(苏教版必修3)数学:2.2《总体分布的估计(1)》学案

文档属性

名称 (苏教版必修3)数学:2.2《总体分布的估计(1)》学案
格式 rar
文件大小 132.1KB
资源类型 教案
版本资源 苏教版
科目 数学
更新时间 2010-09-14 08:27:00

图片预览

文档简介

本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
第4课时:总体分布的估计(一)
【目标引领】
1. 学习目标:
体会分布的意义和作用,学会列频率分布表,会画频率分布条形图、直方图,会用频率分布表或分布条形图、直方图估计总体分布,并作出合理解释。在解决问题过程中,进一步体会用样本估计整体的思想,认识统计的实际作用,初步经历收集数据到统计数据的全过程,体会统计思维与确定性思维的差异。
2. 学法指导:
当总体中的个体取不同数值很少时,可用频率分布表或频率分布条形图估计总体分布;当总体中的个体取不同数值较多,甚至无限时,可用频率分布表或频率分布直方图估计总体分布。
【教师在线】
1. 解析视屏:
(1) 频率分布表:当总体很大或不便于获得时,可以用样本的频率分布来估计总体的频率分布。我们把反映总体频率分布的表格为频率分布表。
(2) 编制频率分布表的步骤:
① 求全距,决定组数和组距,组距=;
② 分组,区间一般左闭右开(为了遵循统计分组穷尽和互斥原则,所以统计上规定,凡是总体某一个单位的变量值是相邻两组的界限值,这一个单位归入作为下限值的那一组内,即所谓“上限不在内”原则);
⑶ 登记频数,计算频率,列出频率分布表。
(3) 条形图:条形图是用宽度相同的条形的高度或长度来表示数据变动的图形。条形图可以横置也可以纵置,纵置时又称为柱形图,也就是说,当各类别放在纵轴时,称为条形图;当各类别放在横轴时,称为柱形图。
(4) 频率分布直方图:直方图是用矩形的宽度和高度来表示频率分布的图形(在平面直角坐标中,横轴表示数据分组,即各组组距,纵轴表示频率)。
(5)直方图与条形图的不同点:
① 条形图是用条形的长度表示各类别频数的多少,其宽度(表示类别)是固定的;直方图是用面积表示各组频率的多少,矩形的高度表示每一组的频率除以组距,宽度则表示各组的组距,因此其高度与宽度均有意义。
② 此外,由于分组数据具有连续性,直方图的各矩形通常是连续排列,而条形图则是分开排列。
2. 经典回放:
例1 :为检测某产品的质量,抽取了一个容量为30的样本,检测结果为一级品5件,二级品8件,三级品13件,次品4件。
⑴列出样本的频率分布表;
⑵此种产品为二级品或三级品的概率?
⑶能否画出样本分布的条形图?
分析:当总体中的个体取不同数值很少时,可用频率分布表或频率分布条形图估计总体分布。解:频率分布表如下:
产品 频数 频率
一级品 5 0.17
二级品 8 0.27
三级品 13 0.43
次品 4 0.13
合计 30 1
频率分布条形图:
点评:频率分布表中通常有频数、累计频数,频率、累计频率等。其中所有频数的和即样本容量的大小,而所有频率的和恰好为1。
例2:为了了解某地区高三学生的身体发育情况,抽查了地区内100名年龄为17.5岁~18岁的男生的体重情况,结果如下(单位:kg)
56.5 69.5 65 61.5 64.5 66.5 64 64.5 76 58.5
72 73.5 56 67 70 57.5 65.521世纪教育网 68 71 75
62 68.5 62.5 66 59.5 63.5 64.521世纪教育网 67.5 73 68
55 72 66.5 74 63 60 55.5 70 64.5 58
64 70.5 57 62.5 65 69 71.5 73 62 58
76 71 66 63.5 56 59.5 63.5 65 70 74.5
68.5 64 55.5 72.5 66.5 68 76 57.5 60 71.5
57 69.5 74 64.5 59 61.5 67 68 63.5 58
59 65.5 62.5 69.5 72 64.5 75.5 68.5 64 62
65.5 58.5 67.5 70.5 65 66 66.5 70 63 59.5
试根据上述数据画出样本的频率分布直方图,并对相应的总体分布作出估计
解:按照下列步骤获得样本的频率分布.
(1)求最大值与最小值的差.在上述数据中,最大值是76,最小值是55,它们的差(又称为极差)是76—55=21)所得的差告诉我们,这组数据的变动范围有多大.
(2)确定组距与组数.如果将组距定为2,那么由21÷2=10.5,组数为11,这个组数适合的.于是组距为2,组数为11.
(3)决定分点.根据本例中数据的特点,第1小组的起点可取为54.5,第1小组的终点可取为56.5,为了避免一个数据既是起点,又是终点从而造成重复计算,我们规定分组的区间是“左闭右开”的.这样,所得到的分组是
[54.5,56.5),[56.5,58.5),…,[74.5,76.5).
(4)列频率分布表,如表① 频率分布表
分组 频数累计 频数 频率
[54.5,56.5) 2 2 0.02
[56.5,58.5) 8 6 0.06
[58.5,60.5) 18 10 0.10
[60.5,62.5) 28 10 0.10
[62.5,64.5) 42 14 0.14
[64.5,66.5) 58 16 0.16
[66.5,68.5) 71 13 0.13
[68.5,70.5) 82 11 0.11
[70.5,72.5) 90 8 0.08
[72.5,74.5) 97 7 0.07
[74.5,76.5) 100 3 0.03
合计 100 1.00
(5)绘制频率分布直方图.频率分布直方图如图所示
在得到了样本的频率后,就可以对相应的总体情况作出估计.例如可以估计体重在[64.5,66.5)kg的学生最多,约占学生总数的16%;体重小于58.5kg的学生较少,约占8%;等等
点评:由于图中各小长方形的面积等于相应各组的频率,这个图形的面积反映了数据落在各个小组的频率的大小.在反映样本的频率分布方面,频率分步表比较准确,频率分布直方图比较直观,它们起着相互补充的作用.
【同步训练】
1.在用样本频率估计总体分布的过程中,下列说法中正确的是( )
A.总体容量越大,估计越精确 B.总体容量越小,估计越精确C.样本容量越大,估计越精确 D.样本容量越小,估计越精确
2. 一个容量为n的样本,分成若干组,已知某数的频数和频率分别为50和0.25,则n=     .
3. 一个容量为32的样本,已知某组的样本的频率为0.25,则该组样本的频数为( )21世纪教育网
A.2 B.4 C.6 D.8
4.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( )
0.6小时 0.9小时
1.0小时 1.5小时
5.(江西卷)为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到5.0之间的学生数为b,则a, b的值分别为( )
A.0,27,78 B.0,27,83
C.2.7,78 D.2.7,83
6.用条形图表示下表中关注不同广告的人数、频率。
广告类型 人数 比例 频率%
商品广告 112 0.560 56
服务广告 51 0.255 25.521世纪教育网
金融广告 9 0.045 4.5
房地产广告 16 0.080 8
招生招聘广告 10 0.050 5
其他广告 2 0.010 1
合计 200 1.000 100
【拓展尝新】
7.下表给出了某学校120名12岁男生的身高统计分组与频数(单位:cm).
区间 [122,126) [126,130) [130,134) [134,138) [138,142) [142,146) [146,150) [150,154) [154,158)
人数 5 8 10 22 33 20 11 6 5
(1)列出样本的频率分布表(含累积频率);
(2)画出频率分布直方图;
(3)根据累积频率分布,估计小于134的数据约占多少百分比.
【解答】
1.C 2.200 3.B 4.B
5.A 6.解:人数分布条形图如下
频率分布条形图如下
7.解:(1)样本的频率分布表与累积频率表如下:
区间 [122,126) [126, 130) [130,134) [134,138) [138,142) [142,146) [146,150) [150,154) [154,158)
人数 5 8 10 22 33 20 11 6 5
频率
累积频率 1
(2)频率分布直方图如下:
(3)根据累积频率分布,小于134的数据约占.
w.w.w.k.s.5.u.c.o.m
www.
0.5
人数(人)
时间(小时)
20
10
5
0
1.0
1.5
2.0
15
0.3
0.1
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.0
5.1
5.2
视力
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网