高中苏教必修数学③综合水平测试
一、选择题
1.x←5
y←6
Print x+y
上面伪代码输出的结果是( )
A.x+y B.11 C.x+y=6 D.出错信息
答案:B
2.下列语言中,哪一个是输入语句( )
A.Print B.Read C.If D.Let
答案:B
3.下列事件中,不是随机事件的是( )
A.东边日出西边雨
B.下雪不冷化雪冷
C.清明时节雨纷纷
D.梅子黄时日日晴
答案:B
4.在一次数学测验中,某小组14名学生的成绩与全班的平均分85分的差分别是2,3,,,12,12,8,2,,4,,,5,5,那么这个小组的平均分约是( )
A.97.2分 B.87.29分
C.92.32分 D.82.86分
答案:B
5.从一批产品中取出三件产品,设{三件产品全不是次品}, {三件产品全是次品},{三件产品不全是次品},则下列结论正确的是( )
A.A与C互斥 B.B与C互斥
C.任何两个均互斥 D.任何两个均不互斥
答案:B
6.甲、乙两男生随意入住两间空房,则甲、乙两人各住一间房的概率是( )
A.13 B.14
C.12 D.无法确定
答案:C
7.现有以下两项调查:
①某装订厂平均每小时大约装订图书362册,要求检验员每小时抽取40册图书,检查其装订质量状况;
②某市有大型、中型与小型的商店共1500家,三者数量之比为1:5:9.为了调查全市商店每日零售额情况,抽取其中15家进行调查.
完成①、②这两项调查宜采用的抽样方法依次是( )21世纪教育网
A.简单随机抽样法,分层抽样法
B.分层抽样法,简单随机抽样法
C.分层抽样法,系统抽样法
D.系统抽样法,分层抽样法
答案:D[来源:21世纪教育网]
8.下列对一组数据的分析,不正确的说法是( )
A.数据全距越小,样本数据分布越集中、稳定
B.数据平均数越小,样本数据分布越集中、稳定
C.数据标准差越小,样本数据分布越集中、稳定
D.数据方差越小,样本数据分布越集中、稳定
答案:B
9. Read x
If x<0 then
Else if x>0 then
Else y←0
End if
Print y
如果输入,则输出结果y为( )
A. B.
C. D.
答案:B
10.同时转动如下图所示的两个转盘,记转盘甲得到的数为x,转盘乙得到的数为y,它们构成数对(x,y),则所有数对(x,y)中满足的概率为( )
A. B.
C. D.
答案:C
11.右图是由一个圆、一个三角形和一个长方形构成21世纪教育网
的组合图形,现用红、蓝两种颜色为其涂色,每个图
形只能涂一种颜色,则三个图形颜色不全相同的概率
为( )
A. B. C. D.
答案:A
12.在长为10的线段AB上任取一点P,并以线段AP为一条边作正方形,这个正方形的面积介于36到81之间的概率为( )
A. B. C. D.
答案:A
二、填空题
13.某地一月份的平均气温、降雨量、晴天天数 是事件,没有空气、水分,人也能生存是 事件,物体在只受重力情况下要自由下落是 事件.[来源:21世纪教育网]
答案:随机,不可能,必然
14.Read N
S←0
i←1
While i≤N
S←S+2i
i←i+1
End while
Print S
若输入变量N的值为3,则输出变量S的值为;若输出变量S的值为30,则变量N的值
为 .
答案:12,5
15.一个袋子中装有5个红球,3个白球,4个绿球,8个黑球,如果随机摸出一个球(保证等可能性),记A={摸出一个黑球},B={摸出白球},C={摸出绿球},D={摸出红球}.则 , , .
答案:0.4,0.15,0.45
16.两个数102、238的最大公约数是 .
答案:34
三、解答题
17.下表是某市灯泡厂某车间灯泡质量检查表:
抽取灯泡数
50
100
200
500
1000
2000
合格品
49
97
197
492
981
1964
合格品频率
请填写合格品频率表,观察频率表,估计这批灯泡合格品的概率是多少?
解:逐一将的值代入进行计算,填入下表:
抽取灯泡数
50
100
200
500
1000
2000
合格品
49
97
197
492
981
1964
合格品频率
0.98
0.97
0.985
0.984[来源:21世纪教育网]
0.981
0.982
观察可知,各频率值比较接近常数0.98,且在0.98附近摆动,且在0.98附近摆动,故估计这批灯泡合格品的概率为0.98.
18.从全校参加数学竞赛的学生的试卷中,抽取一个样本,考察竞赛的成绩分布,将样本分成5组,绘成频率分布直方图,图中从左到右各小组的长方形的高之比为1:3:6:4:2,最右边一组的频数是6.请结合直方图提供的信息,解答下列问题:
(1)样本容量是多少?
(2)成绩落在哪个范围内的人数最多?并求该小组的频数、频率;
(3)估计这次竞赛中,成绩高于60分的学生占总人数的百分比.
解:频率分布直方图中,
长方形的高之比面积之比频数之比频率之比.
(1)样本容量为;
(2)成绩落在内的人数最多,
频数为,频率为;
(3)成绩高于60分的学生占总人数的.
19.现有甲、乙、丙三人玩剪刀、石头、布的猜拳游戏,观察其出拳情况
(1)写出该事件的所有可能结果;
(2)事件“三人不分胜负”包含的可能结果有哪些?
解:以分别表示出剪刀、石头、布.()中分别表示甲出拳情况、乙出拳情况、两出情况.
该事件的所有可能结果有:
20.甲盒中有红,黑,白三种颜色的球各3个,乙盒子中有黄,黑,白三种颜色的球各2个,从两个盒子中各取1个球(每个球被取出的可能性相等).求取出的两个球是不同颜色的概率.
解:设,.则事件的概率为
,由于事件与事件是对立事件,所以事件的概率为.
21.给出50个数,1,2,4,7,11,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,…,以此类推. 要求计算这50个数的和.
(1)把流程图补充完整;
(2)根据流程图写出伪代码.
解:(1)①处应填;②处应填.
(2)伪代码如下:
While
End while
Print
22.(求的近似值可用如下公式:,直到第n项的值小于0.00001为止,最后一项不计入求和,然后求的近似值,写出伪代码,并画出流程图.
解:流程图如下: 伪代码如下:
While
End while
Print