第十一课时 函数的奇偶性(2)
【学习导航】
学习要求
1.熟练掌握判断函数奇偶性的方法;
2.熟练单调性与奇偶性讨论函数的性质;
3.能利用函数的奇偶性和单调性解决一些问题.
【精典范例】
一.函数的单调性和奇偶性结合性质推导:
例1:已知y=f(x)是奇函数,它在(0,+∞)上是增函数,且f(x)<0,试问:F(x)=在(-∞,0)上是增函数还是减函数?证明你的结论
思维分析:根据函数单调性的定义,可以设x1F(x1) -F(x2)= -=符号解:任取x1,x2∈(-∞,0),且x1-x2>0
因为y=f(x)在(0,+∞]上是增函数,且f(x)<0,
所以f(-x2)所以f(-x2)= -f(x2),f(-x1)=f(x1)②
由①②得f(x2)>f(x1)>0
于是F(x1) -F(x2)= -
所以F(x)=在(-∞,0)上是减函数。
【证明】
设,则,∵在上是增函数,
∴,∵是奇函数,∴,,
∴,∴,∴在上也是增函数.
说明:一般情况下,若要证在区间上单调,就在区间上设.
二.利用函数奇偶性求函数解析式:
例2:已知是定义域为的奇函数,当x>0时,f(x)=x|x-2|,求x<0时,f(x)的解析式.
解:设x<0,则-x>0且满足表达式f(x)=x|x-2|
所以f(-x)= -x|-x-2|=-x|x+2|
又f(x)是奇函数,有f(-x)= -f(x)
所以-f(x)= -x|x+2|
所以f(x)=x|x+2|
故当x<0时
F(x)表达式为f(x)=x|x+2|.
3:定义在(-2,2)上的奇函数在整个定义域上是减函数,若f(m-1)+f(2m-1)>0,
求实数m的取值范围.
解:因为f(m-1)+f(2m-1)>0
所以f(m-1)> -f(2m-1)
因为f(x)在(-2,2)上奇函数且为减函数
所以f(m-1)>f(1-2m)
所以
所以追踪训练一
1. 设是定义在R上的偶函数,且在[0,+∞)上是减函数,则f(-)与f(a2-a+1)
()的大小关系是 (B )
A. f(-)B. f(-)≥f(a2-a+1)
C. f(-)>f(a2-a+1)
D.与a的取值无关
2. 定义在上的奇函数,则常数 0 , 0 ;
3. 函数是定义在上的奇函数,且为增函数,若,求实数a的范围。
解:定义域是
即
又
是奇函数
在上是增函数
即
解之得
故a的取值范围是
思维点拔:
一、函数奇偶性与函数单调性关系
若函数是偶函数,则该函数在关于"0"对称的区间上的单调性是相反的,且一般情况下偶函数在定义域上不是单调函数;若函数是奇函数,则该函数在关于"0"对称区间上的点调性是相同的.
追踪训练
1.已知是偶函数,其图象与轴共有四个交点,则方程的所有实数解的和是 (C)
4 2 0 不能确定
2. 定义在(-∞,+∞)上的函数满足f(-x)=f(x)且f(x)在(0,+∞)上,则不等式f(a)A.ab
C.|a|<|b| D.0≤ab≥0
3. 是奇函数,它在区间(其中)上为增函数,则它在区间上(D)
A. 是减函数且有最大值
B. 是减函数且有最小值
C. 是增函数且有最小值
D. 是增函数且有最大值
4已知函数ax7+6x5+cx3+dx+8,且f(-5)= -15,则f(5)= 31 .
5.定义在实数集上的函数f(x),对任意,有且。
(1)求证;(2)求证:是偶函数。
解(1)令,则有
(2)令,则有
这说明是偶函数
学生质疑
教师释疑
【师生互动】
听课随笔
听课随笔