(新人教a版必修2)数学:3.1《直线的倾斜角和斜率》教案

文档属性

名称 (新人教a版必修2)数学:3.1《直线的倾斜角和斜率》教案
格式 rar
文件大小 36.4KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2010-09-08 09:53:00

图片预览

文档简介

本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
课题:直线的倾斜角和斜率(1)
课 型:新授课
教学目标:
知识与技能
1.正确理解直线的倾斜角和斜率的概念.
2.理解直线的倾斜角的唯一性.
3.理解直线的斜率的存在性.
4.斜率公式的推导过程,掌握过两点的直线的斜率公式.
情感态度与价值观
1.通过直线的倾斜角概念的引入学习和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学交流与评价能力.
2.通过斜率概念的建立和斜率公式的推导,帮助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.
重点与难点: 直线的倾斜角、斜率的概念和公式.
教学方法:启发、引导、讨论.
教学过程:
1.直线的倾斜角的概念
我们知道, 经过两点有且只有(确定)一条直线. 那么, 经过一点P的直线l的位置能确定吗 如图, 过一点P可以作无数多条直线a,b,c, …易见,答案是否定的.这些直线有什么联系呢
(1)它们都经过点P. (2)它们的‘倾斜程度’不同. 怎样描述这种‘倾斜程度’的不同
引入直线的倾斜角的概念:
当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°.
问: 倾斜角α的取值范围是什么 0°≤α<180°.
当直线l与x轴垂直时, α= 90°.因为平面直角坐标系内的每一条直线都有确定的倾斜程度, 引入直线的倾斜角之后, 我们就可以用倾斜角α来表示平面直角坐标系内的每一条直线的倾斜程度.
直线a∥b∥c, 那么它们的倾斜角α相等吗 答案是肯定的.所以一个倾斜角α不能确定一条直线.
确定平面直角坐标系内的一条直线位置的几何要素: 一个点P和一个倾斜角α.
2.直线的斜率:
一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是
k = tanα
⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0;
⑵当直线l与x轴垂直时, α= 90°, k 不存在.
由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在.
例如, α=45°时, k = tan45°= 1;
α=135°时, k = tan135°= tan(180°- 45°) = - tan45°= - 1.
学习了斜率之后, 我们又可以用斜率来表示直线的倾斜程度.
3.直线的斜率公式:
给定两点P1(x1,y1),P2(x2,y2),x1≠x2,如何用两点的坐标来表示直线P1P2的斜率
可用计算机作动画演示: 直线P1P2的四种情况, 并引导学生如何作辅助线,共同完成斜率公式的推导.(略) 斜率公式:
对于上面的斜率公式要注意下面四点:
(1) 当x1=x2时,公式右边无意义,直线的斜率不存在,倾斜角α= 90, 直线与x轴垂直;
(2)k与P1、P2的顺序无关, 即y1,y2和x1,x2在公式中的前后次序可以同时交换, 但分子与分母不能交换;
(3)斜率k可以不通过倾斜角而直接由直线上两点的坐标求得;
(4) 当 y1=y2时, 斜率k = 0, 直线的倾斜角α=0°,直线与x轴平行或重合.
(5)求直线的倾斜角可以由直线上两点的坐标先求斜率而得到.
4.例题:
例1 已知A(3, 2), B(-4, 1), C(0, -1), 求直线AB, BC, CA的斜率, 并判断它们的倾斜角是钝角还是锐角.
略解: 直线AB的斜率k1=1/7>0, 所以它的倾斜角α是锐角;21世纪教育网
直线BC的斜率k2=-0.5<0, 所以它的倾斜角α是钝角;
直线CA的斜率k3=1>0, 所以它的倾斜角α是锐角.
例2 在平面直角坐标系中, 画出经过原点且斜率分别为1, -1, 2, 及-3的直线a, b, c, l.
分析:要画出经过原点的直线a, 只要再找出a上的另外一点M. 而M的坐标可以根据直线a的斜率确定; 或者k=tanα=1是特殊值,所以也可以以原点为角的顶点,x 轴的正半轴为角的一边, 在x 轴的上方作
45°的角, 再把所作的这一边反向延长成直线即可.
略解: 设直线a上的另外一点M的坐标为(x,y),根据斜率公式有
1=(y-0)/(x-0),所以 x = y
可令x = 1, 则y = 1, 于是点M的坐标为(1,1).此时过原点和点M(1,1), 可作直线a.同理, 可作直线b, c, l.(用计算机作动画演示画直线过程)
5.练习: P86 1. 2. 3. 4.
课堂小结:
(1)直线的倾斜角和斜率的概念.
(2) 直线的斜率公式.
课后作业: P89 习题3.1 1. 2. 3.4
课后记:
课题:直线的倾斜角和斜率(2)
课 型:习题课
教学目标:
1.进一步加深理解直线的倾斜角和斜率的定义
2.已知直线的倾斜角,会求直线的斜率
3.已知直线的斜率,会求直线的倾斜角
4.培养学生分析探究和解决问题的能力.
教学重点:直线的倾斜角和斜率的应用
教学难点:斜率概念理解与斜率公式的灵活运用
教学过程
1.复习:1)说出倾斜角和斜率的概念,它们都反映了直线的什么牲特征?
2) 斜率的计算公式是什么?
2.巩固练习:
1)已知直线的倾斜角,口答直线的斜率:
(1) =0°;(2)=60°;(3) =90°;(4)150°
2).直线经过原点和点(-1,-1),则它的倾斜角是 21世纪教育网
3).过点P(-2,m)和Q(m,4)的直线的斜率等于1,则m的值为( )
A.1 B.4 C.1或3 D.1或4
4).已知A(2,3)、B(-1,4),则直线AB的斜率是 .
5).已知M(a,b)、N(a,c)(b≠c),则直线MN的倾斜角是 .
6).已知O(0,0)、P(a,b)(a≠0),直线OP的斜率是 .
7).已知,当时,直线的斜率 = ;当且时,直线的斜率为
3.例题分析:
例1.若三点,,共线,求的值
解:
说明:本题旨在让学生了解斜率也可研究直线的位置关系,为下节课的学习打基础
例2.如果直线经过A(-1,2m)、B(2,)二点,求直线的斜率K的取值范围。
例3.若直线的斜率为函数
例4.已知两点A(-3,4)、B(3,2),过点P(2,-1)的直线与线段AB有公共点.求直线的斜率k的取值范围.( k≤-1或k≥3)
4.提高练习
1.若直线过(-2,3)和(6,-5)两点,则直线的斜率为 ,倾斜角为
2.已知直线l1的倾斜角为1,则l1关于x轴对称的直线l2的倾斜角2为________.
3已知两点A(x,-2),B(3,0),并且直线AB的斜率为,则x=
4斜率为2的直线经过(3,5)、(a,7)、(-1,b)三点,则a、b的值是( )
A.a=4,b=0 B.a=-4,b=-3 C.a=4,b=-3 D.a=-4,b=3
5已知两点M(2,-3)、N(-3,-2),直线l过点P(1,1)且与线段MN相交,则直线的斜率k的取值范围是( )
A.k≥或k≤-4 B.-4≤k≤ C. ≤k≤4 D.-≤k≤4
归纳小结:解题时,要重视数学思想方法的应用.
作业布置:完成全优设置相关练习.
课后记:
21世纪教育网
课题:两条直线的平行与垂直
课 型:新授课
教学目标:理解并掌握两条直线平行与垂直的条件,会运用条件判定两直线是否平行或垂直.
教学重点:两条直线平行和垂直的条件是重点,要求学生能熟练掌握,并灵活运用.
教学难点:启发学生, 把研究两条直线的平行或垂直问题, 转化为研究两条直线的斜率的关系问题.
注意:对于两条直线中有一条直线斜率不存在的情况, 在课堂上老师应提醒学生注意解决好这个问题.
教学过程:
(一)先研究特殊情况下的两条直线平行与垂直
上一节课, 我们已经学习了直线的倾斜角和斜率的概念, 而且知道,可以用倾斜角和斜率来表示直线相对于x轴的倾斜程度, 并推导出了斜率的坐标计算公式. 现在, 我们来研究能否通过两条直线的斜率来判断两条直线的平行或垂直.
讨论: 两条直线中有一条直线没有斜率, (1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,它们互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.
(二)两条直线的斜率都存在时, 两直线的平行与垂直
设直线 L1和L2的斜率分别为k1和k2. 我们知道, 两条直线的平行或垂直是由两条直线的方向决定的, 而两条直线的方向又是由直线的倾斜角或斜率决定的. 所以我们下面要研究的问题是: 两条互相平行或垂直的直线, 它们的斜率有什么关系
首先研究两条直线互相平行(不重合)的情形.如果L1∥L2(图1-29),那么它们的倾斜角相等:α1=α2.(借助计算机, 让学生通过度量, 感知α1, α2的关系)
∴tgα1=tgα2.
即  k1=k2.
反过来,如果两条直线的斜率相等: 即k1=k2,那么tgα1=tgα2.
由于0°≤α1<180°,  0°≤α<180°,
∴α1=α2.
又∵两条直线不重合,
∴L1∥L2.
结论: 两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即
注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2; 反之则不一定.
下面我们研究两条直线垂直的情形.
如果L1⊥L2,这时α1≠α2,否则两直线平行.
设α2<α1(图1-30),甲图的特征是L1与L2的交点在x轴上方;乙图的特征是L1与L2的交点在x轴下方;丙图的特征是L1与L2的交点在x轴上,无论哪种情况下都有21世纪教育网
α1=90°+α2.
因为L1、L2的斜率分别是k1、k2,即α1≠90°,所以α2≠0°.

可以推出 : α1=90°+α2. L1⊥L2.
结论: 两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即
注意: 结论成立的条件. 即如果k1·k2 = -1, 那么一定有L1⊥L2; 反之则不一定.
例题分析:
例1  已知A(2,3), B(-4,0), P(-3,1), Q(-1,2), 试判断直线BA与PQ的位置关系, 并证明你的结论.
解: 直线BA的斜率k1=(3-0)/(2-(-4))=0.5,
直线PQ的斜率k2=(2-1)/(-1-(-3))=0.5,[21世纪教育网
因为 k1=k2=0.5, 所以 直线BA∥PQ.
例2.已知四边形ABCD的四个顶点分别为A(0,0), B(2,-1), C(4,2), D(2,3), 试判断四边形ABCD的形状,并给出证明.
例3.已知A(-6,0), B(3,6), P(0,3), Q(-2,6), 试判断直线AB与PQ的位置关系.
解: 直线AB的斜率k1= (6-0)/(3-(-6))=2/3,
直线PQ的斜率k2= (6-3)(-2-0)=-3/2,
因为 k1·k2 = -1 所以 AB⊥PQ.
例4.已知A(5,-1), B(1,1), C(2,3), 试判断三角形ABC的形状.
分析: 借助计算机作图, 通过观察猜想: 三角形ABC是直角三角形, 其中AB⊥BC, 再通过计算加以验证.(图略)
课堂练习
P89 练习 1. 2.
归纳小结:
(1)两条直线平行或垂直的真实等价条件;
(2)应用条件, 判定两条直线平行或垂直.
(3)应用直线平行的条件, 判定三点共线.
作业布置:P89-90 习题3.1:A组 5. 8;
课后记:
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网