(北师大版必修5)数学:3 解三角形的实际应用举例(1)教案

文档属性

名称 (北师大版必修5)数学:3 解三角形的实际应用举例(1)教案
格式 rar
文件大小 187.8KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2010-09-28 20:15:00

图片预览

文档简介

本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
§3 解三角形的实际应用举例(1)
教学目标
1、掌握正弦定理、余弦定理,并能运用它们解斜三角形。
2、能够运用正弦定理、余弦定理进行三角形边与角的互化。
3、培养和提高分析、解决问题的能力。
教学重点难点
1、正弦定理与余弦定理及其综合应用。
2、利用正弦定理、余弦定理进行三角形边与角的互化。
教学过程
一、复习引入
1、正弦定理:
2、余弦定理:

二、例题讲解
引例:我军有A、B两个小岛相距10海里,敌军在C岛,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,为提高炮弹命中率,须计算B岛和C岛间的距离,请你算算看。
解: ∴
由正弦定理知
海里
例1.如图,自动卸货汽车采用液压机构,设计时需要计算油泵顶杆BC的长度(如图).已知车厢的最大仰角为60°,油泵顶点B与车厢支点A之间的距离为1.95m,AB与水平线之间的夹角为,AC长为1.40m,计算BC的长(保留三个有效数字). 21世纪教育网
分析:这个问题就是在中,已知AB=1.95m,AC=1.4m,
求BC的长,由于已知的两边和它们的夹角,所以可
根据余弦定理求出BC。
解:由余弦定理,得
[来源:21世纪教育网]
答:顶杠BC长约为1.89m.
解斜三角形理论应用于实际问题应注意:
1、认真分析题意,弄清已知元素和未知元素。
2、要明确题目中一些名词、术语的意义。如视角,仰角,俯角,方位角等等。
3、动手画出示意图,利用几何图形的性质,将已知和未知集中到一个三角形中解决。21世纪教育网
21世纪教育网
练1.如图,一艘船以32海里/时的速度向正北航行,在A处看灯塔S在船的北偏东, 30分钟后航行到B处,在B处看灯塔S在船的北偏东方向上,求灯塔S和B处的距离.(保留到0.1)
解:
由正弦定理知
海里
答:灯塔S和B处的距离约为海里
例2.测量高度问题
如图,要测底部不能到达的烟囱的高AB,从与烟囱底部在同一水平直线上的C,D两处,测得烟囱的仰角分别是和, C、D间的距离是12m.已知测角仪器高1.5m.求烟囱的高。
图中给出了怎样的一个几何图形?已知什么,求什么?
分析:因为,又
所以只要求出即可
解:在中,

由正弦定理得:
从而:
因此:
答:烟囱的高约为
练习:在山顶铁塔上处测得地面上一点的俯角,在塔底处测得点的俯角,已知铁塔部分高米,求山高。
解:在△ABC中,∠ABC=30°,
∠ACB =135°,
∴∠CAB =180°-(∠ACB+∠ABC)
=180°-(135°+30°)=15°
又BC=32, 21世纪教育网
由正弦定理
得:
课堂小结
1、本节课通过举例说明了解斜三角形在实际中的一些应用。
掌握利用正弦定理及余弦定理解任意三角形的方法。
2、在分析问题解决问题的过程中关键要分析题意,分清已知
与所求,根据题意画出示意图,并正确运用正弦定理和余
弦定理解题。
3、在解实际问题的过程中,贯穿了数学建模的思想,其流程
图可表示为:
画图形
数学模型
实际问题
解三角形
检验(答)
实际问题的解
数学模型的解
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网