4.3角(2010年中考演练同步作业)

文档属性

名称 4.3角(2010年中考演练同步作业)
格式 rar
文件大小 1.0MB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2010-09-17 12:46:00

文档简介

26.1二次函数
一、选择题
1.(2010甘肃兰州) 二次函数的图像的顶点坐标是
A.(-1,8) B.(1,8) C.(-1,2) D.(1,-4)
【答案】A
2.(2010甘肃兰州) 抛物线图像向右平移2个单位再向下平移3个单位,所得图像的解析式为,则b、c的值为
A . b=2, c=2 B. b=2,c=0
C . b= -2,c=-1 D. b= -3, c=2
【答案】B
3.(2010甘肃兰州) 抛物线图像如图所示,则一次函数与反比例函数 在同一坐标系内的图像大致为
第15题图
【答案】D
4.(2010江苏盐城)给出下列四个函数:①;②;③;④.时,y随x的增大而减小的函数有
A.1个 B.2个 C.3个 D.4个
【答案】C
5.(2010江苏泰州)下列函数中,y随x增大而增大的是( )
A. B. C. D.
【答案】A
6.(2010台湾)坐标平面上有一函数y=24x248的图形,其顶点坐标为何?
(A) (0,2) (B) (1,24) (C) (0,48) (D) (2,48) 。
【答案】C
7.(2010台湾) 坐标平面上,若移动二次函数y=2(x175)(x176)6的图形,使其与x轴交于两点,且此两点的距离为1单位,则移动方式可为下列哪一种?
(A) 向上移动3单位 (B) 向下移动3单位
(C) 向上移勤6单位 (D) 向下移动6单位 。
【答案】D
8.(2010浙江杭州)定义[]为函数的特征数, 下面给出特征数为 [2m,1 – m , –1– m]
的函数的一些结论:
① 当m = – 3时,函数图象的顶点坐标是(,);
② 当m > 0时,函数图象截x轴所得的线段长度大于;
③ 当m < 0时,函数在x >时,y随x的增大而减小;
④ 当m 0时,函数图象经过同一个点.
其中正确的结论有
A. ①②③④ B. ①②④ C. ①③④ D. ②④
【答案】B
9.(2010 嵊州市)已知二次函数的图象如图所示,记,则与的大小关系为 ( )
A. B. C. D.、大小关系不能确定
【答案】C
10.(2010 浙江台州市)如图,点A,B的坐标分别为(1, 4)和(4, 4),抛物线的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为,则点D的横坐标最大值为( )
A.-3   B.1 C.5 D.8
【答案】D
11.(2010浙江金华) 已知抛物线的开口向下,顶点坐标为(2,-3) ,那么该抛物线有( )
A. 最小值 -3 B. 最大值-3 C. 最小值2 D. 最大值2
【答案】B
12.(2010 山东济南)在平面直角坐标系中,抛物线与轴的交点的个数是( )
A.3 B.2 C.1 D.0
【答案】B
13.(2010 浙江衢州)下列四个函数图象中,当x>0时,y随x的增大而增大的是(  )
【答案】C
14.(2010 浙江衢州) 如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,
设CD的长为x,四边形ABCD的面积为y,则y与x之间的
函数关系式是(  )
A. B.
C. D.
【答案】C
二、填空题
1.(2010安徽蚌埠)已知抛物线经过点A(4,0)。设点C(1,-3),请在抛物线的对称轴上确定一点D,使得的值最大,则D点的坐标为_______。
【答案】﹝2,-6﹞
2.(2010江苏盐城)写出图象经过点(1,-1)的一个函数关系式 .
【答案】y=-x或y=-或y=x2-2x,答案不唯一
3.(2010山东日照)如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是 .
【答案】-1<x<3
4.(2010浙江宁波) 如图,已知⊙P的半径为2,圆心P在抛物线上运动,当⊙P与轴相切时,圆心P的坐标为 .
【答案】或(对一个得2分)
5.(2010 浙江义乌)(1)将抛物线y1=2x2向右平移2个单位,得到抛物线y2的图象,则y2= ;
(2)如图,P是抛物线y2对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=x、抛物线y2交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t= .
【答案】(1)2(x-2)2 或 (2)3、1、、
三、解答题
1.(2010江苏苏州) (本题满分9分)如图,以A为顶点的抛物线与y轴交于点B.已知A、B两点的坐标分别为(3,0)、(0,4).
(1)求抛物线的解析式;
(2)设M(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧.若以M、B、O、A为顶点的四边形四条边的长度是四个连续的正整数,求点M的坐标;
(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点P,PA2+PB2+PM2>28是
否总成立 请说明理由.
【答案】
2.(2010广东广州,21,12分)已知抛物线y=-x2+2x+2.
(1)该抛物线的对称轴是 ,顶点坐标 ;
(2)选取适当的数据填入下表,并在图7的直角坐标系内描点画出该抛物线的图象;
x … …
y … …
(3)若该抛物线上两点A(x1,y1),B(x2,y2)的横坐标满足x1>x2>1,试比较y1与y2的大小.
【答案】解:(1)x=1;(1,3)
(2)
x … -1 0 1 2 3 …
y … -1 2 3 2 -1 …
(3)因为在对称轴x=1右侧,y随x的增大而减小,又x1>x2>1,所以y1<y2.
3.(10湖南益阳)如图,在平面直角坐标系中,已知A、B、C三点的坐标分别为A(-2,0),B(6,0),C(0,3).
(1)求经过A、B、C三点的抛物线的解析式;
(2)过C点作CD平行于轴交抛物线于点D,写出D点的坐标,并求AD、BC的交点E的坐标;
(3)若抛物线的顶点为P,连结PC、PD,判断四边形CEDP的形状,并说明理由.
【答案】解:⑴ 由于抛物线经过点,可设抛物线的解析式为,则,         
 解得
∴抛物线的解析式为  
⑵ 的坐标为
直线的解析式为
直线的解析式为
 由
 求得交点的坐标为       
⑶ 连结交于,的坐标为
又∵,
  ∴,且
    ∴四边形是菱形          
4.(2010江苏盐城)(本题满分12分)已知:函数y=ax2+x+1的图象与x轴只有一个公共点.
(1)求这个函数关系式;
(2)如图所示,设二次函数y=ax2+x+1图象的顶点为B,与y轴的交点为A,P为图象上的一点,若以线段PB为直径的圆与直线AB相切于点B,求P点的坐标;
(3)在(2)中,若圆与x轴另一交点关于直线PB的对称点为M,试探索点M是否在抛物线y=ax2+x+1上,若在抛物线上,求出M点的坐标;若不在,请说明理由.
【答案】解:(1)当a = 0时,y = x+1,图象与x轴只有一个公共点
当a≠0时,△=1- 4a=0,a = ,此时,图象与x轴只有一个公共点.
∴函数的解析式为:y=x+1 或`y=x2+x+1
(2)设P为二次函数图象上的一点,过点P作PC⊥x
轴于点C.
∵是二次函数,由(1)知该函数关系式为:
y=x2+x+1,则顶点为B(-2,0),图象与y轴的交点
坐标为A(0,1)
∵以PB为直径的圆与直线AB相切于点B ∴PB⊥AB 则∠PBC=∠BAO
∴Rt△PCB∽Rt△BOA
∴,故PC=2BC,
设P点的坐标为(x,y),∵∠ABO是锐角,∠PBA是直角,∴∠PBO是钝角,
∴x<-2
∴BC=-2-x,PC=-4-2x,即y=-4-2x, P点的坐标为(x,-4-2x)
∵点P在二次函数y=x2+x+1的图象上,∴-4-2x=x2+x+1
解之得:x1=-2,x2=-10
∵x<-2 ∴x=-10,∴P点的坐标为:(-10,16)
(3)点M不在抛物线上
由(2)知:C为圆与x 轴的另一交点,连接CM,CM与直线PB的交点为Q,过点M作x轴的垂线,垂足为D,取CD的中点E,连接QE,则CM⊥PB,且CQ=MQ
∴QE∥MD,QE=MD,QE⊥CE
∵CM⊥PB,QE⊥CE PC⊥x 轴 ∴∠QCE=∠EQB=∠CPB
∴tan∠QCE= tan∠EQB= tan∠CPB =
CE=2QE=2×2BE=4BE,又CB=8,故BE=,QE=
∴Q点的坐标为(-,)
可求得M点的坐标为(,)
∵=≠
∴C点关于直线PB的对称点M不在抛物线上
(其它解法,仿此得分)
5.(2010辽宁丹东市)如图,平面直角坐标系中有一直角梯形OMNH,点H的坐标为(-8,0),点N的坐标为(-6,-4).
(1)画出直角梯形OMNH绕点O旋转180°的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A, 点N的对应点为B, 点H的对应点为C);
(2)求出过A,B,C三点的抛物线的表达式;
(3)截取CE=OF=AG=m,且E,F,G分别在线段CO,OA,AB上,求四边形BEFG的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值 若存在,请求出这个最小值;若不存在,请说明理由;
(4)在(3)的情况下,四边形BEFG是否存在邻边相等的情况,若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,说明理由.
【答案】(1) 利用中心对称性质,画出梯形OABC.
∵A,B,C三点与M,N,H分别关于点O中心对称,
∴A(0,4),B(6,4),C(8,0)
(写错一个点的坐标扣1分)
(2)设过A,B,C三点的抛物线关系式为,
∵抛物线过点A(0,4),
∴.则抛物线关系式为.
将B(6,4), C(8,0)两点坐标代入关系式,得
解得
所求抛物线关系式为:.
(3)∵OA=4,OC=8,∴AF=4-m,OE=8-m.

OA(AB+OC)AF·AGOE·OFCE·OA
( 0<<4)
∵. ∴当时,S的取最小值.
又∵0<m<4,∴不存在m值,使S的取得最小值.
(4)当时,GB=GF,当时,BE=BG.
6.(2010山东济宁)如图,在平面直角坐标系中,顶点为(,)的抛物线交轴于点,交轴于,两点(点在点的左侧). 已知点坐标为(,).
(1)求此抛物线的解析式;
(2)过点作线段的垂线交抛物线于点, 如果以点为圆心的圆与直线相切,请判断抛物线的对称轴与⊙有怎样的位置关系,并给出证明;
(3)已知点是抛物线上的一个动点,且位于,两点之间,问:当点运动到什么位置时,的面积最大?并求出此时点的坐标和的最大面积.
【答案】
(1)解:设抛物线为.
∵抛物线经过点(0,3),∴.∴.
∴抛物线为.
(2) 答:与⊙相交.
证明:当时,,.
∴为(2,0),为(6,0).∴.
设⊙与相切于点,连接,则.
∵,∴.
又∵,∴.∴∽.
∴.∴.∴.
∵抛物线的对称轴为,∴点到的距离为2.
∴抛物线的对称轴与⊙相交.
(3) 解:如图,过点作平行于轴的直线交于点.
可求出的解析式为.
设点的坐标为(,),则点的坐标为(,).
∴.
∵,
∴当时,的面积最大为.
此时,点的坐标为(3,).
7.(2010甘肃兰州)(本题满分11分)如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线经过坐标原点O和x轴上另一点E(4,0)
(1)当x取何值时,该抛物线的最大值是多少?
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
① 当时,判断点P是否在直线ME上,并说明理由;
② 以P、N、C、D为顶点的多边形面积是否可能为5,若有可能,求出此时N点的坐标;若无可能,请说明理由.
图1 图2
【答案】解:(1)因抛物线经过坐标原点O(0,0)和点E(4,0)
故可得c=0,b=4
所以抛物线的解析式为

得当x=2时,该抛物线的最大值是4.
(2)① 点P不在直线ME上.
已知M点的坐标为(2,4),E点的坐标为(4,0),
设直线ME的关系式为y=kx+b.
于是得 ,解得
所以直线ME的关系式为y=-2x+8.
由已知条件易得,当时,OA=AP=,
∵ P点的坐标不满足直线ME的关系式y=-2x+8. [来源:]
∴ 当时,点P不在直线ME上.
②以P、N、C、D为顶点的多边形面积可能为5
∵ 点A在x轴的非负半轴上,且N在抛物线上,
∴ OA=AP=t.
∴ 点P,N的坐标分别为(t,t)、(t,-t 2+4t)
∴ AN=-t 2+4t (0≤t≤3) ,
∴ AN-AP=(-t 2+4 t)- t=-t 2+3 t=t(3-t)≥0 , ∴ PN=-t 2+3 t
(ⅰ)当PN=0,即t=0或t=3时,以点P,N,C,D为顶点的多边形是三角形,此三角形的高为AD,∴ S=DC·AD=×3×2=3.
(ⅱ)当PN≠0时,以点P,N,C,D为顶点的多边形是四边形
∵ PN∥CD,AD⊥CD,
∴ S=(CD+PN)·AD=[3+(-t 2+3 t)]×2=-t 2+3 t+3
当-t 2+3 t+3=5时,解得t=1、2
而1、2都在0≤t≤3范围内,故以P、N、C、D为顶点的多边形面积为5
综上所述,当t=1、2时,以点P,N,C,D为顶点的多边形面积为5,
当t=1时,此时N点的坐标(1,3)
当t=2时,此时N点的坐标(2,4)
说明:(ⅱ)中的关系式,当t=0和t=3时也适合.(故在阅卷时没有(ⅰ),只有(ⅱ)也可以,不扣分)
8.(2010山东青岛)已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm,BC = 6 cm,EF = 9 cm.
如图(2),△DEF从图(1)的位置出发,以1 cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2 cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动.DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5).解答下列问题:
(1)当t为何值时,点A在线段PQ的垂直平分线上?
(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由.
(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.(图(3)供同学们做题使用)
【答案】
解:(1)∵点A在线段PQ的垂直平分线上,
∴AP = AQ.
∵∠DEF = 45°,∠ACB = 90°,∠DEF+∠ACB+∠EQC = 180°,
∴∠EQC = 45°.
∴∠DEF =∠EQC.
∴CE = CQ.
由题意知:CE = t,BP =2 t,
∴CQ = t.
∴AQ = 8-t.
在Rt△ABC中,由勾股定理得:AB = 10 cm .
则AP = 10-2 t.
∴10-2 t = 8-t.
解得:t = 2.
答:当t = 2 s时,点A在线段PQ的垂直平分线上.
(2)过P作,交BE于M,
∴.
在Rt△ABC和Rt△BPM中,,
∴ . ∴PM = .
∵BC = 6 cm,CE = t, ∴ BE = 6-t.
∴y = S△ABC-S△BPE =-= -
= = .
∵,∴抛物线开口向上.
∴当t = 3时,y最小=.
答:当t = 3s时,四边形APEC的面积最小,最小面积为cm2. 8分
(3)假设存在某一时刻t,使点P、Q、F三点在同一条直线上.
过P作,交AC于N,
∴.
∵,∴△PAN ∽△BAC.
∴.
∴.
∴,.
∵NQ = AQ-AN,
∴NQ = 8-t-() = .
∵∠ACB = 90°,B、C(E)、F在同一条直线上,
∴∠QCF = 90°,∠QCF = ∠PNQ.
∵∠FQC = ∠PQN,
∴△QCF∽△QNP .
∴ . ∴ .
∵ ∴
解得:t = 1.
答:当t = 1s,点P、Q、F三点在同一条直线上.
9.(2010山东威海)(1)探究新知:①如图,已知AD∥BC,AD=BC,点M,N是直线CD上任意两点.
求证:△ABM与△ABN的面积相等.
②如图,已知AD∥BE,AD=BE,AB∥CD∥EF,点M是直线CD上任一点,点G是直线EF上任一点.试判断△ABM与△ABG的面积是否相等,并说明理由.
(2)结论应用:
如图③,抛物线的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D.试探究在抛物线上是否存在除点C以外的点E,使得△ADE与△ACD的面积相等? 若存在,请求出此时点E的坐标,若不存在,请说明理由.
﹙友情提示:解答本问题过程中,可以直接使用“探究新知”中的结论.﹚
【答案】
﹙1﹚①证明:分别过点M,N作 ME⊥AB,NF⊥AB,垂足分别为点E,F.
∵ AD∥BC,AD=BC,
∴ 四边形ABCD为平行四边形.
∴ AB∥CD.
∴ ME= NF.
∵S△ABM=,S△ABN=,
∴ S△ABM= S△ABN.
②相等.理由如下:分别过点D,E作DH⊥AB,EK⊥AB,垂足分别为H,K.
则∠DHA=∠EKB=90°.
∵ AD∥BE,
∴ ∠DAH=∠EBK.
∵ AD=BE,
∴ △DAH≌△EBK.
∴ DH=EK.
∵ CD∥AB∥EF,
∴S△ABM=,S△ABG=,
∴ S△ABM= S△ABG.
﹙2﹚答:存在.
解:因为抛物线的顶点坐标是C(1,4),所以,可设抛物线的表达式为.
又因为抛物线经过点A(3,0),将其坐标代入上式,得,解得.
∴ 该抛物线的表达式为,即.
∴ D点坐标为(0,3).
设直线AD的表达式为,代入点A的坐标,得,解得.
∴ 直线AD的表达式为.
过C点作CG⊥x轴,垂足为G,交AD于点H.则H点的纵坐标为.
∴ CH=CG-HG=4-2=2.
设点E的横坐标为m,则点E的纵坐标为.
过E点作EF⊥x轴,垂足为F,交AD于点P,则点P的纵坐标为,EF∥CG.
由﹙1﹚可知:若EP=CH,则△ADE与△ADC的面积相等.
①若E点在直线AD的上方﹙如图③-1﹚,
则PF=,EF=.
∴ EP=EF-PF==.
∴ .
解得,.
当时,PF=3-2=1,EF=1+2=3.
∴ E点坐标为(2,3).
同理 当m=1时,E点坐标为(1,4),与C点重合.
②若E点在直线AD的下方﹙如图③-2,③-3﹚,
则.
∴.解得,.
当时,E点的纵坐标为;
当时,E点的纵坐标为.
∴ 在抛物线上存在除点C以外的点E,使得△ADE与△ACD的面积相等,E点的坐标为E1(2,3);;.
﹙其他解法可酌情处理﹚
10.(2010四川凉山)已知:抛物线,顶点,与轴交于A、B两点,。
(1) 求这条抛物线的解析式;
(2) 如图,以AB为直径作圆,与抛物线交于点D,与抛物线的对称轴交于点F,依次连接A、D、B、E,点Q为线段AB上一个动点(Q与A、B两点不重合),过点Q作于,于,请判断是否为定值;若是,请求出此定值,若不是,请说明理由;
(3) 在(2)的条件下,若点H是线段EQ上一点,过点H作,分别与边、相交于、,(与、不重合,与、不重合),请判断是否成立;若成立,请给出证明,若不成立,请说明理由。
【答案】
11.(2010四川眉山)如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(,0)、(0,4),抛物线经过B点,且顶点在直线上.
(1)求抛物线对应的函数关系式;
(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;
(3)若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N.设点M的横坐标为t,MN的长度为l.求l与t之间的函数关系式,并求l取最大值时,点M的坐标.
【答案】
解:(1)由题意,可设所求抛物线对应的函数关系式为


∴所求函数关系式为:
(2)在Rt△ABO中,OA=3,OB=4,

∵四边形ABCD是菱形
∴BC=CD=DA=AB=5
∴C、D两点的坐标分别是(5,4)、(2,0).
当时,
当时,
∴点C和点D在所求抛物线上.
(3)设直线CD对应的函数关系式为,则
解得:.

∵MN∥y轴,M点的横坐标为t,
∴N点的横坐标也为t.
则, ,

∵, ∴当时,,
此时点M的坐标为(,).
12.(2010浙江杭州) (本小题满分12分)
(第12题)
在平面直角坐标系xOy中,抛物线的解析式是y =+1,
点C的坐标为(–4,0),平行四边形OABC的顶点A,B在抛物
线上,AB与y轴交于点M,已知点Q(x,y)在抛物线上,点
P(t,0)在x轴上.
(1) 写出点M的坐标;
(2) 当四边形CMQP是以MQ,PC为腰的梯形时.
① 求t关于x的函数解析式和自变量x的取值范围;
② 当梯形CMQP的两底的长度之比为1:2时,求t的值.
【答案】
(本小题满分12分)
(第12题)
(1) ∵OABC是平行四边形,∴AB∥OC,且AB = OC = 4,
∵A,B在抛物线上,y轴是抛物线的对称轴,
∴ A,B的横坐标分别是2和– 2,
代入y =+1得, A(2, 2 ),B(– 2,2),
∴M (0,2),
(2) ① 过点Q作QH x轴,设垂足为H, 则HQ = y ,HP = x–t ,
由△HQP∽△OMC,得:, 即: t = x – 2y ,
∵ Q(x,y) 在y = +1上, ∴ t = –+ x –2.
当点P与点C重合时,梯形不存在,此时,t = – 4,解得x = 1,
当Q与B或A重合时,四边形为平行四边形,此时,x = 2
∴x的取值范围是x 1, 且x 2的所有实数.
② 分两种情况讨论:
1)当CM > PQ时,则点P在线段OC上,
∵ CM∥PQ,CM = 2PQ ,
∴点M纵坐标为点Q纵坐标的2倍,即2 = 2(+1),解得x = 0 ,
∴t = –+ 0 –2 = –2 .
2)当CM < PQ时,则点P在OC的延长线上,
∵CM∥PQ,CM = PQ,
∴点Q纵坐标为点M纵坐标的2倍,即+1=22,解得: x = .
当x = –时,得t = –––2 = –8 –,
当x=时, 得t =–8.
13.(2010浙江嘉兴)如图,已知抛物线交x轴的正半轴于点A,交y轴于点B.
(1)求A、B两点的坐标,并求直线AB的解析式;
(2)设()是直线上的一点,Q是OP的中点(O是原点),以PQ为对角线作正方形PEQF.若正方形PEQF与直线AB有公共点,求x的取值范围;
(3)在(2)的条件下,记正方形PEQF与△OAB公共部分的面积为S,求S关于x的函数解析式,并探究S的最大值.
【答案】(1)令,得,即,
解得,,所以.令,得,所以.
设直线AB的解析式为,则,解得,
所以直线AB的解析式为. …5分
(2)当点在直线AB上时,,解得,
当点在直线AB上时,,解得.
所以,若正方形PEQF与直线AB有公共点,则.
(3)当点在直线AB上时,(此时点F也在直线AB上)
,解得.
①当时,直线AB分别与PE、PF有交点,设交点分别为C、D,
此时,,
又,
所以,
从而,

因为,所以当时,.
②当时,直线AB分别与QE、QF有交点,设交点分别为M、N,
此时,,
又,
所以,
即.
其中当时,.
综合①②得,当时,.
14.(2010浙江宁波)如图,已知二次函数的图象经过A(2,0)、B(0,-6)两点.
(1)求这个二次函数的解析式;
(2)设该二次函数图象的对称轴与x轴交于点C,连结BA、BC,求△ABC的面积.
【答案】
解:(1)把A(2,0)、B(0,-6)代入
得:
解得
∴这个二次函数的解析式为.   
(2) ∵该抛物线对称轴为直线
  ∴点C的坐标为(4,0)
∴AC=OC-OA=4-2=2
∴    
15.(2010浙江绍兴)如图,设抛物线C1:, C2:,C1与C2的交点为A, B,点A的坐标是,点B的横坐标是-2.
(1)求的值及点B的坐标;
(2)点D在线段AB上,过D作x轴的垂线,垂足为点H,
在DH的右侧作正三角形DHG. 记过C2顶点M的
直线为,且与x轴交于点N.
① 若过△DHG的顶点G,点D的坐标为
(1, 2),求点N的横坐标;
② 若与△DHG的边DG相交,求点N的横
坐标的取值范围.
【答案】
解:(1)∵ 点A在抛物线C1上,∴ 把点A坐标代入得 =1.
∴ 抛物线C1的解析式为,
设B(-2,b), ∴ b=-4, ∴ B(-2,-4) .
(2)①如图1,
∵ M(1, 5),D(1, 2), 且DH⊥x轴,∴ 点M在DH上,MH=5.
过点G作GE⊥DH,垂足为E,
由△DHG是正三角形,可得EG=, EH=1,
∴ ME=4.
设N ( x, 0 ), 则 NH=x-1,
由△MEG∽△MHN,得 ,
∴ , ∴ ,
∴ 点N的横坐标为.
② 当点D移到与点A重合时,如图2,
直线与DG交于点G,此时点N的横坐标最大.
过点G,M作x轴的垂线,垂足分别为点Q,F,
设N(x,0),
∵ A (2, 4), ∴ G (, 2),
∴ NQ=,NF =, GQ=2, MF =5.
∵ △NGQ∽△NMF,
∴ ,
∴ ,
∴ .
当点D移到与点B重合时,如图3,
直线与DG交于点D,即点B,
此时点N的横坐标最小.
∵ B(-2, -4), ∴ H(-2, 0), D(-2, -4),
设N(x,0),
∵ △BHN∽△MFN, ∴ ,
∴ , ∴ .
∴ 点N横坐标的范围为 ≤x≤.
16.(2010 嵊州市提前招生)(14分)在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示:抛物线经过点B。
(1)写出点B的坐标;
(2)求抛物线的解析式;
(3)若三角板ABC从点C开始以每秒1个单位长度的速度向轴正方向平移,求点A落在抛物线上时所用的时间,并求三角板在平移过程扫过的面积。
(4)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由。
【答案】(1)B(-3,1)
(2)
(3)略
(4)P(1,-1)
17.(2010 浙江省温州市)(本题l2分)如图,抛物线y=ax2+bx经过点A(4,0),B(2,2)。连结OB,AB.
(1)求该抛物线的解析式;
(2)求证:△OAB是等腰直角三角形;
(3)将△OAB绕点0按顺时针方向旋转l35°得到△0A′B′,写出△0A′B′的中点
P的出标.试判断点P是否在此抛物线上,并说明理由.
【答案】
18.(2010 浙江义乌)如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).
(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;
(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、 B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示-,并求出当S=36时点A1的坐标;
(3)在图1中,设点D坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.
【答案】
解:(1)对称轴:直线
解析式:或
顶点坐标:M(1,)
(2)由题意得
3
得:①
得: ②
把②代入①并整理得:(S>0) (事实上,更确切为S>6)
当时, 解得:
把代入抛物线解析式得 ∴点A1(6,3)
(3)存在
解法一:易知直线AB的解析式为,可得直线AB与对称轴的
交点E的坐标为
∴BD=5,DE=,DP=5-t,DQ= t
当∥时,
得 ………2分
下面分两种情况讨论: 设直线PQ与直线AB、x轴的交点分别为点F、G
①当时,如图1-1 ∵△FQE∽△FAG ∴∠FGA=∠FEQ
∴∠DPQ=∠DEB 易得△DPQ∽△DEB ∴
∴ 得 ∴(舍去)
2 当时,如图1-2
∵△FQE∽△FAG ∴∠FAG=∠FQE
∵∠DQP=∠FQE ∠FAG=∠EBD
∴∠DQP=∠DBE 易得△DPQ∽△DEB

∴, ∴
∴当秒时,使直线、直线、轴围成的三角形与直线、直线、抛物线的对称轴围成的三角形相似
(注:未求出能得到正确答案不扣分)
解法二:可将向左平移一个单位得到,再用解法一类似的方法可求得
, ,
∴ , .
19.(2010 重庆)已知:如图(1),在直角坐标系xOy中,边长为2的等边△的顶点在第一象限,顶点在轴的正半轴上. 另一等腰△的顶点在第四象限,,.现有两动点,分别从,两点同时出发,点以每秒1个单位的速度沿向点运动,点以每秒3个单位的速度沿运动,当其中一个点到达终点时,另一个点也随即停止.
(1)求在运动过程中形成的△的面积与运动的时间之间的函数关系式,并写出自变量t的取值范围;
(2)在等边△的边上(点除外)存在点,使得△为等腰三角形,请直接写出所有符合条件的点D的坐标;
(3)如图(2),现有,其两边分别与, 交于点,,连接.将绕着点旋转(旋转角),使得,始终在边和边上.试判断在这一过程中,△的周长是否发生变化?若没变化,请求出其周长;若发生变化,请说明理由.
【答案】解:(1)过点作于点.(如图①)
∵,,
∴.
∵,, ∴.
在Rt中,.
(ⅰ)当时,,,;
过点作于点.(如图①)
在Rt中,∵,∴,
∴.
即 .
(ⅱ)当时,(如图②)
,.
∵,,∴.
∴.
即.
故当时,,当时,.
(2)或或或.
(3)的周长不发生变化.
延长至点,使,连结.(如图③)
∵,
∴≌.
∴.
∴.
又∵.
∴≌.∴.
∴.
∴的周长不变,其周长为4.
20.(2010重庆市潼南县)(12分)如图, 已知抛物线与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,-1).
(1)求抛物线的解析式;
(2)点E是线段AC上一动点,过点E作DE⊥x轴于点D,连结DC,当△DCE的面积最大时,求点D的坐标;
(3)在直线BC上是否存在一点P,使△ACP为等腰三角形,若存在,求点P的坐标,若不存在,说明理由.
【答案】
解:(1)∵二次函数的图像经过点A(2,0)C(0,-1)

解得: b=- c=-1
∴二次函数的解析式为
(2)设点D的坐标为(m,0) (0<m<2)
∴ OD=m ∴AD=2-m
由△ADE∽△AOC得,

∴DE=
∴△CDE的面积=××m
==
当m=1时,△CDE的面积最大
∴点D的坐标为(1,0)
(3)存在 由(1)知:二次函数的解析式为
设y=0则 解得:x1=2 x2=-1
∴点B的坐标为(-1,0) C(0,-1)
设直线BC的解析式为:y=kx+b
∴ 解得:k=-1 b=-1
∴直线BC的解析式为: y=-x-1
在Rt△AOC中,∠AOC=900 OA=2 OC=1
由勾股定理得:AC=
∵点B(-1,0) 点C(0,-1)
∴OB=OC ∠BCO=450
①当以点C为顶点且PC=AC=时,
设P(k, -k-1)
过点P作PH⊥y轴于H
∴∠HCP=∠BCO=450
CH=PH=∣k∣ 在Rt△PCH中
k2+k2= 解得k1=, k2=-
∴P1(,-) P2(-,)
②以A为顶点,即AC=AP=
设P(k, -k-1)
过点P作PG⊥x轴于G
AG=∣2-k∣ GP=∣-k-1∣
在Rt△APG中 AG2+PG2=AP2
(2-k)2+(-k-1)2=5
解得:k1=1,k2=0(舍)
∴P3(1, -2)
③以P为顶点,PC=AP设P(k, -k-1)
过点P作PQ⊥y轴于点Q
PL⊥x轴于点L
∴L(k,0)
∴△QPC为等腰直角三角形
PQ=CQ=k
由勾股定理知
CP=PA=k
∴AL=∣k-2∣, PL=|-k-1|
在Rt△PLA中
(k)2=(k-2)2+(k+1)2
解得:k=∴P4(,-)
综上所述: 存在四个点:P1(,-)
P2(-,) P3(1, -2) P4(,-)
21.(2010山东聊城)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A
的距离与到点C的距离之和最小,并求此时点M的坐标;
(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90 的点P的坐标.
【答案】解:(1)∵抛物线经过点C(0,-3)∴C=-3,∴y=ax2+bx-3,又抛物线经过点A(-1,0),对称轴为x=1,所以
∴抛物线的函数关系式为y=x2-2x-3
(2)∵点A(-1,0),对称轴为x=1,∴点B(2,0).
设直线BC的函数关系式为y=kx+b,根据题意得 
∴直线BC的函数关系式为y=-3x-3,当x=1时,y=-6,∴点P的坐标为(1,-6).
(3)如图,过点P作PD⊥OC,设P(1,y),则PE=|y|,DC=|-3-y|,
在Rt△PEB中,PB2=22+|y|2=4+y2,在Rt△PCD中PC2=12+|-3-y|2=10+6y+y2,在Rt△OBC中,BC2=32+32=18,∵∠PCD=90 ,∴PB2+PC2=BC2,∴4+y2+10+6y+y2=18,整理得y2+3y-2=0解得y1=,y2=.
22.(2010 福建德化)(12分)如图1,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为 (2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.
(1)求该抛物线的函数关系式;
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
① 当t=时,判断点P是否在直线ME上,并说明理由;
② 设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
【答案】解:(1)
(2)①点P不在直线ME上
②依题意可知:P(,),N(,)
当时,以P、N、C、D为顶点的多边形是四边形PNCD,依题意可得:
=+=+=
=
∵抛物线的开口方向:向下,∴当=,且时,=
当时,点P、N都重合,此时以P、N、C、D为顶点的多边形是三角形
依题意可得,==3
综上所述,以P、N、C、D为顶点的多边形面积S存在最大值.
23.(2010 福建晋江)(13分)已知:如图,把矩形放置于直角坐标系中,,,取的中点,连结,把沿轴的负方向平移的长度后得到.
(1)试直接写出点的坐标;
(2)已知点与点在经过原点的抛物线上,点在第一象限内的该抛物线上移动,过点作轴于点,连结.
①若以、、为顶点的三角形与相似,试求出点的坐标;
②试问在抛物线的对称轴上是否存在一点,使得的值最大.
【答案】
解:(1)依题意得:;
2) ① ∵,,∴.
∵抛物线经过原点,
∴设抛物线的解析式为
又抛物线经过点与点
∴ 解得:
∴抛物线的解析式为.
∵点在抛物线上,
∴设点.
1)若∽,则, ,解得:(舍去)或,
∴点.
2)若∽,则, ,解得:(舍去)或,
∴点.
②存在点,使得的值最大.
抛物线的对称轴为直线,设抛物线与轴的另一个交点为,则点.
∵点、点关于直线对称,

要使得的值最大,即是使得的值最大,
根据三角形两边之差小于第三边可知,当、、三点在同一直线上时,的值最大.
设过、两点的直线解析式为,
∴ 解得:
∴直线的解析式为.
当时,.
∴存在一点使得最大.
24.(2010湖南长沙)已知:二次函数的图象过点(1,0),一次函数图象经过原点和点(1,-b),其中a>b>0且a、b为实数.
(1)求一次函数的表达式(用含b的式子表示);
(2)试说明:这两个函数的图象交于不同的两点;
(3)设(2)中的两个交点的横坐标分别为、,求的范围.
【答案】解:(1)设一次函数的表达式为y=kx(k为常数,k≠0) .∵一次函数图象经过原点和点(1,-b),∴把点(1,-b),代入y=kx,得-b=k,即k =-b
.∴一次函数的表达式为y=-bx.
(2)∵二次函数的图象过点(1,0),∴a+b=2, ∴ a =2-b.
将二次函数与一次函数联立,得
整理,得(2-b)x2+2bx-2=0.
∵b>0,∴k =-b<0.
∴△=(2b)2-4(2-b)(-2)=4b2+16-8b>0.
∴这两个函数的图象交于不同的两点.
(3)∵(2)中的两个交点的横坐标分别为、,∴+=,=

∵,∵.
25.(2010湖南长沙)如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1cm的速度匀速运动.设运动时间为t秒.
(1)用t的式子表示△OPQ的面积S;
(2)求证:四边形OPBQ的面积是一个定值,并求出这个定值;
(3)当△OPQ与△PAB和△QPB相似时,抛物线经过B、P两点,过线段BP上一动点M作y轴的平行线交抛物线于N,当线段MN的长取最大值时,求直线MN把四边形OPBQ分成两部分的面积之比.
【答案】解:(1)由题意知,OQ=8-t,OP=t,
∴.
(2)由题意知,AB=OC=8,CQ= t, CB=OA=8,PA=8-t,
;
;


∴四边形OPBQ的面积是一个定值,这个定值为32.
(3)当△OPQ与△PAB和△QPB相似时,应满足.
整理,得,
解得,(不合题意).
此时P(,0),B(,8) .
因抛物线经过B、P两点,所以将B、P两点的坐标代入,得
解得
所以经过B、P两点的抛物线为.
设过B、P两点的直线为y=kx+b, 将B、P两点的坐标代入,得
解得
所以过B、P两点的直线为y=x-8.
依题得,动点M的坐标(x, x-8),N的坐标(x, )
MN=(x-8)-()=
当时,MN的长最大,此时直线MN把四边形OPBQ分成两部分的面积之比3:1.
26.(2010江苏宿迁)(本题满分12分)已知抛物线交x轴于A(1,0)、B(3,0)两点,交y轴于点C,其顶点为D.
(1)求b、c的值并写出抛物线的对称轴;
(2)连接BC,过点O作直线OE⊥BC交抛物线的对称轴于点E.
求证:四边形ODBE是等腰梯形;
(3)抛物线上是否存在点Q,使得△OBQ的面积等于四边形ODBE的面积的?若存在,求点Q的坐标;若不存在,请说明理由.
【答案】(1)求出:,,抛物线的对称轴为:x=2
(2) 抛物线的解析式为,易得C点坐标为(0,3),D点坐标为(2,-1)
设抛物线的对称轴DE交x轴于点F,易得F点坐标为(2,0),连接OD,DB,BE
∵OBC是等腰直角三角形,DFB也是等腰直角三角形,E点坐标为(2,2),
∴∠BOE= ∠OBD= ∴OE∥BD
∴四边形ODBE是梯形
在和中,
OD= ,BE=
∴OD= BE
∴四边形ODBE是等腰梯形
(3) 存在,
由题意得:
设点Q坐标为(x,y),
由题意得:=

当y=1时,即,∴ , ,
∴Q点坐标为(2+,1)或(2-,1)
当y=-1时,即, ∴x=2,
∴Q点坐标为(2,-1)
综上所述,抛物线上存在三点Q(2+,1),Q (2-,1) ,Q(2,-1)
使得=.
27.已知二次函数y=ax2+bx-3的图象经过点A(2,-3),B(-1,0).
(1)求二次函数的解析式;
(2)填空:要使该二次函数的图象与x轴只有一个交点,应把图象沿y轴向上平移
个单位.
【答案】解:(1)由已知,有,即,解得
∴所求的二次函数的解析式为.
(2) 4
28.(2010 四川南充)已知抛物线上有不同的两点E和F.
(1)求抛物线的解析式.
(2)如图,抛物线与x轴和y轴的正半轴分别交于点A和B,M为AB的中点,∠PMQ在AB的同侧以M为中心旋转,且∠PMQ=45°,MP交y轴于点C,MQ交x轴于点D.设AD的长为m(m>0),BC的长为n,求n和m之间的函数关系式.
(3)当m,n为何值时,∠PMQ的边过点F.
【答案】
解:(1)抛物线的对称轴为. 
∵ 抛物线上不同两个点E和F的纵坐标相同,
∴ 点E和点F关于抛物线对称轴对称,则 ,且k≠-2.
∴ 抛物线的解析式为.            
(2)抛物线与x轴的交点为A(4,0),与y轴的交点为B(0,4),
∴ AB=,AM=BM=.               
在∠PMQ绕点M在AB同侧旋转过程中,∠MBC=∠DAM=∠PMQ=45°,
在△BCM中,∠BMC+∠BCM+∠MBC=180°,即∠BMC+∠BCM=135°,
在直线AB上,∠BMC+∠PMQ+∠AMD=180°,即∠BMC+∠AMD=135°.
∴ ∠BCM=∠AMD.
故 △BCM∽△AMD.                   
∴ ,即 ,.
故n和m之间的函数关系式为(m>0).         
(3)∵ F在上,
   ∴ ,
  化简得,,∴ k1=1,k2=3.    
  即F1(-2,0)或F2(-4,-8).          
  ①MF过M(2,2)和F1(-2,0),设MF为,
  则   解得, ∴ 直线MF的解析式为.
  直线MF与x轴交点为(-2,0),与y轴交点为(0,1).
  若MP过点F(-2,0),则n=4-1=3,m=;
  若MQ过点F(-2,0),则m=4-(-2)=6,n=.   
  ②MF过M(2,2)和F1(-4,-8),设MF为,
  则  解得, ∴ 直线MF的解析式为.
  直线MF与x轴交点为(,0),与y轴交点为(0,).
  若MP过点F(-4,-8),则n=4-()=,m=;
  若MQ过点F(-4,-8),则m=4-=,n=.  
 故当  或时,∠PMQ的边过点F.
29. (2010 浙江衢州)(本题12分)△ABC中,∠A=∠B=30°,AB=.把△ABC放在平面直角坐标系中,使AB的中点位于坐标原点O(如图),△ABC可以绕点O作任意角度的旋转.
(1) 当点B在第一象限,纵坐标是时,求点B的横坐标;
(2) 如果抛物线(a≠0)的对称轴经过点C,请你探究:
① 当,,时,A,B两点是否都在这条抛物线上?并说明理由;
② 设b=-2am,是否存在这样的m的值,使A,B两点不可能同时在这条抛物线上?若存在,直接写出m的值;若不存在,请说明理由.
【答案】解:(1)  ∵ 点O是AB的中点, ∴ .
设点B的横坐标是x(x>0),则,
解得 ,(舍去).
∴ 点B的横坐标是.
(2) ① 当,,时,得  
(3) .
以下分两种情况讨论.
情况1:设点C在第一象限(如图甲),则点C的横坐标为,

由此,可求得点C的坐标为(,),
点A的坐标为(,),
∵ A,B两点关于原点对称,
∴ 点B的坐标为(,).
将点A的横坐标代入(*)式右边,计算得,即等于点A的纵坐标;
将点B的横坐标代入(*)式右边,计算得,即等于点B的纵坐标.
∴ 在这种情况下,A,B两点都在抛物线上.  
情况2:设点C在第四象限(如图乙),则点C的坐标为(,-),
点A的坐标为(,),点B的坐标为( ( ),).
经计算,A,B两点都不在这条抛物线上.    
(情况2另解:经判断,如果A,B两点都在这条抛物线上,那么抛物线将开口向下,而已知的抛物线开口向上.所以A,B两点不可能都在这条抛物线上)
② 存在.m的值是1或-1.(,因为这条抛物线的对称轴经过点C,所以-1≤m≤1.当m=±1时,点C在x轴上,此时A,B两点都在y轴上.因此当m=±1时,A,B两点不可能同时在这条抛物线上)
P
B
O
y
x
A
1
-2
1
B
O
y
x
A
·
x
y
P
D
C
B
A
(第10题)
B.
1
1
x
y
O
D.
1
1
x
y
O
C.
1
1
x
y
O
A.
1
1
x
y
O
(第10题)
O
x
y
x
x
x
x
x
M
C
Q
E
D
O
M
N
H
A
C
E
F
D
B


-8
(-6,-4)
x
y
(第6题)
(第6题)
A
D
B
C
F

E

图(1)
A
D
B
C
F
E
图(2)
P
Q
A
B
C
图(3)
图(2)
Q
A
D
B
C
F
E
P
M
C
E
A
D
B
F
图(3)
P
Q
N
A
B
D
C
M
N
图 ①
C
图 ②
A
B
D
M
F
E
G
A
图 ③
C
D
B
O
x
y
A
备用图
C
D
B
O
x
y
A
B
D
C
M
N
图 ①
E
F
H
C
图 ②
A
B
D
M
F
E
G
K
A
图 ③-1
C
D
B
O
x
y
H P
G
F
P
E
A
图③-3
C
D
B
O
x
y
H P
G
F
P
E
A
图③-2
C
D
B
O
x
y
H P
G
F
P
E
第10题图
A
B
x
G
F
M
H
E
N
Q
O
D
C
y
(第13题)
(第13题)
(第13题 备用)
(第14题)
第15题图1
第24题图2
第24题图3
图4
C
B
A
O
y
x
图1-1
D
M
E
P
Q
F
G
C
B
A
O
y
x
图1-2
D
M
E
F
P
Q
G
19题答图①
19题答图②
19题答图③
E
图2
B
C
O
A
D
E
M
y
x
P
N
·
图1
B
C
O
(A)
D
E
M
y
x
A
O
x
B
C
M
y
A
O
x
D
B
C
M
y
E
P
T
Q
E
F
Q1
Q3
Q2
B
A
M
C
D
O
P
Q
x
y
O
y
x
C
B
A
1
1
-1
-1
O
y
x
C
B
A
(甲)
1
1
-1
-1
O
y
x
C
B
A
(乙)
1
1
-1
-1
第 1 页 共 45 页4.3角
一、选择题
1.(2010福建福州)下面四个图形中,能判断∠1>∠2的是( )
A. B. C. D.
【答案】D
2.(2010山东临沂)如果,那么的余角的度数是
(A)30° (B)60° (C)90° (D)120°
【答案】C
3.(2010广东佛山)30°角的补角是
A.30°角 B. 60°角 C. 90°角 D. 150°角
【答案】D
4.(2010云南曲靖)从3时到6时,钟表的时针旋转角的度数是( )
A.300 B.600 C.900 D.1200
【答案】C
5.(2010广东湛江)已知∠1=35°,则∠1的余角的度数是( )
A. 55° B. 65° C.135 ° D. 145°
【答案】A
6.(2010广西百色)已知∠A=37°,则∠A的余角等于( )
A. 37° B. 53° C. 63° D. 143°
【答案】B
二、填空题
1.(2010 福建晋江)若, 则的余角等于    度.
【答案】 55
2.(2010湖南长沙)如图,O为直线AB上一点,则∠1= 度.
【答案】63°30′
3.(2010江苏徐州)若=36°,则∠的余角为______度.
【答案】54
4.(2010内蒙呼和浩特)8点30分时,钟表的时针与分针的夹角为 °.
【答案】75
第 2 页 共 2 页