇于探索和敢于创新的精神。教法与学法分析初步掌握概率与统计的知识; 学习了离散型随机变量的分布; 研究了两点分布、超几何分布; 理解了条件概率、相互独立事件.最 近 发 展 区1.学情分析:已具有一定的归纳、抽象的能力 不足:比较畏惧有实际背景的数学应用问题;分析问题、解决问题的能力比较薄弱 ;数学建模能力不足。 教法: 诱思探究教学法 加强参与性注重分析与归纳2.教法与学法分析:教学思想:学生为主体,教师为主导,问题为主轴,训练为主线,思维为主攻 教学流程图教学设计第一组有八组数,每组仅由01或10
构成,同学们至少猜对四组数
字为胜,否则老师胜。(一)创设情景,导入新课 问题: 前一次猜测的结果是否影响后一次的猜测?也就是每次猜测是否相互独立? 游戏对双方是否公平?第二组第三组第四组第五组第六组第七组第八组0101100110011010教学设计问题1 求“重复抛一枚硬币 5 次,其中有3次正面向上” 的概
率.问题2 求“重复掷一粒骰子3次,其中有2次出现 1 点的概率.学生归纳:各次试验的结果不会受其它次试验影响(二)师生互动,探究新知 教学设计设计说明
从探究游戏中的第二个问题入手,引导学生合作探索新知识,符合“学生为主体,老师为主导”的现代教育观点,也符合学生的认知规律。同时突出本节课重点,也突破了难点。 此游戏是否可以看成是独立重复试验?
游戏中,我们用X表示猜对的组数,下面
分组探讨X的取值和相应的概率,完成下表。对每组数
猜对的概率均为p= ;
猜错的概率为q=1-p= 。 组织教学:
分小组合作、讨论、交流.,再以组为单位得出结论
教学设计学生归纳:设AK表示“第K次猜对”的事件;B表示“共猜对K次”的事件(K=1,2,3…8)2.若有 n组数,猜对组次X=k的概率为
P(X=k)= .1.回答游戏中的问题2(是否公平)教学设计 在n次独立重复试验中,设事件A发生的次数为X ,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k 次的概率为
则称随机变量X服从二项分布,
记作 X?B(n,p),也叫Bernolli分布。总结(二项分布定义): 设计说明
完成上面的表格,学生通过归纳,定义自然就出来了。定义的处理:
1.二项分布的背景;
2.事件A只有发生(概率p)和不发生(概率1-p)两种情况;
3.随机变量X的含义;
4.公式的记忆;(从为什么叫二项分布出发)教学设计2.思考:二项分布与两点分布有何关系?
和超几何分布呢?(P68 B组第3题)1.练习:某射手每次射击击中目标的概率是0.8 。求这名射手在10次射击中,
(1)恰有8次击中目标的概率;
(2)至少有2次击中目标的概率;
(3)射中目标的次数X的分布列.
(结果保留两个有效数字)(4)要保证击中目标概率大于0.99,至少应射击多少次? 设计说明
练习的(1)、(2)问为课本的例题(3)、(4)问有助于学生更深刻地理解二项分布。
通过几种分布的类比,加深学生对二项分布的理解。教学设计(三)解决练习,巩固新知 1.将一枚硬币连续抛掷5次,则正面向上的次数X的分布为(  )
A X~B ( 5,0.5 )  B X~B (0.5,5 )
C X~B ( 2,0.5 )  D X~B ( 5,1 )
2.随机变量X~B ( 3, 0.6 ) ,P ( X=1 ) =(   )
A 0.192 B 0.288 C 0.648 D 0.254
3.某人考试,共有5题,解对4题为及格,若他解一道题正确率为0.6,则他及格概率(  )

A B C D
4.某人掷一粒骰子6次,有4次以上出现 5点或6点时为赢,则这人赢的可能性有多大? 设计说明
通过一组精心设计的问题链来引导和激发学生的参与意识、创新意识,培养探究问题的能力,提升思维的层次。在解决问题的过程中,激发学生的研究兴趣,培养学生的科学理性精神,体会交流、合作和竞争等现代意识。教学设计(四)课堂小结,感悟收获 (1)知识小结:
独立重复试验、两个对立的结果、每次试验中事件A发生的概率相同 、n次试验事件A发生k次(2)能力总结:
① 分清事件类型;
② 转化复杂问题为基本的互斥事件与相互独立事件.(3)思想、方法:
① 分类讨论、归纳与演绎的方法;
② 辩证思想. 教学设计(五)课外探究,巩固提高 1)书面作业:P68 A组2,3 ;B组 1,3
2)阅读作业: 教材本节P67探究与发现;课外探究:“三个臭皮匠能顶一个诸葛亮”吗? 刘备帐下以诸葛亮为首的智囊团共有9名谋士(不包括诸葛亮),假定对某事进行决策时,每名谋士贡献正确意见的概率为0.7,诸葛亮贡献正确意见的概率为0.85.现为此事可行与否而征求每名谋士的意见,并按多数人的意见作出决策,求作出正确决策的概率.评价分析1、教学中注重利用“延时评价”,尊重学生的个体差异,让学生发表自己的看法,从而调动、活跃学生的思维,提高学生学习数学的自信心.
2、通过观察与学生交流,采用肯定、赞扬、欣赏等鼓励性语言,激励和促进学生的发展.
3、通过游戏问题,鼓励学生大胆猜想,关注学生活动过程的表现,关注学生在活动中能否积极主动地参与讨论、发现、分析和解决问题。通过课堂练习环节,促进学生对概念本质的理解、巩固和应用,并反馈学生学习的效果.从而合理有效地调节课堂教学进程。
板 书 设 计