(新人教a版必修4)数学:第三章复习课教案

文档属性

名称 (新人教a版必修4)数学:第三章复习课教案
格式 rar
文件大小 18.8KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2010-09-15 20:02:00

图片预览

文档简介

本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
《三角恒等变换》复习课(2个课时)
一、教学目标
进一步掌握三角恒等变换的方法,如何利用正、余弦、正切的和差公式与二倍角公式,对三角函数式进行化简、求值和证明:
二、知识与方法:
1. 11个三角恒等变换公式中,余弦的差角公式是其它公式的基础,由它出发,用-β代替β、±β代替β、α=β等换元法可以推导出其它公式。你能根据下图回顾推导过程吗?
21世纪教育网
21世纪教育网
2.化简,要求使三角函数式成为最简:项数尽量少,名称尽量少,次数尽量底,分母尽量不含三角函数,根号内尽量不含三角函数,能求值的求出值来;
3.求值,要注意象限角的范围、三角函数值的符号之间联系与影响,较难的问题需要根据上三角函数值进一步缩小角的范围。
4.证明是利用恒等变换公式将等式的左边变同于右边,或右边变同于,或都将左右进行变换使其左右相等。
5. 三角恒等变换过程与方法,实际上是对三角函数式中的角、名、形的变换,即(1)找差异:角、名、形的差别;(2)建立联系:角的和差关系、倍半关系等,名、形之间可以用哪个公式联系起来;(3)变公式:在实际变换过程中,往往需要将公式加以变形后运用或逆用公式,如升、降幂公式, cosα= cosβcos(α-β)- sinβsin(α-β),1= sin2α+cos2α,==tan(450+300)等。
例题
例1 已知sin(α+β)=,sin(α-β)=,求的值。
例2求值:cos24°﹣sin6°﹣cos72°[来源:21世纪教育网]
例3 化简(1);(2)sin2αsin2β+cos2αcos2β-cos2αcos2β。
例4 设为锐角,且3sin2α+2sin2β=1,3sin2α-2sin2β=0,求证:α+2β=。
[来源:21世纪教育网]
例5 如图所示,某村欲修建一横断面为等腰梯形的水渠,为降低成本,必须尽量减少水与水渠壁的接触面。若水渠断面面积设计为定值m,渠深8米。则水渠壁的倾角应为多少时,方能使修建的成本最低?21世纪教育网
分析:解答本题的关键是把实际问题转化成数学模型,作出横断面的图形,要减少水与水渠壁的接触面只要使水与水渠断面周长最小,利用三角形的边角关系将倾角为和横断面的周长L之间建立函数关系,求函数的最小值
cos(α-β)=cosαcosβ+sinαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
tan(α+β)=
tan(α-β)=
sin2α=2sinαcosα
cos2α=cos2α- sin2α
=2cos2α-1=1-2 sin2α
tan2α=
8
A
E D
B C
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网