(苏教版必修3)数学:1.4.2《算法案例(2)》学案

文档属性

名称 (苏教版必修3)数学:1.4.2《算法案例(2)》学案
格式 rar
文件大小 27.6KB
资源类型 教案
版本资源 苏教版
科目 数学
更新时间 2010-09-14 08:28:00

图片预览

文档简介

本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
1.4.2 算法案例(2)
教学目标:
(1)理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析;
(2)基本能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序;
教学重点:理解辗转相除法与更相减损术求最大公约数的方法
教学难点:把辗转相除法与更相减损术的方法转换成程序框图与程序语言.
教学过程
一、问题情境
在初中,我们已经学过求最大公约数的知识,你能求出18与30的公约数吗?
我们都是利用找公约数的方法来求最大公约数,如果公约数比较大而且根据我们的观察又不能得到一些公约数,我们又应该怎样求它们的最大公约数?比如求8251与6105的最大公约数?这就是我们这一堂课所要探讨的内容.
二、算法设计思想:
1.辗转相除法:
例1.求两个正数8251和6105的最大公约数.
(分析:8251与6105两数都比较大,而且没有明显的公约数,如能把它们都变小一点,根据已有的知识即可求出最大公约数)
解:8251=6105×1+2146
显然8251和的2146最大公约数也必是2146的约数,同样
6105与2146的公约数也必是8251的约数,所以8251与6105的最大公约数也是6105与2146的最大公约数.
6105=2146×2+1813
2146=1813×1+333
1813=333×5+148
333=148×2+37
148=37×4+0
则37为8251与6105的最大公约数.
以上我们求最大公约数的方法就是辗转相除法.也叫欧几里德算法,它是由欧几里德在公元前300年左右首先提出的.利用辗转相除法求最大公约数的步骤如下:
第一步:用较大的数除以较小的数得到一个商和一个余数;
第二步:若,则为的最大公约数;若,则用除数除以余数得到一个商和一个余数;
第三步:若,则为的最大公约数;若,则用除数除以余数得到一个商和一个余数;
依次计算直至,此时所得到的即为所求的最大公约数.
练习:利用辗转相除法求两数4081与20723的最大公约数
解:
21世纪教育网
2.更相减损术
我国早期也有解决求最大公约数问题的算法,就是更相减损术.
更相减损术求最大公约数的步骤如下:可半者半之,不可半者,副置分母之数,以少减多,更相减损,求其等也,以等数约之.
翻译出来为:
第一步:任意给出两个正数;判断它们是否都是偶数.若是,用2约简;若不是,执行第二步.
第二步:以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数.继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数.
例2. 用更相减损术求98与63的最大公约数.
解:
练习:用更相减损术求两个正数84与72的最大公约数.
[来源:21世纪教育网]
3.比较辗转相除法与更相减损术的区别21世纪教育网[来源:21世纪教育网]
(1)都是求最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显.
(2)从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到.
三. 辗转相除法的流程图及伪代码
利用辗转相除法与更相减损术的计算算法,我们可以设计出程序框图以及BSAIC程序来在计算机上实现辗转相除法与更相减损术求最大公约数,下面由同学们设计相应框图并相互之间检查框图与程序的正确性,并在计算机上验证自己的结果.
(1)辗转相除法的程序框图及程序
程序框图:
伪代码:
21世纪教育网
用较大的数除以较小的数,得到除式,直到.
四、回顾小结:
1.辗转相除法与更相减损术中蕴含的数学原理及算法语言的表示;
2.函数的含义.
五、课外作业:
课本第31页第2 ;课本第35页第13.
w.w.w.k.s.5.u.c.o.m
www.
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网