首页
高中语文
高中数学
高中英语
高中物理
高中化学
高中历史
高中道德与法治(政治)
高中地理
高中生物
高中音乐
高中美术
高中体育
高中信息技术
高中通用技术
资源详情
高中数学
人教新课标B版
必修1
第三章 基本初等函数(Ⅰ)
3.1 指数与指数函数
3.1.2指数函数
第19课时 教师版-指数函数(4)
文档属性
名称
第19课时 教师版-指数函数(4)
格式
rar
文件大小
36.5KB
资源类型
教案
版本资源
人教新课标B版
科目
数学
更新时间
2010-09-17 08:15:00
点击下载
图片预览
1
2
文档简介
本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
第十九课时 指数函数(4)
【学习导航】
学习要求:
1、巩固指数函数的图象及其性质;
2、掌握由指数函数和其他简单函数组成的复合函数性质;
【精典范例】
1、 复合函数的定义域与值域
例1、求下列函数的定义域与值域。
(1)y=;
(2)y=;
(3)y=
思维分析:y=a的定义域是f(x)的定义域;对于值域,要先求出f(x) 值域再利用指数函数单调性求解。
【解】:
(1)令,得。解得x1,或x<-1。故定义域为
{x│x1,或x<-1}。由于,且,所以
,
故函数y=的值域为{y│y且y};
(2) 定义域为R;由于2x-x=-(x-1)+1,所以值域为[。
(3)令3,所以x.
所以定义域为[-,值域为[。
二、利用复合函数单调性来解题
例2、求函数y=的单调区间。
【解】:
定义域是R。令,则。当时函数为增函数,是减函数,所以函数y=在上是减函数;当时函数为减函数,是减函数,所以函数y=在上是增函数。
综上,函数y=的单调增区间是,单调减区间是。
点评:y=a的单调性由a和u=f(x)两函数在相应区间上单调性确定的,遵循“同增异减”法则。
三、利用图象的性质比较大小
例3、已知函数f(x)=ax(a>0,且a≠1),根据图象判断[f(x1)+f(x2)]与f()的大小,并加以证明。
【解】:
由a>1及0
证明如下:f(x1)+f(x2)-2 f()=+-2a=( a-a),由于,所以a-a.
所以( a-a)〉0.
所以f(x1)+f(x2)-2 f()>0
即
[f(x1)+f(x2)]> f()。
四、分类讨论思想在解题中的应用
例4、已知f(x)=(ex-a)+ (e-x-a)(a0)。
(1) f(x)将表示成u= 的函数;
(2) 求f(x)的最小值
思维分析:平方展开重新配方,就可以得到所求函数的形式;然后根据二次函数的知识确定最值。
【解】:
(1)将f(x) 展开重新配方得,f(x)
=(ex+e-x)-2a(ex+e-x)+2a-2
令u= ,得f(x)=4u-4au+2 a-2(u)
(2)因为f(u)的对称轴是u=,又a
所以当时,则当u=1时,f(u)有最小值,此时f(u) =f(1)=2(a-1)。
当a>2时,则当u=时,f(u)有最小值,此时f(u)=f ()=a-2.
所以f(x)的最小值为
f(x)=
点评:这是复合函数求最值问题,为了求得最值,通过换元转化为二次函数,再由二次函数在区间上的单调性确定最值。
追踪训练
1、求下列函数定义域和值域.
(1)y=;
(2)y=
答案:(1)定义域[-1,2];
[,1]。
(2)定义域{x│x-1}
值域{y│y>2,或0
2、求函数y=的单调区间.
答案:利用复合函数单调性的规律,容易得到函数y=的单调增区间是[0,1],单调减区间是[1,2]。
3、已知f(x)=(a>0,且a)
(1)求f(x)的定义域和值域;
(2)判断f(x)与的关系;
(3)讨论f(x)的单调性;
答案:(1)定义域为R,
值域为(-1,1)
(2)f(-x) = -f(x)
(3)当a>1时,f(x)=在定义域上为增函数;当0
4、已知g(x)=()x(x>0),而f(x)是定义在(-∞,0)∪(0,+∞)上的奇函数,且当x>0时,f(x)=g(x),则f(x)的解析式为_ ___________.
答案:f(x)_=
5、设a是实数,f(x)=.
(1)证明:不论a为何实数,f(x)均为增函数;
(2)试确定a的值,使f(x)为奇函数成立。
答案:(1)证明略
(2)利用奇函数的定义式,易得a=1
【师生互动】
学生质疑
教师释疑
听课随笔
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网
点击下载
同课章节目录
第一章 集合
1.1 集合与集合的表示方法
1.2 集合之间的关系与运算
第二章 函数
2.1 函数
2.2 一次函数和二次函数
2.3 函数的应用(Ⅰ)
2.4 函数与方程
第三章 基本初等函数(Ⅰ)
3.1 指数与指数函数
3.2 对数与对数函数
3.3 幂函数
3.4 函数的运用(ⅠⅠ)
点击下载
VIP下载