第6课时 教师版-函数的单调性(1)

文档属性

名称 第6课时 教师版-函数的单调性(1)
格式 rar
文件大小 63.6KB
资源类型 教案
版本资源 人教新课标B版
科目 数学
更新时间 2010-09-17 08:17:00

图片预览

文档简介

第六课时 函数的单调性(1)
【学习导航】
知识网络
学习要求
1.理解函数单调性概念;
2.掌握判断函数单调性的方法,会证明一些简单函数在某个区间上的单调性;
3.提高观察、抽象的能力.;
自学评价
1.单调增函数的定义:
一般地,设函数的定义域为,区间.
如果对于区间内的任意两个值,,当时,都有,那么就说在区间上是单调增 函数,称为的单调 增 区间.
注意:⑴“任意”、“都有”等关键词;
⑵. 单调性、单调区间是有区别的;
2.单调减函数的定义:
一般地,设函数的定义域为,区间.
如果对于区间内的任意两个值,,当时,都有 ,那么就说在区间上是单调 减函数,称为的单调 减 区间.
3.函数图像与单调性:函数在单调增区间上的图像是 上升  图像;而函数在其单调减区间上的图像是 下降  的图像。(填"上升"或"下降")
4.函数单调性证明的步骤:
(1) 根据题意在区间上设 ;
(2) 比较大小 ;
(3) 下结论"函数在某个区间上是单调增(或减)函数" .
【精典范例】
一.根据函数图像写单调区间:
例1:画出下列函数图象,并写出单调区间.
(1);
(2);
(3).
【解】
(图略)
(1)函数的单调增区间为,单调减区间为;
(2)函数在和上分别单调减,即其有两个单调减区间分别是和.
(3)函数在实数集上是减函数;
二.证明函数的单调性:
例2:求证:函数f(x)= -x3+1在区间(-∞,+ ∞)上是单调减函数
证明:设x1,x2∈R且x1=(x2-x1)(x22+x1x2+x12)
因为x2>x1,x22+x1x2+x12>0
所以f(x1) -f(x2)>0即
f(x1)>f(x2)
所以f(x)在(-∞,+ ∞)上递减
追踪训练一
1. 函数 (C)
在内单调递增
在内单调递减
在内单调递增
在内单调递减
2. 函数的单调增区间为   ..
3. 求证:在区间上是减函数.
证明:设,则


故在区间上是减函数.
【选修延伸】
如果一个函数有两个单调区间,两个区间一般不取并集:
例3: 函数在其定义域上是减函数吗?
分析:单调区间的判断目前只有通过定义进行说明,如果要说明这个命题是真命题时我们要给出严格的定义证明,而如果要说明这个命题是假命题,我们只要举一组不满足定义的,并加以说明.
【解】
该命题是假命题;例如时, ,显然且,所以"函数在其定义域上是减函数"是不成立的.
点评:
1.单调区间是函数定义域的子集,所以,求函数的单调区间,必须注意函数的定义域;
2.单调区间是单调增区间和单调减区间的统称,所以,求函数的单调区间时,如果函数既有单调增区间,又有单调减区间,必须分别写出来。
思维点拔:
一、利用图像写函数的单调区间?
我们只要画出函数的草图,在草图上要能够反映函数图像的上升和下降,根据图像上升的区间就是函数的单调增区间,图像下降的区间就是函数的单调减区间.
追踪训练
1.函数y=3x-2x2+1的单调递增区间是
(B )
2. 若函数是上的增函数,对于实数,若,则有(A )
3. 函数f(x+1)=x2-2x+1的定义域是,则f(x)的单调递减区间是________.
4. 函数y=的单调减区间为(-∞,0).
5.讨论函数在上的单调性.
解:
设,则


当时,,此时函数在上是单调减函数;
当时,,此时函数在上是单调增函数;
【师生互动】
学生质疑
教师释疑
证明函数单调性
求函数单调区间
函数单调性
单调性定义
单调区间定义
单调性与图像
听课随笔
听课随笔