一次函数图象的应用(二)

文档属性

名称 一次函数图象的应用(二)
格式 rar
文件大小 407.4KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2010-09-11 22:37:00

图片预览

文档简介

课件24张PPT。一次函数图象的应用(二)
平和广兆中学一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?(1)农民自带的零钱是多少?(2)试求降价前y与x之间的关系式(3)由表达式你能求出降价前每千克的
土豆价格是多少?例 小聪和小慧去某风景区游览,约好在“飞瀑”见面,上午7:00小聪乘电动汽车从“古刹”出发,沿景区公路去“飞瀑”,车速为36km/h,小慧也于上午7:00从“塔林”出发,骑电动自行车沿景区公路去“飞瀑”,车速为26km/h。
(1)当小聪追上小慧时,他们是否已经过了“草甸”?
(2)当小聪到达“飞瀑”时,小慧离“飞瀑”还有多少km?10km10km25km例 小聪和小慧去某风景区游览,约好在“飞瀑”见面,上午7:00小聪乘电动汽车从“古刹”出发,沿景区公路去“飞瀑”,车速为36km/h,小慧也于上午7:00从“塔林”出发,骑电动自行车沿景区公路去“飞瀑”,车速为26km/h。
(1)当小聪追上小慧时,他们是否已经过了“草甸”?
(2)当小聪到达“飞瀑”时,小慧离“飞瀑”还有多少km?分析:⑴两个人是否同时起步? ⑷如果用S表示路程,t表示时间,那么他们的函数解析式是一样?他们各自的解析式分别是什么?小聪的解析式为小慧的解析式为S1=36tS2=26t+10⑶这个问题中的两个变量是什么?它们涉及的是什么函数关系?⑵在两个人到达之前所用时间是否相同?所行驶的路程是否相同?出发地点是否相同?两个人的速度各是多少?例 小聪和小慧去某风景区游览,约好在“飞瀑”见面,上午7:00小聪乘电动汽车从“古刹”出发,沿景区公路去“飞瀑”,车速为36km/h,小慧也于上午7:00从“塔林”出发,骑电动自行车沿景区公路去“飞瀑”,车速为26km/h。
(1)当小聪追上小慧时,他们是否已经过了“草甸”?
(2)当小聪到达“飞瀑”时,小慧离“飞瀑”还有多少km?当小聪追上小慧时,说明他们两个人的什么量是相同的?是否已经过了“草甸”该用什么量来表示?你会选择用哪种方式来解决?图象法?还是解析法?想一想:例 小聪和小慧去某风景区游览,约好在“飞瀑”见面,上午7:00小聪乘电动汽车从“古刹”出发,沿景区公路去“飞瀑”,车速为36km/h,小慧也于上午7:00从“塔林”出发,骑电动自行车沿景区公路去“飞瀑”,车速为26km/h。
(1)当小聪追上小慧时,他们是否已经过了“草甸”?
(2)当小聪到达“飞瀑”时,小慧离“飞瀑”还有多少km?解:设经过t时,小聪与小慧离“古刹”的路程分别为S1、S2,
由题意得:S1=36t, S2=26t+10将这两个函数解析式画在同一个直角坐标系上,观察图象,得36S1=36tS2=26t+10⑴两条直线S1=36t, S2=26t+10的交点坐标为(1,36)这说明当小聪追上小慧时,S1=S2=36 km,即离“古刹”36km,已超过35km,也就是说,他们已经过了“草甸”例 小聪和小慧去某风景区游览,约好在“飞瀑”见面,上午7:00小聪乘电动汽车从“古刹”出发,沿景区公路去“飞瀑”,车速为36km/h,小慧也于上午7:00从“塔林”出发,骑电动自行车沿景区公路去“飞瀑”,车速为26km/h。
(1)当小聪追上小慧时,他们是否已经过了“草甸”?
(2)当小聪到达“飞瀑”时,小慧离“飞瀑”还有多少km?S1=36tS2=26t+1042.5⑵当小聪到达“飞瀑”时,即S1=45km,此时S2=42.5km。
所以小慧离“飞瀑”还有45-42.5=2.5(km)思考:用解析法如何求得这两个问题的结果?例 如图,l1反映了某公司产品的销售收入与销售量的关系,(1)当销售量为2吨时,销售收入=    元,
   销售成本=    元;2000l2l13000    l2反映了该公司产品的销售成本与销售量的关系,根据图意填空:(2)当销售量为6吨时,销售收入=    元,
   销售成本=    元;60005000(3)当销售量为  时,销售收入等于销售成本;4吨(4)当销售量    时,该公司赢利(收入大于成本);
  当销售量    时,该公司亏损(收入小于成本);大于4吨小于4吨(5) l1对应的函数表达式是        ,
   l2对应的函数表达式是        。y=1000xy=500x+2000 例2  我边防局接到情报,近海处有一可疑船只A正向公海方向行驶。边防局迅速派出快艇B追赶(如下图),海
岸公
海下图中l1 ,l2分别表示两船相对于海岸的距离s(海里)
与追赶时间t(分)之间的关系。根据图象回答下列问题:(1)哪条线表示B到海岸的距离与追赶时间之间的关系?解:观察图象,得当t=0时,B距海岸0海里,即
                S=0,故l1表
                示B到海岸的距
                离与追赶时间之
                间的关系;(2)A,B哪个速度快?从0增加到10时, l2的纵坐标增加了2,而l1的纵坐标增加了5,即10分内,A行驶了2海里,B行驶了5海里,所以B的速度快。(3)15分内B能否追上A?l1l2延长l1,l2,     可以看出,当t=15时,l1上对应点在l2
上对应点的下方,这表明,15分时B尚未追上A。  如图l1 ,l2相交于点P。(4)如果一直追下去,那么B能否追上A?l1l2因此,如果一直追下去,那么B一定能追上A。P(5)当A逃到离海岸12海里的公海时,B将无法对其进行检查。照此速度,B能否在A逃入公海前将其拦截?l1l2P  从图中可以看出,l1与l1交点P的纵坐标小于12, 想一想你能用其他方法解决
上述问题吗?这说明在A逃入公海前,我边防快艇B能够追上A。5. 沙尘暴发生后,经过开阔荒漠时加速,经过乡镇、遇到防护林带区则减速,最终停止。某气象研究所观察一场沙尘暴从发生到结束的全过程,记录了风速y(km/h)随时间t(h)变化的图象(如图)
(1)??? 求沙尘暴的最大风速;
(2)????用恰当的方式表示沙尘暴风速y与时间t之间的关系。6. 如图,表示小王骑自行车和小李骑摩托车者沿相同的
路线由甲地到乙地行驶过程的函数图象,两地相距80千米,
请根据图象解决下列问题:
⑴⑷分别求出表示自行车和摩托车行驶过程的函数解析式,
并求出自变量x的取值范围.
复习、回顾:在运用一次函数解决实际问题时,首先判断问题中的两个变量之间是不是一次函数关系?当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果。谈本节课你有什么收获?作业:习题6.7