(新人教b版必修4)数学:第二章平面向量 同步测试

文档属性

名称 (新人教b版必修4)数学:第二章平面向量 同步测试
格式 rar
文件大小 56.9KB
资源类型 教案
版本资源 人教新课标B版
科目 数学
更新时间 2010-09-16 19:20:00

图片预览

文档简介

第二章平面向量 同步测试
一、选择题:
1.a与b是非零向量,下列结论正确的是
A.|a|+|b|=|a+b| B.|a|-|b|=|a-b|
C.|a|+|b|>|a+b| D.|a|+|b|≥|a+b|21世纪教育网
解析:在三角形中,两边之和大于第三边,当a与b同向时,取“=”号.
答案:D
2.在四边形ABCD中,,且||=||,那么四边形ABCD为
A.平行四边形 B.菱形
C.长方形 D.正方形
解析:由=可得四边形ABCD是平行四边形,由||=||得四边形ABCD的一组邻边相等,一组邻边相等的平行四边形是菱形.
答案:B
3.已知ABCD的三个顶点A、B、C的坐标分别为(-2,1)、(3,4)、(-1,3),则第四个顶点D的坐标为
A.(2,2) B.(-6,0)
C.(4,6) D.(-4,2)
解析:设D(x,y),则=(5,3),=(-1-x,3-y),
=(x+2,y-1),=(-4,-1).
又∵∥,∥,
∴5(3-y)+3(1+x)=0,-(x+2)+4(y-1)=0,
解得x=-6,y=0.
答案:B
4.有下列命题:①=0;②(a+b)·c=a·c+b·c;③若a=(m,4),则|a|=的充要条件是m=;④若的起点为A(2,1),终点为B(-2,4),则与x轴正向所夹角的余弦值是.其中正确命题的序号是
A.①② B.②③ C.②④ D.③④
解析:∵,∴①错.
②是数量积的分配律,正确.[来源:21世纪教育网]
当m=-时,|a|也等于,∴③错.
在④中,=(4,-3)与x轴正向夹角的余弦值是,故④正确.21世纪教育网
答案:C
5.已知a=(-2,5),|b|=2|a|,若b与a反向,则b等于
A.(-1,) B.(1,-)
C.(-4,10) D.(4,-10)
解析:b=-2a=(4,-10),选D.
答案:D
6.已知|a|=8,e是单位向量,当它们之间的夹角为时,a在e方向上的投影为
A.4 B.4 C.4 D.8+2
解析:由两个向量数量积的几何意义可知:a在e方向上的投影即:
a·e=|a||e|cos=8×1×=4.
答案:B
7.若|a|=|b|=1,a⊥b且2a+3b与ka-4b也互相垂直,则k的值为
A.-6 B.6 C.3 D.-3
解析:∵a⊥b
∴a·b=0
又∵(2a+3b)⊥(ka-4 b)
∴(2a+3b)·(ka-4 b)=0
得2ka2-12b2=0又a2=|a|2=1,b2=|b|2=121世纪教育网
解得k=6.
答案:B
8.已知a=(3,4),b⊥a,且b的起点为(1,2),终点为(x,3x),则b等于
A.(-) B.(-)
C.(-) D.()
解析:b=(x-1,3x-2)
∵a⊥b,∴a·b=0
即3(x-1)+4(3x-2)=0,
解得x=.
答案:C
9.等边△ABC的边长为1,=a,=b,=c,那么a·b+b·c+c·a等于
A.0 B.1 C.- D.-
解析:由已知|a|=|b|=|c|=1,
∴a·b+b·c+c·a
=cos120°+cos120°+cos120°=-.
答案:D
10.把函数y=的图象按a=(-1,2)平移到F′,则F′的函数解析式为
A.y= B.y=
C.y= D. y=
解析:把函数y=的图象按a=(-1,2)平移到F′,则F′的函数解析式为A,即按图象向左平移1个单位,用(x+1)换掉x,再把图象向上平移2个单位,用(y-2)换掉y,可得y-2=.
整理得y=
答案:A
11.已知向量e1、e2不共线,a=ke1+e2,b=e1+ke2,若a与b共线,则k等于( )
A.±1 B.1 C.-1 D.0
解析:∵a与b共线
∴a=λb(λ∈R),
即ke1+e2=λ(e1+ke2),
∴(k-λ)e1+(1-λk)e2=0
∵e1、e2不共线.

解得k=±1,故选A.
答案:A
12.已知a、b均为非零向量,则|a+b|=|a-b|是a⊥b的
A.充分非必要条件 B.必要非充分条件
C.充要条件 D.非充分非必要条件
解析:|a+b|=| a-b|(a+b)2=(a-b)2a·b=0a⊥b.
答案:C
二、填空题
13.如图,M、N是△ABC的一边BC上的两个三等分点,=a,=b,则= .
解析:=b-a,
∴=(b-a).
答案:(b-a)
14.a、b、a-b的数值分别为2,3,,则a与b的夹角为 .
解析:∵(a-b)2=721世纪教育网
∴a2-2a·b+b 2=7
∴a·b=3
∴cosθ=
∴θ=.
答案:
15.把函数y=-2x2的图象按a平移,得到y=-2x2-4x-1的图象,则a= .
解析:y=-2x2-4x-1=-2(x+1)2+1
∴y-1=-2(x+1)2
即原函数图象向左平移1个单位,再向上平移1个单位,∴a=(-1,1).
答案:(-1,1)
16.已知向量a、b的夹角为,|a|=2,|b|=1,则|a+b||a-b|的值是 .
解析:∵a·b=|a||b|cos=2×1×=1
∴|a+b|2=a2+2a·b+b2=22+2×1+12=7,
|a-b|2=a2-2 a·b+b2=22-2×1+1=3
∴|a+b|2|a-b |2=3×7=21
∴|a+b||a-b |=.
答案:
三、解答题:
17.(本小题满分10分)
已知A(4,1),B(1,-),C(x,-),若A、B、C共线,求x.
解:∵=(-3,-),=(x-1,-1)
又∵∥
∴根据两向量共线的充要条件得-(x-1)=3
解得x=-1.
18.(本小题满分12分)
已知|a|=3,|b|=2,a与b的夹角为60°,c=3a+5b,d=ma-b,c⊥d,求m的值.
解:a·b=|a||b|cos60°=3
∵c⊥d,∴c·d=0
即(3a+5b)(ma-b)=0
∴3ma2+(5m-3)a·b-5b2=0
∴27m+3(5m-3)-20=0
解得m=.
19.(本小题满分12分)
已知a、b都是非零向量,且a+3b与7a-5b垂直,a-4b与7a-2b垂直,求a与b的夹角.
解:由已知,(a+3b)·(7 a-5b)=0,
(a-4b)·(7a-2 b)=0,
即7a2+16a·b-15 b 2=0 ①
7a-30a·b+8 b 2=0 ②
①-②得2a·b=b2
代入①式得a2=b2
∴cosθ=,
故a与b的夹角为60°.
20.(本小题满分12分)
已知:在△ABC中,AB=c,BC=a,AC=b,AB上的中线CD=m,求证:a2+b2=c2+2m2.
证明:∵,
两式平方相加可得
a2+b2=c2+2m2+2(·+·)
∵·+·
=||||·cosBDC+||||cosCDA=0
∴a2+b2=c2+2m2.
21.(本小题满分14分)
设i、j分别是直角坐标系x轴、y轴上的单位向量,若在同一直线上有三点A、B、C,且=-2i+mj,=ni+j,=5i-j,⊥,求实数m、n的值.
解:∵⊥,
∴-2n+m=0 ①
∵A、B、C在同一直线上,
∴存在实数λ使=λ,
=-=7i+[-(m+1)j]
=-=(n+2)i+(1-m)j,
∴7=λ(n+2)
m+1=λ(m-1)
消去λ得mn-5m+n+9=0 ②
由①得m=2n代入②解得
m=6,n=3;或m=3,n=.
22.(本小题满分14分)
如图,△ABC的顶点A、B、C所对的边分别为a、b、c,A为圆心,直径PQ=2r,问:当P、Q取什么位置时,·有最大值?
解:·=()·()
=()·(-)
=-r2+··
设∠BAC=α,PA的延长线与BC的延长线相交于D,∠PDB=θ,则
·=-r2+cbcosθ+racosθ
∵a、b、c、α、r均为定值,
∴当cosθ=1,即AP∥BC时,·有最大值.