本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
第一章 整式的运算
●课时安排
18课时
第一课时
●课 题
§1.1 整式
●教学目标
(一)教学知识点
1.在现实情景中进一步理解用字母表示数的意义,发展符号感.
2.了解整式产生的背景和整式的概念,能求出整式的次数.
(二)能力训练要求
1.能从具体情景中抽象出数量关系和变化规律,使学生经历对具体问题的探索过程,培养符号感.
2.进一步培养学生认识特殊与一般的辩证关系.
(三)情感与价值观
通过丰富有趣的现实情景,使学生经历从具体问题中抽象出数量关系,在解决问题中了解数学的价值,发展“用数学”的信心.
●教学重点
单项式的系数、次数,多项式的项数、次数等概念.
●教学难点
对整式有关概念的理解.
●教学方法
讲授——自主探索相结合.
通过学生自主探索现实情景中用字母表示数的问题,认识代数式的作用.在此基础上,通过教师讲解,掌握整式的有关概念.
●教具准备
1.教师所用三角板. 小黑板
●教学过程
Ⅰ.创设问题情景,引入新课
[师]在七年级上册中,我们已经学习了用字母表示数,代数式等内容,这节课我们进一步认识代数式的表示作用.
例如:很多小城镇里都有水塔,水塔可以用来储水,维持水压,每天水都不停地流进和流出水塔.一般地,白天,当人们从事生产活动时,流出水塔的水比流进水塔的水多;夜晚,当人们休息时,流进水塔的水比流出的水多.
(1)如果水以每小时a升的速度流进水塔,那么4小时后,流进水塔多少升水,若a=20000升,计算一下结果;
(2)如果水以每小时a升的速度流进水塔,同时又以每小时b升的速度流出水塔,那么4小时后,水塔里的储水量变化了多少?
[生](1)4小时后,流进水塔的水为4a升;当a=20000升时,4小时后,流进水塔的水为:4a=4×20000=80000升;
(2)4小时后,水塔里的储水量变化了(4a-4b)升.
[师]在上述问题中列出的代数式4a,4a-4b都是整式,这节课我们就来学习整式的概念.
Ⅱ.在实际情景中,明确整式的有关概念
出示投影片(§1.1 A):问题串
小明房间的窗户如图1-1所示,其中上方的装饰物由两个四分之一圆和一个半圆组成(它们的半径相同).
图1-1
(1)装饰物所占的面积是多少?
(2)窗户中能射进阳光的部分的面积是多少?(窗框面积忽略不计)
(3)一个塑料三角尺如图1-2所示,阴影部分所占的面积是 ;
图1-2
(4)某校学生总数为x,其中男生人数占总数的,男生人数为 ;
(5)一个长方体的底面是边长为a的正方形,高是h,体积是 .
[师生共析](1)装饰物是由两个四分之一圆和一个半圆组成,它们的半径相同,由图中的已知条件可知半径为,所以装饰物所占的面积恰好是半径为的一个圆的面积即;
(2)窗户中能射进阳光的部分的面积应该是窗户的面积与装饰物所占面积的差即ab-;
(3)塑料三角尺阴影部分所占的面积是ab-mn;
(4)男生人数为x;
(5)这个长方体的体积是a2h.
[师]我们观察上面列出的几个代数式可以发现:4a, ,x,a2h等,都是数字与字母的乘积.例如4a是4与a的积,是与b2的积,x是与x的积,a2h是1与a2h的积.像这样的代数式我们把它们都叫做单项式(monomial).其中的数字因式如“4”“”“”“1”是单项式的系数.
一个单项式中,所有字母的指数和叫做这个单项式的次数.
哪位同学能给我分析一下上面几个单项式的次数呢?
[生]4a的次数是1次;b2的次数是2次;x的次数是1次;a2h的次数是3次.
[师]很好!你能给大家解释一下a2h这个单项式的次数为什么是3次吗?
[生]这是因为a2h这个单项式中含字母a和h.而a的指数是2,h的指数是1,所有字母的指数和当然是1+2=3喽.
[师]这位同学很仔细,h的指数是1,这一点很容易被部分同学误认为是0.h的指数应是1,只不过作为指数时省略不写,你还能回忆起什么时候“1”可以省略不写吗?
[生]“1”作为系数时,“1”作为一个字母的指数时,“1”作为分母时.
[师]同学们总结的很好.
[生]单独的一个数或一个字母是单项式吗?
[师]是.单独的一个字母a,我们可以看成1·a,所以单独的一个字母系数是1,次数也是1,单独的一个非零的数的次数是0.
[生]这就是说,我们学过的所有有理数都是单项式.
[师]是的.
[生]代数式4a-4b,ab-b2,ab-mn,它们是什么样的式子呢?
[师]代数式4a-4b是单项式4a,-4b的和,像这样的几个单项式的和所形成的代数式,我们把它叫做多项式.请问:ab-b2,ab-mn是哪些单项式的和呢?
[生]ab-b2这个多项式是ab与-b2的和;ab-mn是ab与-mn的和.
[师]所以我们说ab-b2这个多项式有两项,分别是ab,-b2.x2y+2y-1有几项呢?
[生]x2y+2y-1有三项,分别是x2y,2y,-1.
[师]每一项的次数是多少呢?
[生]x2y次数是3次,2y的次数是1次,-1的次数是0.
[师]在一个多项式中,次数最高项的次数,叫做这个多项式的次数. x2y这一项在x2y+2y-1中次数最高,因此我们把x2y的次数3作为多项式x2y+2y-1的次数,即x2y+2y-1是一个三次三项式.那么ab-b2, ab-mn是几次几项式呢?
[生]它们都是二次二项式.
[师]我们刚才讨论了单项式和多项式,而且还知道了单项式的系数、次数;多项式的项数、次数.我们也就知道了整式,因为单项式和多项式统称为整式.研究单项式、多项式就是在研究整式.
在研究单项式和多项式的概念时,我们注意到在数字和字母之间只出现了乘法、加法、减法(可转化为加法)的运算,没有出现2÷x即,或x÷2即这样的式子,那么,是整式吗?同学们不妨讨论一下.
[师生共析]可以写成·x,所以是单项式,而是数字与字母的商,所以不是单项式,更不是整式,所以整式最显著的特征是字母不能作分母.
Ⅲ.议一议
出示投影片(§1.1 B)
小红和小兰房间窗户的装饰物如图1-3所示,它们分别由两个四分之一圆和四个半圆组成(半径分别相同).
图1-3
(1)窗户中能射进阳光的部分的面积分别是多少?(窗框面积忽略不计)
(2)你能指出其中的单项式或多项式吗?它们的次数分别是多少?
[生]左图小红房间的装饰物所占的面积相当于半径为的圆的面积的一半,即b2.窗户中能射进阳光的部分的面积为ab-b2.
右图小兰房间的装饰物所占面积是半径为的两个小圆的面积,即2×b2=b2.窗户中能射进阳光的部分的面积是ab-b2.
[生]ab-b2和ab-b2它们都是多项式,且次数都是2次.
Ⅳ.练一练
1.随堂练习(课本P4)
下列整式哪些是单项式,哪些是多项式?它们的次数分别是多少?
a,-x2y,2x-1,x2+xy+y2
解:单项式:a,-x2y;次数分别是1次和3次.
多项式:2x-1,x2+xy+y2;次数分别是1次和2次.
2.补充练习
(1)下列说法正确的是( )
A.单项式A的系数是0
B.单项式a的次数是0
C.是单项式
D.1是单项式
(2)关于2×103·a,下列说法中正确的是( )
A.系数是2,次数是1
B.系数是2,次数是4
C.系数是2×103,次数是0
D.系数是2×103,次数是1
(3)已知出租汽车行驶3千米以内(包括3千米)的车费是7元,以后每行驶1千米,再加1元.如果某人坐出租汽车行驶了m千米(m是整数,且m≥3),则车费是( )
A.(7+m)元 B.(4+m)元
C.(7-m)元 D.(3+m)元
(4)下列各式中,哪些是单项式?哪些是多项式?哪些不是整式?
-2a2,xy,(m-n),0,,1+,x2++1,x
(5)写出系数是,含有字母a、b、c的五次单项式.
解:(1)D (2)D (3)B
(4)单项式:-2a2,xy,0,x;
多项式:(m-n),1+;
不是整式:,x2++1
(5) a3bc, a2b2c, a2bc2, ab2c2, ab3c, abc3.
Ⅵ.课时小结
这节课我们主要学习了整式的概念,特别整式中单项式和多项式的次数.在现实情景中进一步理解了用字母表示数的意义,发展符号感.
Ⅶ.课后作业
课本P5 习题1.1问题解决1
其它题做为课外作业
Ⅷ.活动与探究
已知多项式3xn-2-2xn-xn+1是四次三项式,则单项式(2-n)xn-1yn+1的系数、次数分别是多少?
[过程]根据多项式次数的定义,可以确定n的值.因为n+1,n,n-2相比较,n+1最大,所以n+1=4,n=3.把n=3代入(2-n)xn-1·yn+1中,单项式的系数、次数都可以确定.
[结果]根据题意,得n+1=4,n=3;把n=3代入(2-n)xn-1yn+1中得单项式-x2y4.所以-x2y4的系数为-1,次数为6次.
●板书设计
§1.1 整式
1.单项式:数和字母的积的代数式为单项式
①单项式的系数:单项式中的数字因数;
②单项式的次数:单项式中所有字母的指数和;
③单独的一个数和一个字母也是单项式;
④单独的一个非零数次数是0.
2.多项式:几个单项式的和
在一个多项式中,次数最高项的次数叫做多项式的次数.
3.课堂练习:(由学生口答)
第二课时
§1.2.1 整式的加减(一)
●教学目标
(一)教学知识点
1.经历用字母表示数量关系的过程,发展符号感.
2.会进行整式加减运算,并能说明其中的算理.
(二)能力训练要求
1.在进行整式加减运算的过程中,发展学生有条理的思考及语言表达能力.
2.在实际情景中,进一步发展学生的符号感.
(三)情感与价值观要求
1.在解决问题的过程中了解数学的价值,发展“用数学”的信心.
2.在解决问题的过程中,获得成就感,培养学习数学的兴趣.
●教学重点
1.经历字母表示数的过程,发展符号感.
2.会进行整式加减运算,并能说明其中的算理.
●教学难点
灵活地列出算式和去括号.
●教学方法
活动——讨论法
教师利用活动游戏或根据情况创设情景,鼓励学生通过讨论发现数量关系,运用符号进行表示,再利用所学的合并同类项、去括号的法则验证自己的发现,从而理解整式加减运算的算理.
●教具准备
小黑板
●教学过程
Ⅰ.提出问题,引入新课
[师]下面我们先来做一个游戏:
(1)任意写一个两位数;
(2)交换这个两位数的十位数字和个位数字,又得到一个数;
(3)求这个两位数的和.
[生]我取了一个两位数12;交换这个两位数的十位数字和个位数字,又得到数21;求得这两个数的和是33.
我又取了一个两位数29;交换个位和十位上的数字得到92;求得这两个数的和是121.
最后,我取了一个两位数31;交换个位和十位上的数字得到13;求得这两个数的和是44.
观察可以发现这些和都是11的倍数.例如33是11的3倍,121是11的11倍,44是11的4倍.
[师]这个规律是不是对任意的两位数都成立呢?为什么?
(鼓励同伴之间互相讨论,相互启发)
[生]对于任意一个两位数,我们可以用字母表示数的形式表示出来,设a、b分别表示两位数十位上的数字和个位上的数字,那么这个两位数可以表示为:10a+b.交换这个两位数的十位数字和个位数字,就得到一个新的两位数是:10b+a.
这两个数相加:(10a+b)+(10b+a)=10a+b+10b+a=(10a+a)+(b+10b)=11a+11b
根据运算的结果,可知一个两位数,交换它十位和个位上数字,得到一个新两位数,这两数的和是11的倍数.
[师]很棒!(10a+b)+(10b+a)是什么样的运算呢?10a+b与10b+a都是什么样的代数式?
[生]10a+b与10b+a是多项式,也就是整式,因此(10a+b)+(10b+a)是整式的加法.
[师]如果要是求这两个数的差,又如何列出计算的式子呢?
[生](10a+b)-(10b+a).
[师]这就是整式的减法.你能发现它们的差有何规律吗?
[生](10a+b)-(10b+a)=10a+b-10b-a=(10a-a)+(b-10b)=9a-9b
由此可知,这两个数的差是9的倍数.
[师]我们借助于整式的加减法将实际问题中的数量关系用字母表示出来,并发现了其中的规律.
在说明(10a+b)+(10b+a)是11的倍数时,每一步的依据的法则是什么呢?(10a+b)-(10b+a)是9的倍数呢?
[生]第一步的依据是去括号法则;第二步是合并同类项法则.
[师]从上面的例子中可以发现整式的加减法可以帮我们解决实际情景中的问题.因此,我们这节课就来学习整式的加减.
Ⅱ.合作讨论新课,学会运算整式的加减
1.做一做
图1-6
两个数相减后,结果有什么规律?这个规律对任意一个三位数都成立吗?为什么?
[师]同学们先来按照上面所示的框图的步骤来讨论一下两个数相减后,结果有什么规律?
[生]任取一个三位数,经过上述程序后结果一定是99的倍数.
[师]是不是任意的三位数都有这样的规律呢?首先我们先要设出一个任意的三位数.如何设呢?
[生]可以设百位、十位、个位上的数字分别为a,b,c,则这个三位数为100a+10b+c.
[师]任意的一个三位数为100a+10b+c,接下来我们按照框图所示的步骤可得:交换百位和个位上的数字就得到一个新数,是什么呢?
[生]100c+10b+a.
[师]两个数相减,可得到一个算式为什么呢?
[生](100a+10b+c)-(100c+10b+a).
[师]为什么在上面的算式中要加上括号呢?
[生]“两个数相减”,而这两个三位数,我们都是用多项式表示出来的,每一个多项式,它都是一个整体,因此需加括号.
[师]这一点很重要,如何说明这个差就是99的倍数呢?
[生]化简可得,即(100a+10b+c)-(100c+10b+a)=100a+10b+c-100c-10b-a=(100a-a)+(10b-10b)+(c-100c)=99a-99c
也就是说任意一个三位数,经过上述程序后结果一定是99的倍数.
2.议一议
[师]在上面的问题中,涉及到整式的什么运算?说一说你计算的每一步依据?
[生]在上面的问题中,我们涉及到整式的加减法.在进行整式的加减时,我们先去括号,再合并同类项.
[师]在去括号和合并同类项时应注意什么呢?
[生]我们上学期已学习过去括号和合并同类项.去括号时,特别要注意括号前面是“-”号的情况,去掉“-”号和括号时,里面的各项都需要变号;合并同类项时,先判断哪些项是同类项,利用加法结合律和合并同类项的法则即可完成.
3.例题讲解
[例1]计算
(1)2x2-3x+1与-3x2+5x-7的和
(2)(-x2+3xy-y2)-(-x2+4xy-y2)
(这样的题目,我们已经训练过,因此可让学生自己完成,叫两个同学板演,同时教师深入到学生之中进行观察,对于发现的问题,可以通过让学生表达算理即去括号法则和合并同类项法则,自纠自改)
解:(1)(2x2-3x+1)+(-3x2+5x-7)
=2x2-3x+1-3x2+5x-7
=2x2-3x2-3x+5x+1-7
=-x2+2x-6
(2)(-x2+3xy-y2)-(-x2+4xy-y2)
=-x2+3xy-y2+x2-4xy+y2
=-x2+x2+3xy-4xy-y2+y2
=-x2-xy+y2
注:1°列算式时,每一个多项式表示的是一个整体,因此必须加括号.
2°在第(2)小题中,去括号要注意符号问题.
[例2](1)已知A=a2+b2-c2,B=-4a2+2b2+3c2,且A+B+C=0,求C.
(2)已知xy=-2,x+y=3,求代数式
(3xy+10y)+[5x-(2xy+2y-3x)]的值.
分析:(1)可用逆运算来代入求解;
(2)求代数式的值,一般是先化简,再求值,这个地方应注意整体代入.
解:(1)根据A+B+C=0,可得C=-A-B
即C=-(a2+b2-c2)-(-4a2+2b2+3c2)
=-a2-b2+c2+4a2-2b2-3c2
=-a2+4a2-b2-2b2+c2-3c2
=3a2-3b2-2c2
(2)原式=3xy+10y+[5x-2xy-2y+3x]
=3xy+10y+5x+3x-2xy-2y
=3xy-2xy+10y-2y+5x+3x
=xy+8x+8y
=xy+8(x+y)
当xy=-2,x+y=3时
原式=xy+8(x+y)=-2+8×3
=-2+24=22.
Ⅲ.随堂练习
出示投影片(§1.2.1 C)
1.计算:(1)(4k2+7k)+(-k2+3k-1)
(2)(5y+3x-15z2)-(12y-7x+z2)
2.解下列各题
(1)-5ax2与-4x2a的差是 ;
(2) 与4x2+2x+1的差为4x2;
(3)-5xy2+y2-3与 的和是xy-y2;
(4)已知A=x2-x+1,B=x-2,则2A-3B= ;
(5)比5a2-3a+2多a2-4的数是 .
1.解:(1)原式=4k2+7k-k2+3k-1
=4k2-k2+7k+3k-1
=3k2+10k-1
(2)原式=5y+3x-15z2-12y+7x-z2
=5y-12y+3x+7x-15z2-z2
=-7y+10x-16z2
2.解:(1)-5ax2-(-4x2a)
=-5ax2+4ax2
=-ax2;
(2)设所求整式为A,则
A-(4x2+2x+1)=4x2
A=4x2+4x2+2x+1=8x2+2x+1;
也可根据:被减式=差+减式,列式求解.
(3)(xy-y2)-(-5xy2+y2-3)
=xy-y2+5xy2-y2+3
=xy+5xy2-2y2+3
(4)2A-3B=2(x2-x+1)-3(x-2)
=2x2-2x+2-3x+6
=2x2-5x+8
(5)设这个数为A,则
A-(5a2-3a+2)=a2-4
A=(a2-4)+(5a2-3a+2)=a2-3a-2
注:在上述求解的过程中,可利用逆运算来求解.
Ⅳ.课时小结
[师]这节课我们学习了整式的加减,你有何收获和体会呢?
[生]在实际情景中,利用整式的加减发现了一般规律,使我们认识到学习整式加减的重要性.
[生]整式加减运算的步骤是遇到括号先去括号,再合并同类项.
[生]在去括号时,特别注意括号前是“-”号的情况.
……
Ⅴ.课后作业
1.课本P8、习题1.2,第1、2、3题;
2.自己设计一个数字游戏,并用整式加减运算说明其中的规律.
●板书设计
§1.2.1 整式的加减(一)
一、做一做,议一议
二、练一练
(由学生板演)
注:1°括号前是“-”号,去掉“-”号和括号,里面的各项都变号;
2°在列算式时,突出括号的整体作用;
3°在求解一些整式时,注意用逆运算或方程的思想.
●备课资料
一、参考例题
[例1]已知A+B=3x2-5x+1,A-C=-2x+3x2-5,当x=2时,求B+C的值.
解:B+C=(A+B)-(A-C)=(3x2-5x+1)-(-2x+3x2-5)=3x2-5x+1+2x-3x2+5=-3x+6
当x=2时,原式=-3x+6=-3×2+6=0
评述:先观察分析到B+C=A+B-A+C=(A+B)-(A-C)是解本题的关键.因此,一定要先观察,再分析.
[例2]已知有理数a、b、c如图1-7所示,化简|a+b|-|c-a|.
图1-7
解:由已知得:a<0,b>0,c<0且|a|<|b|,|c|>|a|,所以a+b>0,c-a<0.
|a+b|-|c-a|=(a+b)-[-(c-a)]=a+b+c-a=b+c
评述:要化简掉绝对值符号,必须判定被绝对值的数的正负,然后由绝对值定义化掉绝对值符号.
[例3]已知=2,求代数式的值.
解:由=2,得xy=2(x+y)
=
===-.
评述:此题运用了“整体”代换的思想,把xy和x+y分别看作“整体”,添括号在形成“整体”的过程中起了很重要的作用.
[例4]三角形的周长为48,第一边长为3a+2b,第二边长的2倍比第一边少a-2b+2,求第三边长.
解:根据题意,得
48-(3a+2b)-[(3a+2b)-(a-2b+2)]
=48-3a-2b-[3a+2b-a+2b-2]
=48-3a-2b-[2a+4b-2]
=48-3a-2b-a-2b+1
=49-4a-4b
所以第三边的长为49-4a-4b.
评述:先求出第二边,利用等式第二边×=第一边-(a-2b+2),求得第二边为[(3a+2b)-(a-2b+2)]再利用三角形的周长即可解出答案.
第三课时
§1.2.2 整式的加减(二)
●教学目标
(一)教学知识点
1.在探索规律的过程中,进一步体会符号表示的意义.
2.经历“由特殊的例子进行归纳、建立、猜想、用符号表示,并给出证明”这一重要的数学探索过程.
3.体会整式加减的必要性,并进一步熟练整式加减运算,并用它来比较不同的算法.
(二)能力训练要求
1.在进一步体会符号表示的意义的同时,发展符号感.
2.在探索过程中发展推理能力和运算能力.
(三)情感与价值观要求
1.学会与同学合作交流,在合作交流的过程中获益.
2.在探索规律的过程中,获得成功的体验,增强学数学的信心.
●教学重点
1.进一步在探索规律的过程中,发展符号感.
2.体会整式加减运算的必要性,熟练掌握整式加减运算.
3.经历“由特例归纳、建立猜想、用符号表示,并给出证明”这一重要的数学探索过程.
●教学难点
利用整式的加减运算,解决简单的实际问题.
●教学方法
探究——交流法
教师让学生在探究规律的过程中,学会交流、合作,并能用整式的加减来解决生活中简单问题.
● 教具准备
小黑板
●教学过程
Ⅰ.创设问题情景,引入新课
让学生看课本回答
1.为什么总是1089?
用不同的三位数再做几次,结果都是1089吗?你能发现其中的原因吗?
图1-8
[师]我们来做上面的数字游戏,取满足条件的一个三位数,按图示所给定的程序运算,结果是1089吗?然后用不同的满足条件的三位数再做几次,结果一样吗?请同学们独立完成然后回答.
[生]我试了几个数,结果都是1089.
[师]你能解释其中的原因吗?
[生]根据题意,可设个位上的数字是a,十位上的数字是b,百位上的数字则为(a+2),所以这个三位数为100(a+2)+10b+a.交换百位上的数字与个位上的数字,可得到一个较小的三位数即100a+10b+(a+2).按图示所给定程序,得[100(a+2)+10b+a]-[100a+10b+(a+2)]=100a+200+10b+a-100a-10b-(a+2)=100a-100a+10b-10b+200+a-a-2=200-2=198
即按照给定的程序的前三步,运算结果都为198,这样,继续程序的后两步可得到1089.也就是任何一个满足条件的三位数,按照题目给定的顺序,结果总是1089.
[师]真棒!我们已学会了用整式的加减运算解释这一实际情景,用整式的加减运算还能解释哪些现象呢?这一节课,我们继续来学习整式的加减运算及它的应用.
Ⅱ.探索规律,体会整式运算的必要性
下面是用棋子摆成的“小屋子”.
摆第1个“小屋子”需要5枚棋子,摆第2个需要 枚棋子,摆第3个需要 枚棋子.
图1-9
按照这样的方式继续摆下去.
(1)摆第10个这样的“小屋子”需要多少枚棋子?
(2)摆第n个这样的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解决这个问题吗?与同伴进行交流.
(教师教学中要鼓励学生独立思考的基础上探索出规律.鼓励学生算法多样化,并可实际操作探索规律)
[生]实际操作可以发现摆后面一个“小屋子”,总比它前面一个多用6枚棋子.摆第2个“小屋子”需要(5+6)枚即11枚棋子,摆第3个需要(5+6×2)枚即17枚棋子,……摆第10个这样的“小屋子”需要(5+6×9)枚即59枚棋子.进而可以概括出摆第n个“小屋子”需用5+6(n-1)=6n-1枚棋子.
[师]很好.这位同学能抓住图形变化的规律.有没有别的方法呢?
[生]通过观察还可以发现,摆前几个“小屋子”分别用的棋子数5,11,17,23,从而也概括出规律来,即摆第n个这样的“小屋子”需要(6n-1)枚棋子.
[生]老师,我也有一种方法,将图1-9的“小屋子”拆成上下两部分,上面部分是一个“三角形”(第一个为一个点),下面部分可以看成一个“正方形”,摆第n个“小屋子”分别需要2n-1和4n枚棋子(如图1-10).
图1-10
这样摆第n个“小屋子”共用的棋子数为(2n-1)+4n=6n-1.
[师]很好!有的同学对数敏感,通过数棋子数发现了规律;有的同学对图形的组成比较敏感,将图分成两部分(上面部分是“三角形”,下面部分是“正方形”)发现了规律.最后都推出第n个这样的“小屋子”需(6n-1)枚棋子.我相信同学们一定还有其他的办法.下面同学们可相互交流各自的想法,或许你会有新的发现.
(教师鼓励学生充分交流,并引导学生认真倾听他人的想法)
Ⅲ.例题讲解
[例1]计算:
(1)(3a2b+ab2)-(ab2+a2b)
(2)7(p3+p2-p-1)-2(p3+p)
(3)-(+m2n+m3)-(-m2n-m3)
[师]该例题是整式加减的运算,我们该如何进行整式的加减呢?
[生]如果遇到有括号,应先去括号,然后再合并同类项.
[师]下面我们就请三位同学到黑板上解答.其余同学来对他们的解答作出评价.
[生]解:(1)(3a2b+ab2)-(ab2+a2b)
=3a2b+ab2-ab2-a2b
=2a2b-ab2;
(2)7(p3+p2-p-1)-2(p3+p)
=7p3+7p2-7p-7-2p3-2p
=5p3+7p2-9p-7;
(3)-(+m2n+m3)-(-m2n-m3)
=--m2n-m3-+m2n+m3
=-1
[生]这三个同学做得都很好.特别是括号前是“-”号,容易出现变号问题.但这三个同学步骤清楚,符号处理准确无误.
[师]祝贺他们!大家知道我们学习数的加法运算,除可列算式外,还可以列竖式.整式的加减法可不可以列竖式.
Ⅳ.试一试(课本P11)
求多项式2a+3b-5c与-4a-11b+8c的和时,可以利用竖式的方法:
利用这种方法计算下列各题.计算过程中需要注意什么?
(1)(5x2+2x-7)-(6x2-5x-23)
(2)(a3-b3)+(2a3-b2+b3)
[师]同学们先阅读用竖式求两个整式的和的方法,然后试着回答在计算过程中需要注意什么?
[生]列竖式时要注意每个整式中的同类项要对齐.
[师]下面我们就用竖式的方法求出上面两个小题.
[生]解:(1)列成竖式为: (2)列成竖式为:
Ⅴ.练一练(P?10、随堂练习)
1.火车站和飞机场都为旅客提供“打包”服务.如果长、宽、高分别为x、y、z米的箱子按如图1-11所示的方式“打包”,至少需要多少米的“打包”带?(其中灰色线为“打包”带)
图1-11
2.某花店一枝黄色康乃馨的价格是x元,一枝红色玫瑰的价格是y元,一枝白色百合的价格是z元,下面这三束鲜花的价格各是多少?这三束鲜花的总价是多少元?
图1-12
解:1.由图可知:至少需要(2x+4y+6z)米的打包带.
2.第(1)束鲜花的价格为(3x+2y+z)元;
第(2)束鲜花的价格为(2x+2y+3z)元;
第(3)束鲜花的价格为(4x+3y+2z)元.
这三束花的总价钱为:
(3x+2y+z)+(2x+2y+3z)+(4x+3y+2z)=3x+2y+z+2x+2y+3z+4x+3y+2z=9x+7y+6z(元)
Ⅵ.课时小结
[师生共同总结]这节课我们主要学习了如下内容:
(1)在探索规律的问题中进一步体会符号表示的意义,发展符号感;
(2)经历了“由特例进行归纳、建立猜想、用符号表示,并给出证明”这一重要的数学探索过程,发展了推理能力;
(3)体会整式加减运算的必要性,并运用整式加减比较不同的算法.
Ⅶ.课后作业
课本习题1.3,第1、2题
●板书设计
§1.2.2 整式的加减(二)
一、数字游戏
解:设百位数字为a+2,十位数字为b,个位数字为a,根据图示程序,得:
[100(a+2)+10b+a]-[100a+10b+(a+2)]
=100a+200+10b+a-100a-10b-a-2
=200-2=198
最后两步程序,得198+891=1089
因此满足条件的三位数按图示程序最后总能得到1089.
二、探索规律(投影片§1.2.2 B)
方法一:第1个共5个棋子;
第2个共(5+6)个棋子;
第3个共(5+2×6)个棋子;
……
第n个共5+6(n-1)个棋子,即(6n-1)个棋子.
方法二:由5、11、17……可归纳出第n个共有(6n-1)个棋子.
方法三:将“小屋子”分成两部分,也可推出第n个“小屋子”共有(2n-1)+4n=(6n-1)个棋子.
三、例题(§1.2.2 C)
(学生板演)
四、练一练(§1.2.2 D)
五、课时小结
●备课资料
一、参考练习
1.a2b-(-3ab2)+(-4a2b)-2ab2= ;
2.(a3-ab2)+(ab2-a3)= ;
3.2x3-3x2+5x-1+ =-x2+6x+3;
4. -(2x2+3x-5)=3x2-2x+1;
5.当x=-2时,代数式ax3+bx-7的值是+5;则当x=2时,代数式ax3+bx-7的值是 .
6.求下列各式的值
(1)求当a=-1,b=-3,c=1时,代数式a2b-[a2b-(3abc-a2c)-4a2c]-3abc的值;
(2)如果|y-3|+(2x-4)2=0,求2x-y的值.
7.已知A=x3+x2+x+1,B=x+x2,计算
(1)A+B (2)B+A (3)A-B
(4)B-A
8.长方形的一边等于2a+3b,另一边比它小b-a,计算长方形的周长.
答案:1.ab2-3a2b
2.0
3.-2x3+2x2+x+4
4.5x2+x-4 5.-19
6.(1)6 (2)1
7.(1)x3+2x2+2x+1
(2)x3+2x2+2x+1
(3)x3+1 (4)-x3-1
8.10a+10b
第四课时
●课 题
§1.3 同底数幂的乘法
●教学目标
(一)教学知识点
1.经历探索同底数幂的乘法运算性质的过程,进一步体会幂的意义.
2.了解同底数幂乘法的运算性质,并能解决一些实际问题.
(二)能力训练要求
1.在进一步体会幂的意义时,发展推理能力和有条理的表达能力.
2.学习同底幂乘法的运算性质,提高解决问题的能力.
(三)情感与价值观要求
在发展推理能力和有条理的表达能力的同时,体会学习数学的兴趣,培养学习数学的信心.
●教学重点
同底数幂的乘法运算法则及其应用.
●教学难点
同底数幂的乘法运算法则的灵活运用.
●教学方法
引导启发法
教师引导学生在回忆幂的意义的基础上,通过特例的推理,再到一般结论的推出,启发学生应用旧知识解决新问题,得出新结论,并能灵活运用.
●教具准备
小黑板
●教学过程
Ⅰ.创设问题情景,引入新课
[师]同学们还记得“an”的意义吗?
[生]an表示n个a相乘,我们把这种运算叫做乘方.乘方的结果叫幂,a叫做底数,n是指数.
[师]我们回忆了幂的意义后,下面看这一章最开始提出的问题(出示投影片§1.3 A):
问题1:光的速度约为3×105千米/秒,太阳光照射到地球上大约需要5×102秒,地球距离太阳大约有多远?
问题2:光在真空中的速度大约是3×105千米/秒,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需4.22年.一年以3×107秒计算,比邻星与地球的距离约为多少千米?
[生]根据距离=速度×时间,可得:
地球距离太阳的距离为:3×105×5×102=3×5×(105×102)(千米)
比邻星与地球的距离约为:3×105×3×107×4.22=37.98×(105×107)(千米)
[师]105×102,105×107如何计算呢?
[生]根据幂的意义:
105×102=×
=
=107
105×107
=
=
[师]很棒!我们观察105×102可以发现105、102这两个因数是同底的幂的形式,所以105×102我们把这种运算叫做同底数幂的乘法,105×107也是同底数幂的乘法.
由问题1和问题2不难看出,我们有必要研究和学习这样一种运算——同底数幂的乘法.
Ⅱ.学生通过做一做、议一议,推导出同底数幂的乘法的运算性质
1.做一做
计算下列各式:
(1)102×103;
(2)105×108;
(3)10m×10n(m,n都是正整数)
你发现了什么?注意观察计算前后底数和指数的关系,并能用自己的语言加以描述.
(4)2m×2n等于什么?()m×()n呢,(m,n都是正整数).
[师]根据幂的意义,同学们可以独立解决上述问题.
[生](1)102×103=(10×10)×(10×10×10)=105=102+3
因为102的意义表示两个10相乘;103的意义表示三个10相乘.根据乘方的意义5个10相乘就表示105同样道理,可求得:
(2)105×108
=×
=1013=105+8
(3)10m×10n
=×
=10m+n
从上面三个小题可以发现,底数都为10的幂相乘后的结果底数仍为10,指数为两个同底的幂的指数和.
[师]很好!底数不同10的同底的幂相乘后的结果如何呢?接着我们来利用幂的意义分析第(4)小题.
[生](4)2m×2n
=×
=2m+n
()m×()n
=×
=()m+n
我们可以发现底数相同的幂相乘的结果的底数和原来底数相同,指数是原来两个幂的指数的和.
2.议一议
出示投影片(§1.3 C)
am·an等于什么(m,n都是正整数)?为什么?
[师生共析]am·an表示同底的幂的乘法,根据幂的意义,可得
am·an=·
==am+n
即有am·an=am+n(m,n都是正整数)
用语言来描述此性质,即为:
同底数幂相乘,底数不变,指数相加.
[师]同学们不妨再来深思,为什么同底数幂相乘,底数不变,指数相加呢?即为什么am·an=am+n呢?
[生]am表示m个a相乘,an表示n个a相乘,am·an表示m个a相乘再乘以n个a相乘,即有(m+n)个a相乘,根据乘方的意义可得am·an=am+n.
[师]也就是说同底数幂相乘,底数不变,指数要降低一级运算,变为相加.
Ⅲ.例题讲解
[例1]计算:
(1)(-3)7×(-3)6;(2)()3×();
(3)-x3·x5;(4)b2m·b2m+1.
[例2]用同底数幂乘法的性质计算投影片(§1.3 A)中的问题1和问题2.
[师]我们先来看例1中的四个小题,是不是都能用同底数幂的乘法的性质呢?
[生](1)、(2)、(4)都能直接用同底数幂乘法的性质——底数不变,指数相加.
[生](3)也能用同底数幂乘法的性质.因为-x3·x5中的-x3相当于(-1)×x3,也就是说-x3的底数是x,x5的底数也为x,只要利用乘法结合律即可得出.
[师]下面我就叫四个同学板演.
[生]解:(1)(-3)7×(-3)6=(-3)7+6=(-3)13;
(2)()3×()=()3+1=()4;
(3)-x3·x5=[(-1)×x3]·x5=(-1)[x3·x5]=-x8;
(4)b2m·b2m+1=b2m+2m+1=b4m+1.
[师]我们接下来看例2.
[生]问题1中地球距离太阳大约为:
3×105×5×102
=15×107
=1.5×108(千米)
据测算,飞行这么远的距离,一架喷气式客机大约要20年.
问题2中比邻星与地球的距离约为:
3×105×3×107×4.22=37.98×1012=3.798×1013(千米)
想一想:am·an·ap等于什么?
[生]am·an·ap=(am·an)·ap=am+n·ap=am+n+p;
[生]am·an·ap=am·(an·ap)=am·an+p=am+n+p;
[生]am·an·ap=··=am+n+p.
Ⅳ.练习
1.随堂练习(课本P14):计算
(1)52×57;(2)7×73×72;(3)-x2·x3;(4)(-c)3·(-c)m.
解:(1)52×57=59;
(2)7×73×72=71+3+2=76;
(3)-x2·x3=-(x2·x3)=-x5;
(4)(-c)3·(-c)m=(-c)3+m.
2.补充练习:判断(正确的打“√”,错误的打“×”)
(1)x3·x5=x15 ( )
(2)x·x3=x3 ( )
(3)x3+x5=x8 ( )
(4)x2·x2=2x4 ( )
(5)(-x)2·(-x)3=(-x)5=-x5 ( )
(6)a3·a2-a2·a3=0 ( )
(7)a3·b5=(ab)8 ( )
(8)y7+y7=y14 ( )
解:(1)×.因为x3·x5是同底数幂的乘法,运算性质应是底数不变,指数相加,即x3·x5=x8.
(2)×.x·x3也是同底数幂的乘法,但切记x的指数是1,不是0,因此x·x3=x1+3=x4.
(3)×.x3+x5不是同底数幂的乘法,因此不能用同底数幂乘法的性质进行运算,同时x3+x5是两个单项式相加,x3和x5不是同类项,因此x3+x5不能再进行运算.
(4)×.x2·x2是同底数幂的乘法,直接用运算性质应为x2·x2=x2+2=x4.
(5)√.
(6)√.因为a3·a2-a2·a3=a5-a5=0.
(7)×.a3·b5中a3与b5这两个幂的底数不相同.
(8)×.y7+y7是整式的加法且y7与y7是同类项,因此应用合并同类项法则,得出y7+y7=2y7.
Ⅴ.课时小结
[师]这节课我们学习了同底数幂的乘法的运算性质,请同学们谈一下有何新的收获和体会呢?
[生]在探索同底数幂乘法的性质时,进一步体会了幂的意义.了解了同底数幂乘法的运算性质.
[生]同底数幂的乘法的运算性质是底数不变,指数相加.应用这个性质时,我觉得应注意两点:一是必须是同底数幂的乘法才能运用这个性质;二是运用这个性质计算时一定是底数不变,指数相加.即am·an=am+n(m、n是正整数).
Ⅵ.课后作业
课本习题1.4 第1、2、3题
Ⅶ.活动与探究
§1.3 同底数幂的乘法
一、提出问题:地球到太阳的距离为15×(105×102)千米,如何计算105×102.
二、结合幂的运算性质,推出同底数幂乘法的运算性质.
(1)105×102=(10×10×10×10×10)×(10×10)=107=105+2;
(2)105×108=×=1013=105+8;
(3)10m×10n=×=10m+n;
(4)2m×2n=×=2m+n;
(5)()m×()n=×=()m+n;
综上所述,可得
am·an=×=am+n
(其中m、n为正整数)
三、例题:(由学生板演,教师和学生共同讲评)
四、练习:(分组完成)
●备课资料
一、参考例题
[例1]计算:
(1)(-a)2·(-a)3 (2)a5·a2·a
分析:(1)中的两个幂的底数都是-a;(2)中三个幂的底数都是a.根据同底数幂的乘法的运算性质:底数不变,指数相加.
解:(1)(-a)2·(-a)3
=(-a)2+3=(-a)5
=-a5.
(2)a5·a2·a=a5+2+1=a8
评注:(2)中的“a”的指数为1,而不是0.
[例2]计算:
(1)a3·(-a)4
(2)-b2·(-b)2·(-b)3
分析:底数的符号不同,要把它们的底数化成同底的形式再运算,运算过程中要注意符号.
解:(1)a3·(-a)4=a3·a4=a3+4=a7;
(2)-b2·(-b)2·(-b)3
=-b2·b2·(-b3)
=b2·b2·b3=b7.
评注:(1)中的(-a)4必须先化为a4,才可运用同底数幂的乘法性质计算;(2)中-b2和(-b)2不相同,-b2表示b2的相反数,底数为b,而不是-b,(-b)2表示-b的平方,它的底数是-b,且(-b)2=(+b)2,所以(-b)2=b2,而(-b)3=-b3.
[例3]计算:
(1)(2a+b)2n+1·(2a+b)3·(2a+b)m-1
(2)(x-y)2(y-x)3
分析:分别把(2a+b),(x-y)看成一个整体,(1)是三个同底数幂相乘;(2)中底不相同,可把(x-y)2化为(y-x)2或把(y-x)3化为-(x-y)3,使底相同后运算.
解:(1)(2a+b)2n+1·(2a+b)3·(2a+b)m-1
=(2a+b)2n+1+3+m-1
=(2a+b)2n+m+3
(2)解法一:(x-y)2·(y-x)3
=(y-x)2·(y-x)3
=(y-x)5
解法二:(x-y)2·(y-x)3
=-(x-y)2(x-y)3
=-(x-y)5
评注:(2)中的两个幂必须化为同底再运算,采用两种化同底的方法运算得到的结果是相同的.
[例4]计算:
(1)x3·x3 (2)a6+a6 (3)a·a4
分析:运用幂的运算性质进行运算时,常会出现如下错误:am·an=amn,am+an=am+n.例如(1)易错解为x3·x3=x9;(2)易错解为a6+a6=a12;(3)易错解为a·a4=a4,而(1)中3和3应相加;(2)是合并同类项;(3)也是易忽略的地方,把a的指数1看成0.
解:(1)x3·x3=x3+3=x6;(2)a6+a6=2a6;(3)a·a4=a1+4=a5
二、在同底数幂的乘法常用的几种恒等变形.
(a-b)=-(b-a)
(a-b)2=(b-a)2
(a-b)3=-(b-a)3
(a-b)2n-1=-(b-a)2n-1(n为正整数)
(a-b)2n=(b-a)2n(n为正整数)
第五课时
●课 题
§1.4.1 幂的乘方与积的乘方(一)
●教学目标
(一)教学知识点
1.经历探索幂的乘方的运算性质的过程,进一步体会幂的意义.
2.了解幂的乘方的运算性质,并能解决一些实际问题.
(二)能力训练要求
1.在探索幂的乘方的运算性质的过程中,发展推理能力和有条理的表达能力.
2.学习幂的乘方的运算性质,提高解决问题的能力.
(三)情感与价值观要求
在发展推理能力和有条理的表达能力的同时,进一步体会学习数学的兴趣,培养学习数学的信心,感受数学的内在美.
●教学重点
幂的乘方的运算性质及其应用.
●教学难点
幂的运算性质的灵活运用.
●教学方法
引导——探究相结合
教师由实际情景引导学生探究幂的乘方的运算性质,并能灵活运用.
●教具准备
小黑板
●教学过程
Ⅰ.提出问题,引入新课
[师]我们先来看一个问题:
一个正方体的边长是102毫米,你能计算出它的体积吗?如果将这个正方体的边长扩大为原来的10倍,则这个正方体的体积是原来的多少倍?
[生]正方体的体积等于边长的立方.所以边长为102毫米的正方体的体积V=(102)3立方毫米;如果边长扩大为原来的10倍,即边长变为102×10毫米即103毫米,此时正方体的体积变为V1=(103)3立方毫米.
[师](102)3,(103)3很显然不是最简,你能利用幂的意义,得出最后的结果吗?大家可以独立思考.
[生]可以.根据幂的意义可知(102)3表示三个102相乘,于是就有(102)3=102×102×102=102+2+2=106;同样根据幂的意义可知(103)3=103×103×103=103+3+3=109.于是我们就求出了V=106立方毫米,V1=109立方毫米.
我们还可以计算出当这个正方形边长扩大为原来的10倍时,体积就变为原来的1000倍即103倍.
[生]也就是说体积扩大的倍数,远大于边长扩大的倍数.
[师]是的!我们再来看(102)3,(103)3这样的运算.102,103是幂的形式,因此我们把这样的运算叫做幂的乘方.这节课我们就来研究幂的第二个运算性质——幂的乘方.
Ⅱ.探索幂的乘方的运算性质
做一做:计算下列各式并说明理由.
(1)(62)4;(2)(a2)3;(3)(am)2;(4)(am)n.
[师]我们观察不难发现,上面的4个小题都是幂的乘方的运算,下面就请同学们利用幂的意义和我们学习过的内容解答它们.
[生](1)(62)462·62·62·6262+2+2+2=68.
[师]第①步和第②步推出的理由是什么呢?
[生]第①步的理由是利用了幂的意义.(62)4表示4个62相乘;第②步的理由是利用了我们刚学过的同底数幂的乘法:底数不变,指数相加.
[师]观察上面的运算过程,底数和指数发生了怎样的变化?
[生]结果的指数8=2×4,刚好是原式子中两个指数的积,而运算前后的底数没变,还是6.
[师]接下来的(2)、(3)、(4)小题是不是可以同样地利用幂的意义和同底数幂的乘法的性质来推出结果呢?
[生]可以!
[师]下面我们就请三位同学到黑板上推出,其余的同学观察他们做的有无错误.
[生](2)(a2)3=a2·a2·a2=a2+2+2=a6=a2×3;
(3)(am)2=am·am=am+m=a2m;
(4)(am)n=
==amn.
[师生共析]由上面的“做一做”我们就推出了幂的乘方的运算性质,即
(am)n=amn(m,n都是正整数)
用语言表述即为:幂的乘方,底数不变,指数相乘.
在幂的乘方的运算中,指数的运算也降了一级.
Ⅲ.例题
出示投影片(§1.4.1 B)
[例1]计算:
(1)(102)3;(2)(b5)5;(3)(an)3;
(4)-(x2)m;(5)(y2)3·y;(6)2(a2)6-(a3)4.
[例2]如果甲球的半径是乙球的n倍,那么甲球的体积是乙球的n3倍.
地球、木星、太阳可以近似地看做是球体.木星、太阳的半径分别约是地球的10倍和102倍,它们的体积分别约是地球的多少倍?
图1-14
[师]我们首先看例1的(1)、(2)、(3)题,可以发现它们都是幂的乘方的运算.我们开始练习幂的乘方的运算性质,不要着急直接套入公式(am)n=amn中,而应进一步体会乘方的意义和幂的意义.我们只要明白了算理,熟悉后就可直接代入,下面就请几个同学回答.
[生](1)(102)3=102·102·102=102+2+2=102×3=106;
(2)(b5)5=b5·b5·b5·b5·b5=b5+5+5+5+5=b5×5=b25;
(3)(an)3=an·an·an=an+n+n=a3n.
[师]很好!下面我们再来试做例1中(4)、(5)、(6)题.
[生](4)-(x2)m表示(x2)m的相反数,所以-(x2)m=-=-=-x2m;
(5)(y2)3·y中既含有乘方运算,也含有乘法运算,按运算顺序,应先乘方,再做乘法,所以,(y2)3·y=(y2·y2·y2)·y=y2×3·y=y6·y=y6+1=y7;
(6)2(a2)6-(a3)4按运算顺序应先算乘方,最后再化简.所以
2(a2)6-(a3)4=2a2×6-a3×4=2a12-a12=a12.
[师]接下来,我们再来看幂的乘方在实际中的应用——例2.
[生]根据例2中的前提条件,可得
木星的体积是地球体积的103倍;太阳的体积是地球体积的(102)3倍即106倍.
[师]很好!我们观察例2图中的木星、太阳、地球的体积不难发现这个图直观地表现了体积扩大的倍数与半径扩大的倍数之间的关系.比较木星、太阳、地球三个球体的大小,可知体积扩大的倍数比半径扩大的倍数大得多.
Ⅳ.练一练
1.计算:
(1)(103)3;(2)-(a2)5;(3)(x3)4·x2;
(4)[(-x)2]3;(5)(-a)2(a2)2;
(6)x·x4-x2·x3.
2.判断下面计算是否正确?如有错误请改正:
(1)(x3)3=x6;(2)a6·a4=a24.
[师]我们首先来回顾一下(am)n=amn(m、n都是正整数)是怎样推出来的.
[生](am)n表示n个am相乘,根据乘方的意义(am)n=,再根据同底数幂的乘法的运算性质,可由==amn.
[师]我们能够很好地体会和理解了幂的意义和同底数幂乘法的运算性质,接下来我们就来完成“练一练”.
[生]1.解:(1)(103)3=103×3=109;
(2)-(a2)5=-a2×5=-a10;
(3)(x3)4·x2=x3×4·x2=x12·x2=x12+2=x14;
(4)[(-x)2]3=(-x)2×3=(-x)6=x6;
(5)(-a)2·(a2)2=a2·a2×2=a2·a4=a2+4=a6;
(6)x·x4-x2·x3=x1+4-x2+3=x5-x5=0.
[师]2.(1)(x3)3=x6不正确,因为(x3)3表示三个x3相乘即x3·x3·x3=x3+3+3=x3×3=x9.或直接根据幂的乘方的运算性质:底数不变,指数相乘,得(x3)3=x3×3=x9.
(2)a6·a4=a24不正确.因为a6·a4=(a·a·a·a·a·a)(a·a·a·a)==a10或根据同底数幂乘法的运算性质:底数不变,指数相加,得a6·a4=a6+4=a10.
[师]我们学习了幂的乘方的运算性质很容易与同底数幂的乘法的运算性质混淆.通过练习的第2题,同学们可反思一下做题的过程,注意幂的意义和乘方的意义,真正地去理解这两个幂的运算性质,而不是去单纯的记忆.
Ⅴ.课时小结
我们这节课通过乘方的意义和幂的意义推出了幂的乘方的运算性质,并通过实际问题体会到了学习这个性质的必要性,从而提高了我们的推理能力,有条理的语言表达能力和解决实际问题的能力.
Ⅵ.课后作业
1.课本P16,习题1.5的第1、2、3题.
2.反思做题过程,自己对出现的错误加以改正,并写入成长记录中.
关于它的证明在以后学习了数学归纳法后一目了然.
●板书设计
§1.4.1 幂的乘方与积的乘方(一)
一、提出问题:
(102)3,(103)3如何计算?
二、根据乘方的意义和幂的意义,推出幂的乘方的运算性质
(102)3=102·102·102=102+2+2=102×3=106;
(103)3=103·103·103=103+3+3=103×3=109;
(62)4=62·62·62·62=62+2+2+2=62×4=68;
……
(am)n===amn
得出:幂的乘方,底数不变,指数相乘.
三、例题
四、练习
●备课资料
一、参考练习
1.填空题
(1)化简:[(-x)2]3= .
(2)化简:(x2)4·x= .
(3)x10=x·( )3=( )2.
(4)若an=3,则a3n= .
(5)在255,344,433,522这四个幂中,数值最大的一个是 .
2.选择题
(1)等式-an=(-a)n(a≠0)成立的条件是( )
A.n是奇数 B.n是偶数
C.n是正整数 D.n是整数
(2)下列计算中,正确的有( )
①x3·x3=2x3;
②x3+x3=x3+3=x6;
③(x3)3=x3+3=x6;
④[(-x)3]2=(-x)32=(-x)9.
A.0个 B.1个 C.2个 D.4个
(3)若644×83=2n,则n的值是( )
A.11 B.18 C.30 D.33
3.计算
(1)(-1)5·[(-3)2]2
(2)-(-a)2·(a2)3·(-a)
(3)[(x2)3·(-x)3]2
(4)(x2)3+[(-x)3]2
4.解答
若2a=3,2b=6,2c=12,求证:2b=a+c.
答案:1.(1)x6 (2)x9 (3)x3,x5
(4)27 (5)344
2.(1)A (2)A (3)D
3.(1)-34(或-81) (2)a9 (3)x18
(4)2x6
4.(略)
第六课时
●课 题
§1.4.2 幂的乘方与积的乘方(二)
●教学目标
(一)教学知识点
1.经历探索积的乘方的运算性质的过程,进一步体会幂的意义.
2.了解积的乘方的运算性质,并能解决一些实际问题.
(二)能力训练要求
1.在探索积的乘方的运算性质的过程中,发展推理能力和有条理的表达能力.
2.学习积的乘方的运算性质,提高解决问题的能力.
(三)情感与价值观要求
在发展推理能力和有条理的语言和符号表达能力的同时,进一步体会学习数学的兴趣,培养学习数学的信心,感受数学的内在美.
●教学重点
积的乘方运算性质及其应用.
●教学难点
幂的运算性质的灵活应用.
●教学方法
探索——交流法
教师引导学生通过特例探索积的乘方的运算,在学生各自说明理由的过程中充分交流做法,从而掌握积的乘方的运算性质.
●教具准备
●教学过程
小黑板
Ⅰ.提出问题,引入新课
[师]我们先来看几个数学问题
出示投影片(§1.4.2 A)——议一议
1.(1)23×53等于什么?与同伴交流你的想法和做法.
(2)28×58,212×512,213×()13分别等于什么?
(3)从上面的计算中,你发现了什么规律?再换一个例子试一试.
2.一个正方体的棱长是2×102毫米.
(1)它的表面积是多少平方毫米?
(2)它的体积是多少立方毫米?
同学们可试着自己探索解题过程,然后互相讨论,在各自说明理由的基础上充分交流做法.
[生]1.(1)23×53
=(2×2×2)×(5×5×5)——幂的意义
=8×125——按运算顺序先算括号里的式子
=1000
[生]1.(1)23×53
=(2×2×2)×(5×5×5)——幂的意义
=(2×5)×(2×5)×(2×5)——乘法交换律、结合律
=10×10×10——按运算顺序先算括号里的式子
=103=1000——乘方的意义
[生]1.(2)28×58
=×——幂的意义
=——乘法交换律、结合律
=
=108——乘方的意义
212×512
=×——幂的意义
=——乘法结合律、交换律
=
=1012——乘方的意义
213×()13
=×——幂的意义
=——乘法交换律、结合律
=113=1
[师]同学们幂的意义、乘方的意义及乘法交换律和结合律运用的非常精巧.在上面的计算中你有没有发现规律呢?你能用一个式子表示吗?
[生]可以.从上面的计算中可发现一个规律,用符号表示为an·bn=(ab)n.
[师]能用幂的意义和乘法的有关运算律验证吗?
[生]an·bn
=·——幂的意义
=——乘法交换律、结合律
=(a·b)n——乘方的意义
[师]我们从特例和一般情况都验证了结论an·bn=(a·b)n.我们再来看第2个问题.
[生]2.(1)正方体的表面积S=6×(2×102)2平方毫米;
(2)正方体的体积V=(2×102)3(立方毫米).
[生]S和V的值不是最简,还需进一步化简.
[师]很好!的确如此.我们可以注意到,要化简S和V的值,就需求出(2×102)2和(2×102)3的值.在(2×102)2和(2×102)3,2×102是底数,它是两个因数2与102的积的形式,因此(2×102)2和(2×102)3是积的乘方的形式,这一节课我们就来学习幂的第三个运算性质——积的乘方.
Ⅱ.做一做——探索积的乘方的运算性质
出示投影片——做一做(§1.4.2 B)
(1)(3×5)7=3( )·5( );
(2)(3×5)m=3( )·5( );
(3)(ab)n=a( )·b( ).
你能说出得出结论的理由吗?你能运用自己的语言描述你发现的规律吗?
[生](1)(3×5)7 ——积的乘方
= ——幂的意义
=× ——乘法交换律、结合律
=37×57 ——乘方的意义
(2)(3×5)m
= ——幂的意义
=× ——乘法交换律、结合律
=3m·5m ——乘方的意义
(3)(ab)n
= ——幂的意义
=· ——乘法运算律
=anbn ——乘方的意义
由(1)、(2)、(3)我们化简,得出
(1)(3×5)7=37×57;
(2)(3×5)m=3m×5m;
(3)(ab)m=ambm.
由上面三个式子可以发现积的乘方的运算性质:积的乘方等于把每一个因式分别乘方的积.
[师]在“议一议”中的第2个问题,你能试着解决吗?
[生]正方体的表面积S=6×(2×102)2=6×[22×(102)2]=6×[4×104]=24×104=2.4×105(平方毫米)
正方体的体积V=(2×102)3=(2×102)×(2×102)×(2×102)=(2×2×2)×(102×102×102)=23×(102)3=8×106(立方毫米)
[师]同学们能用幂的意义和我们刚学过的幂的运算性质有条有理地将新的问题解决.很了不起!我们再来一起回顾一下积的乘方这一运算性质得来过程.
[生](ab)n表示积的乘方,a,b是因式或因数,它可以是数,也可以是字母,或单项式,或多项式,根据幂的意义和乘法运算律,就可得出
(ab)n=
=
=an·bn
用语言描述就为积的乘方等于每个因式分别乘方的积.
Ⅲ.讲一讲,熟悉积的乘方的运算性质
出示投影片(§1.4.2 C)
[例1]计算:
(1)(3x)3;(2)(-2b)5;(3)(-2xy)4;(4)(3a2)n.
[例2]地球可以近似地看作球体,如果用V、r分别代表球的体积和半径,那么V=πr3.地球的半径约为6×103千米,它的体积大约是多少立方千米?你能计算出太阳的体积大约是多少立方千米吗?
分析:应用积的乘方的运算性质进行计算、化简,得首先看积中含有哪些因数或因式.同时要明白算理,开始练习积的运算,可以不直接套用,多写几步,等熟悉后可直接套用.
1.解:(1)(3x)3=(3x)(3x)(3x)=(3×3×3)(x·x·x)=27x3或(3x)3=33·x3=27x3;
(2)(-2b)5=(-2b)(-2b)(-2b)·(-2b)(-2b)
=(-2)(-2)(-2)(-2)(-2)(b·b·b·b·b)=(-2)5·b5=-32b5
或(-2b)5=(-2)5b5=-32b5;
(3)(-2xy)4=(-2xy)(-2xy)·(-2xy)·(-2xy)
=(-2)(-2)(-2)(-2)(x·x·x·x)(y·y·y·y)
=(-2)4x4y4
=16x4y4
或(-2xy)4=(-2x)4·y4
=(-2)4x4y4=16x4y4;
(4)(3a2)n=3n(a2)n=3na2n.
2.解:(1)V=πr3
=π×(6×103)3
=π×63×(103)3
≈9.05×1011(千米3)
所以地球的体积约为9.05×1011千米3.
(2)已知太阳的体积约为地球体积的(102)3=106倍,由(1)可求出太阳的体积为
(9.05×1011)×106=9.05×1011×106=9.05×1017(千米3)
所以太阳的体积约为9.05×1017千米3.
[师]由例1我们可以猜想可以把(ab)n=anbn推广呢?即(abc)n=anbncn吗?大家可以亲自推理一下.
[生](abc)n=
=
=anbncn
[生](abc)n=(ab)ncn=anbncn
[师]大家再来看例1中(3)小题.我们将(ab)n=anbn推广后,得到了(abc)n=anbncn.所以(3)小题也可为:(-2xy)4=(-2)4x4y4=16x4y4.
Ⅳ.练一练——灵活运用积的乘方的运算性质
出示投影片(§1.4.2 D)
1.计算:
(1)(-3n)3;(2)(5xy)3;
(3)-a3+(-4a)2a.
2.判断题
(1)(ab)4=ab4( )
(2)(3ab2)2=3a2b4( )
(3)(-x2yz)2=-x4y2z2( )
(4)(xy2)2=x2y4( )
(5)(-a2bc3)2=a4b2c6( )
(6)(-)5()5=(-×)5=-1( )
3.不用计算器,你能很快求出下列各式的结果吗?
22×3×52,24×32×53
(由学生板演或口答)
1.解:(1)(-3n)3=(-3)3·n3=-27n3;
(2)(5xy)3=53x3y3=125x3y3;
(3)-a3+(-4a)2a
=-a3+(-4)2a2a
=-a3+16a3=15a3.
2.(1)×,积的乘方的运算性质是每个因式分别乘方的积,即(ab)4=a4b4;
(2)×,应为(3ab2)2=32a2(b2)2=9a2b4;
(3)×,应为(-x2yz)2=(-1)2(x2)2y2z2=x4y2z2;
(4)×,应为(xy2)2=()2x2(y2)2=x2y4;
(5)√ (6)√
3.解:22×3×52
=(22×52)×3 ——乘法交换律、结合律
=(2×5)2×3 ——积的乘方运算性质逆用
=3×102=300;
24×32×53
=(23×2)×32×53 ——同底数幂乘法逆用
=(23×53)×(2×32) ——乘法运算律
=(2×5)3×2×9 ——积的乘方运算性质逆用
=18000.
Ⅴ.课时小结
[师]下面我们对这一节课的内容谈一下新的体会和收获.
[生]这节课我们根据幂的意义和乘法的有关运算律对(ab)n=anbn进行了验证.
[生]数学新知识的学习好多是由旧知识推理出来了.
[生]通过一些例子,我们更熟悉了积的乘方的运算性质,而且还能在不同情况对幂的运算性质活用.
Ⅵ.课后作业
1.课本P18,习题1.6的第1、2、3、4题.
2.总结我们学过的三个幂的运算性质,反思作业中的错误.
●板书设计
§1.4.2 幂的乘方与积的乘方(二)
一、议一议
(1)23×53=(2×5)3
(2)28×58=(2×5)8
(3)212×512=(2×5)12
归纳:an×bn=(ab)n
二、做一做
(1)(3×5)7=37×57
(2)(3×5)m=3m·5m
(3)(ab)n=anbn
即积的乘方等于每个因式分别乘方的积.
三、讲一讲
例1.计算 例2.地球的体积
四、练一练
1.随堂练习 2.判断 3.试一试
●备课资料
一、参考例题
[例1]计算:
(1)(-5ab)3;(2)-(3x2y)2;
(3)(-1ab2c3)3;(4)(-xmy3m)2.
分析:应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方;注意系数及系数符号,对于系数是-1的不可忽略.
解:(1)(-5ab)3=(-5)3a3b3
=-125a3b3;
(2)-(3x2y)2
=-32(x2)2y2
=-9x4y2;
(3)(-1ab2c3)3=(-ab2c3)3
=(-)3a3b6c9
=-a3b6c9;
(4)(-xmy3m)2=(-1)2x2my6m
=x2my6m.
[例2]计算:
(1)(-a2)2·(-2a3)2;
(2)(-a4b3)3·(-a2b3)2·(-a2b3)5;
(3)[(x+y)2]3·[(x+y)3]4;
(4)(-2x4)4+2x10(-2x2)3+2x4·5(x4)3.
分析:本题是综合运用学过的幂的三个运算性质.做题前,先观察、分析,以免出错.
解:(1)(-a2)2·(-2a3)2
=(-1)2(a2)2·(-2)2·(a3)2
=a4·4a6
=4a4·a6=4a10
(2)(-a4b3)3·(-a2b3)2·(-a2b3)5
=(-1)3(a4)3(b3)3·(-1)2(a2)2·(b3)2·(-1)5(a2)5(b3)5
=-a12b9·a4b6·(-a10b15)
=a12+4+10b9+6+15
=a26b30
(3)[(x+y)2]3[(x+y)3]4
=(x+y)6·(x+y)12
=(x+y)18
(4)(-2x4)4+2x10(-2x2)3+2x4·5(x4)3
=(-2)4(x4)4+2x10·(-2)3(x2)3+2x4·5x12
=16x16-16x16+10x16=10x16
评注:要注意区分同底数幂的乘法和幂的乘方两种不同运算,要注意负数的奇次幂是负数,负数的偶次幂是正数.同时要注意运算顺序,整式的运算顺序同有理数的运算顺序一样.
[例3]计算:
(1)(-9)3×(-)6×(1-)3;
(2)(-8)2003×(-0.125)2004;
(3)已知x2n=3,求(3x3n)2的值.
分析:灵活运用幂的三个运算性质.
解:(1)原式=-93×[(-)2]3×()3
=-[9××]3
=-=-.
(2)原式=(-8)2003×(-)2003×(-)
=[(-8)×(-)]2003×(-)
=12003×(-)=-
(3)(3x3n)2=32(x3n)2
=9·(x2n)3=9×33
=9×27=243.
评注:(3)关键是将(x3n)2=(x2n)3,利用了(xm)n=(xn)m性质.
第七课时
●课 题
§1.5 同底数幂的除法
●教学目标
(一)教学知识点
1.经历探索同底数幂除法的运算性质的过程,进一步体会幂的意义.
2.了解同底数幂除法的运算性质,并能解决一些实际问题.
3.理解零指数幂和负整数指数幂的意义.
(二)能力训练要求
1.在进一步体会幂的意义的过程中,发展学生的推理能力和有条理的表达能力.
2.提高学生观察、归纳、类比、概括等能力.
(三)情感与价值观要求
在解决问题的过程中了解数学的价值,发展“用数学”的信心,提高数学素养.
●教学重点
同底数幂除法的运算性质及其应用.
●教学难点
零指数幂和负整数指数幂的意义.
●教学方法
探索——引导相结合
在教师的引导下,组织学生探索同底数幂除法的运算性质及零指数幂和负整数指数幂的意义.
●教具准备
●教学过程
Ⅰ.创设问题情景,引入新课
看课本图片
图1-15
一种液体每升含有1012个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1滴杀菌剂可以杀死109个此种细菌.要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?你是怎样计算的?
[师]这是和数学有密切联系的现实世界中的一个问题,下面请同学们根据幂的意义和除法的意义,得出这个问题的结果.
[生]根据题意,可得需要这种杀菌剂1012÷109个.
而1012÷109==
=10×10×10=1000(个)
[生]我是这样算1012÷109的.
1012÷109=(109×103)÷109
==103=1000.
[师]1012÷109是怎样的一种运算呢?
[生]1012×109是同底数幂的乘法运算,1012÷109我们就称它为同底数幂的除法运算.
[师]很好!通过上面的问题,我们会发现同底数幂的除法运算和现实世界有密切的联系,因此我们有必要了解同底数幂除法的运算性质.
Ⅱ.了解同底数幂除法的运算及其应用
[师]下面我们就先来看同底数幂除法的几个特例,并从中归纳出同底数幂除法的运算性质.(出示投影片§1.5 B)
做一做:计算下列各式,并说明理由(m>n).
(1)108÷105;(2)10m÷10n;(3)(-3)m÷(-3)n.
[生]解:(1)108÷105
=(105×103)÷105 ——逆用同底数幂乘法的性质
=103;
[生]解:(1)108÷105
== ——幂的意义
=1000=103;
[生]解:(2)10m÷10n
= ——幂的意义
==10m-n ——乘方的意义
(3)(-3)m÷(-3)n
= ——幂的意义
= ——约分
=(-3)m-n ——乘方的意义
[师]我们利用幂的意义,得到:
(1)108÷105=103=108-5;
(2)10m÷10n=10m-n(m>n);
(3)(-3)m÷(-3)n=(-3)m-n(m>n).
观察上面三个式子,运算前后指数和底数发生了怎样的变化?你能归纳出同底数幂除法的运算性质吗?
[生]从上面三个式子中发现,运算前后的底数没有变化,商的指数是被除数与除数指数的差.
[生]从以上三个特例,可以归纳出同底数幂的运算性质:am÷an=am-n(m,n是正整数且m>n).
[生]小括号内的条件不完整.在同底数幂除法中有一个最不能忽略的问题:除数不能为0.不然这个运算性质无意义.所以在同底数幂的运算性质中规定这里的a不为0,记作a≠0.在前面的三个幂的运算性质中,a可取任意数或整式,所以没有此规定.
[师]很好!这位同学考虑问题很全面.所以同底数幂的除法的运算性质为:
am÷an=am-n(a≠0,m、n都为正整数,且m>n)运用自己的语言如何描述呢?
[生]同底数幂相除,底数不变,指数相减.
[师]能用幂的意义说明这一性质是如何得来的吗?
[生]可以.由幂的意义,得
am÷an===am-n.(a≠0)
[例1]计算:
(1)a7÷a4;(2)(-x)6÷(-x)3;
(3)(xy)4÷(xy);(4)b2m+2÷b2;
(5)(m-n)8÷(n-m)3;(6)(-m)4÷(-m)2.
(7)地震的强度通常用里克特震级表示.描绘地震级数字表示地震的强度是10的若干次幂.例如用里克特震级表示地震是8级,说明地震的强度是107.1992年4月,荷兰发生了5级地震,12天后,加利福尼亚发生了7级地震.加利福尼亚的地震强度是荷兰地震强度的多少倍?
分析:开始练习同底数幂的除法运算时,不提倡直接套用公式,应说明每一步的理由,进一步体会乘方的意义和幂的意义.
解:(1)a7÷a4=a7-4=a3;(a≠0)
(2)(-x)6÷(-x)3=(-x)6-3=(-x)3=-x3;(x≠0)
(3)(xy)4÷(xy)=(xy)4-1=(xy)3=x3y3;(xy≠0)
(4)b2m+2÷b2=b(2m+2)-2=b2m;(b≠0)
(5)(m-n)8÷(n-m)3=(n-m)8÷(n-m)3=(n-m)8-3=(n-m)5;(m≠n)
(6)(-m)4÷(-m)2=(-m)4-2=(-m)2=m2.(m≠0)
(7)根据题意,得:
106÷104=106-4=102=100
所以加利福尼亚的地震强度是荷兰的100倍.
评注:1°am÷an=am-n(a≠0,m、n是正整数,且m>n)中的a可以代表数,也可以代表单项式、多项式等.
2°(5)小题,(m-n)8÷(n-m)3不是同底的,而应把它们化成同底,或将(m-n)8化成(n-m)8,或把(n-m)3化成-(m-n)3.
3°(6)小题,易错为(-m)4÷(-m)2=-m2.-m2的底数是m,而(-m)2的底数是-m,所以(-m)4÷(-m)2=(-m)2=m2.
Ⅲ.探索零指数幂和负整数指数幂的意义
想一想:
10000=104, 16=24,
1000=10( ), 8=2( ),
100=10( ), 4=2( ),
10=10( ). 2=2( ).
猜一猜
1=10( ), 1=2( ),
0.1=10( ), =2( ),
0.01=10( ), =2( ),
0.001=10( ). =2( )
[师]我们先来看“想一想”,你能完成吗?完成后,观察你会发现什么规律?
[生]1000=103, 8=23,
100=102, 4=22,
10=101. 2=21.
观察可以发现,在“想一想”中幂都大于1,幂的值每缩小为原来的(或),指数就会减小1.
[师]你能利用幂的意义证明这个规律吗?
[生]设n为正整数,10n>1,当它缩小为原来的时,可得10n×====10n-1;又如2n>1,当它缩小为原来的时,可得2n×==2n÷2=2n-1.
[师]保持这个规律,完成“猜一猜”.
[生]可以得到猜想
1=100, 1=20,
=0.1=10-1, =2-1,
=0.01=10-2, =2-2,
=0.001=10-3. =2-3.
[师]很棒!保持上面的规律,大家可以发现指数不是我们学过的正整数,而出现了负整数和0.
正整数幂的意义表示几个相同的数相乘,如an(n为正整数)表示n个a相乘.如果用此定义解释负整数指数幂,零指数幂显然无意义.根据“猜一猜”,大家归纳一下,如何定义零指数幂和负整数指数幂呢?
[生]由“猜一猜”得
100=1,
10-1=0.1=,
10-2=0.01==,
10-3=0.001==.
20=1
2-1=,
2-2==,
2-3==.
所以a0=1,
a-p=(p为正整数).
[师]a在这里能取0吗?
[生]a在这里不能取0.我们在得出这一结论时,保持了一个规律,幂的值每缩小为原来的,指数就会减少1,因此a≠0.
[师]这一点很重要.0的0次幂,0的负整数次幂是无意义的,就如同除数为0时无意义一样.因为我们规定:a0=1(a≠0);a-p=(a≠0,p为正整数)
我们的规定合理吗?我们不妨假设同底数幂的除法性质对于m≤n仍然成立来说明这一规定是合理的.
例如由于103÷103=1,借助于同底数幂的除法可得103÷103=103-3=100,因此可规定100=1.一般情况则为am÷am=1(a≠0).而am÷am=am-m=a0,所以a0=1(a≠0);
而am÷an=(m因此上述规定是合理的.
[例3]用小数或分数表示下列各数:
(1)10-3;(2)70×8-2;(3)1.6×10-4.
解:(1)10-3===0.001;
(2)70×8-2=1×=;
(3)1.6×10?-4=1.6×=1.6×0.0001=0.00016.
Ⅳ.课时小结
[师]这一节课收获真不小,大家可以谈一谈.
[生]我这节课最大的收获是知道了指数还有负整数和0指数,而且还了解了它们的定义:a0=1(a≠0),a-p=(a≠0,p为正整数).
[生]这节课还学习了同底数幂的除法:am÷an=am-n(a≠0,m,n为正整数,m>n),但学习了负整数和0指数幂之后,m>n的条件可以不要,因为m≤n时,这个性质也成立.
[生]我特别注意了我们这节课所学的几个性质,都有一个条件a≠0,它是由除数不为0引出的,我觉得这个条件很重要.
[师]同学们收获确实不小,祝贺你们!
Ⅴ.课后作业
1.课本P21,习题1.7第1、2、3、4题.
2.总结幂的四个运算性质,并反思作业中的错误.
●板书设计
§1.5 同底数幂的除法
1.同底数幂的除法
归纳:am÷an=am-n(a≠0,m、n都是正整数且m>n)
说明:am÷an===am-n.
语言描述:同底数幂的除法,底数不变,指数相减.
2.零指数幂和负整数指数幂
a0=1(a≠0)
a-p=(a≠0,p为正整数)
3.例题(由学生板演)
●备课资料
参考练习
1.下面计算中,正确的是( )
A.a2n÷an=a2
B.a2n÷a2=an
C.(xy)5÷xy3=(xy)2
D.x10÷(x4÷x2)=x8.
2.(2×3-12÷2)0等于( )
A.0 B.1 C.12 D.无意义
3.若x2m+1÷x2=x5,则m的值为 ( )
A.0 B.1 C.2 D.3
4.(a2)4÷a3÷a等于( )
A.a5 B.a4 C.a3 D.a2
5.若32x+1=1,则x= ;若3x=,则x= .
6.xm+n÷xn=x3,则m= .
7.计算:[-2-3-8-1×(-1)-2]×(-)-2×70.
8.计算:()-1+()0-()-1.
9.已知10m=3,10n=2,求102m-n的值.
10.已知3x=a,3y=b,求32x-y的值.
答案:1.D 2.D 3.D 4.B
5.- -3 6.3 7.-1 8.-
9. 10.
第八课时
●课 题
§1.6.1 整式的乘法(一)
●教学目标
(一)教学知识点
1.经历探索单项式与单项式相乘的运算法则的过程,会进行单项式与单项式相乘的运算.
2.理解单项式与单项式相乘的算理,体会乘法交换律和结合律的作用和转化的思想.
(二)能力训练要求
1.发展有条理的思考和语言表达能力.
2.培养学生转化的数学思想.
(三)情感与价值观要求
在探索单项式与单项式相乘的过程中,利用乘法的运算律将问题转化,使学生从中获得成就感,培养学习数学的兴趣.
●教学重点
单项式与单项式相乘的运算法则及其应用.
●教学难点
灵活地进行单项式与单项式相乘的运算.
●教学方法
引导——发现法
●教学过程
Ⅰ.创设问题情景,引入新课
[师]整式的运算我们在前面学习过了它的加减运算,还记得整式的加减法是如何运算的吗?
[生]如果遇到有括号,利用去括号法则先去括号,然后再根据合并同类项法则合并同类项.
[师]很棒!其实整式的运算就像数的运算,除了加减法,还应有整式的乘法,整式的除法.下面我们先来看投影片§1.6.1 A中的问题:
为支持北京申办2008年奥运会,一位画家设计了一幅长6000米、名为“奥运龙”的宣传画.
受他的启发,京京用两张同样大小的纸,精心制作了两幅画,如图1-16所示,第一幅画的画面大小与纸的大小相同,第二幅画的画面在纸的上、下方各留有x米的空白.
图1-16
(1)第一幅画的画面面积是 米2;
(2)第二幅画的画面面积是 米2.
[生]从图形我们可以读出条件,第一个画面的长、宽分别为x米,mx米;第二个画面的长、宽分别为mx米、(x-x-x)即x米.因此,第一幅画的画面面积是x·(mx)米2;第二幅画的画面面积是(mx)·(x)米2.
[师]我们一起来看这两个运算:x·(mx),(mx)·(x).这是什么样的运算.
[生]x,mx,x都是单项式,它们相乘是单项式与单项式相乘.
[师]大家都知道整式包括单项式和多项式,从这节课开始我们就来研究整式的乘法.我们先来学习单项式与单项式相乘.
Ⅱ.运用乘法的交换律、结合律和同底数幂乘法的运算性质等知识,探索单项式与单项式相乘的运算法则
出示投影片(§1.6.1 B)
想一想:
(1)对于上面的问题小明也得到如下的结果:
第一幅画的画面面积是x·(mx)米2;
第二幅画的画面面积是(mx)·(x)米2.
可以表达的更简单些吗?说说你的理由.
(2)类似地,3a2b·2ab3和(xyz)·y2z可以表达得更简单些吗?为什么?
(3)如何进行单项式与单项式相乘的运算?
[师]我们来看“想一想”中的三个问题.
[生]我认为这两幅画的画面面积可以表达的更简单些.
x·(mx)
=m·(x·x)——乘法交换律、结合律
=mx2——同底数幂乘法运算性质
(mx)·(x)
=(m)(x·x)——乘法交换律、结合律
=mx2——同底数幂乘法运算性质
[生]类似地,3a2b·2ab3和(xyz)·y2z也可以表达得更简单些.
3a2b·2ab3
=(3×2)·(a2·a)·(b·b3)——乘法交换律、结合律
=6a3b4——同底数幂乘法运算性质
(xyz)·y2z
=x·(y·y2)·(z·z)——乘法交换律、结合律
=xy3z2——同底数幂乘法的运算性质
[师]很棒!这两位同学恰当地运用了乘法交换律、结合律以及同底数幂乘法的运算性质将这几个单项式与单项式相乘的结果化成最简.在(1)(2)的基础上,你能用自己的语言描述总结出单项式与单项式相乘的运算法则吗?你们一定做得会更棒.
[生]单项式与单项式相乘,利用乘法交换律和结合律,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,一起作为积的因式.
[师]我们接下来就用这个法则去做几个题,出示投影片(§1.6.1 C)
[例1]计算:
(1)(2xy2)·(xy);
(2)(-2a2b3)·(-3a);
(3)(4×105)·(5×104);
(4)(-3a2b3)2·(-a3b2)5;
(5)(-a2bc3)·(-c5)·(ab2c).
解:(1)(2xy2)·(xy)=(2×)·(x·x)(y2·y)=x2y3;
(2)(-2a2b3)·(-3a)=[(-2)·(-3)](a2a)·b3=6a3b3;
(3)(4×105)·(5×104)=(4×5)·(105×104)=20×109=2×1010;
(4)(-3a2b3)2·(-a3b2)5
=[(-3)2(a2)2(b3)2]·[(-1)5(a3)5(b2)5]
=(9a4b6)·(a15b10)
=9·(a4·a15)·(b6·b10)
=9a19b16;
(5)(-a2bc3)·(-c5)·(ab2c)
=[(-)×(-)×()]·(a2·a)(b·b2)(c3·c5·c)
=a3b3c9
[师生共析]单项式与单项式相乘的乘法法则在运用时要注意以下几点:
1.积的系数等于各因式系数的积,先确定符号,再计算绝对值.这时容易出现的错误是,将系数相乘与指数相加混淆,如2a3·3a2=6a5,而不要认为是6a6或5a5.
2.相同字母的幂相乘,运用同底数幂的乘法运算性质.
3.只在一个单项式里含有的字母,要连同它的指数作为积的一个因式.
4.单项式乘法法则对于三个以上的单项式相乘同样适用.
5.单项式乘以单项式,结果仍是一个单项式.
Ⅲ.练习,熟悉单项式与单项式相乘的运算法则,及每一步运算的算理
出示投影片(§1.6.1 D)
1.计算:
(1)(5x3)·(2x2y);
(3)(-3ab)·(-4b2);
(3)(2x2y)3·(-4xy2).
2.一种电子计算机每秒可做4×109次运算,它工作5×102秒,可做多少次运算?
(由几位同学板演,最后师生共同讲评)
1.解:(1)(5x3)·(2x2y)
=(5×2)(x3·x2)·y=10x3+2y=10x5y;
(2)(-3ab)·(-4b2)
=[(-3)×(-4)]a·(b·b2)=12ab3;
(3)(2x2y)3·(-4xy2)
=[23(x2)3·y3]·(-4xy2)
=(8x6y3)·(-4xy2)
=[8×(-4)]·(x6·x)(y3·y2)=-32x7y5
2.解:(4×109)×(5×102)
=(4×5)×(109×102)
=20×1011=2×1012(次)
答:工作5×102秒,可做2×1012次运算.
Ⅳ.课时小结
这节课我们利用乘法交换律和结合律及同底数幂乘法的法则探索出单项式相乘的运算法则,并能熟练地运用.
Ⅴ.课后作业
课本习题1.8,第1、2题.
Ⅵ.活动与探究
若(am+1bn+2)·(a2n-1b2m)=a5b3,则m+n的值为多少?
[过程]根据单项式乘法的法则,可建立关于m,n的方程,即(am+1bn+2)·(a2n-1b2m)
=(am+1·a2n-1)·(bn+2·b2m)=a2n+mb2m+n+2=a5b3,所以2n+m=5①,2m+n+2=3即2m+n=1②,观察①②方程的特点,很容易就可求出m+n.
[结果]根据题意,得2n+m=5①,2m+n=1②,①+②得3n+3m=6,3(m+n)=6,所以m+n=2.
●板书设计
§1.5 整式的乘法(一)
——单项式与单项式相乘
问题:如何将x·(mx);(mx)·(x)化成最简?
探索:x·(mx)=m·(x·x)——乘法交换律、结合律
=mx2——同底数幂乘法运算性质
(mx)·(x)=(m)·(x·x)——乘法交换律、结合律
=mx2——同底数幂乘法运算性质
类似地,3a2b·2ab3=(3×2)(a2·a)(b·b3)=6a3b4;
(xyz)·y2z=x·(y·y2)(z·z)=xy3z2.
归纳:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.
例题:例1.(师生共析)
练习:(学生板演,师生共同讲评)
第九课时
●课 题
§1.6.2 整式的乘法(二)
●教学目标
(一)教学知识点
1.经历探索单项式与多项式乘法的运算法则的过程,会进行简单的单项式与多项式的乘法运算.
2.理解单项式与多项式相乘的算理,体会乘法分配律及转化思想的作用.
(二)能力训练要求
1.发展有条理思考和语言表达能力.
2.培养学生转化的数学思想.
(三)情感与价值观要求
在探索单项式与多项式乘法运算法则的过程中,获得成就感,建立学习数学的信心和勇气.
●教学重点
单项式与多项式相乘的乘法法则及应用.
●教学难点
灵活运用单项式与多项式相乘的乘法法则.
●教学方法
引导探索法.
●教学过程
Ⅰ.提出问题,引入新课
[师]整式包括什么?
[生]单项式和多项式.
[师]整式的乘法,我们上一节课学习了其中的一部分——单项式与单项式相乘.你认为整式的乘法还应学习哪些内容呢?
[生]单项式与多项式相乘或多项式与多项式相乘.
[师]很好!我们这节课就接着来学习整式的乘法——单项式与多项式相乘.
Ⅱ.利用面积的不同表示方式或乘法分配律转化为单项式与单项式相乘,探索单项式与多项式相乘的乘法法则
出示投影片(§1.6.2 A)——议一议
为支持北京申办奥运会,京京受画家的启发曾精心制作了两幅画,我们已欣赏过.宁宁也不甘落后,也作了一幅画,如图1-17:
图1-17
(1)宁宁也作了一幅画,所用纸的大小与京京的相同,她在纸的左右两边各留了x米的空白,这幅画的画面面积是多少?
一方面,可以先表示出画面的长与宽,由此得到画面的面积为 ;
另一方面,也可以用纸的面积减去空白处的面积,由此得到画面的面积为 .
这两个结果表示同一画面的面积,所以 .
(2)如何进行单项式与多项式相乘的运算?
[师]从“议一议”可知求出宁宁画的画面面积有两种方法.一种是直接用画面的长和宽来求;一种是间接地把画面的面积转化为纸的面积减去空白处的面积.下面我们就用这两种方法分别求出画面的面积.
[生]根据题意可知画面的长为(mx-x-x)即(mx-x)米,宽为x米,所以画面的面积为x(mx-x)米2.
[生]纸的面积为x·mx=mx2米2,空白处的面积为2x·x=x2米2,所以画面的面积为(mx2-x2)米2.
[师]x(mx-x)与mx2-x2都表示画面的面积,它们是什么关系呢?
[生]它们应相等,即x(mx-x)=mx2-x2.
[师]观察上面的相等关系,等式左边是单项式x与多项式(mx-x)相乘,而右边就是它们相乘后的最后结果,你能用乘法分配律、同底数幂的乘法性质来说明上面等式成立的原因吗?
[生]乘法分配律a(b+c)=ab+ac.所以x(mx-x)就需用x去乘括号里的两项即mx和-x,再把它们的积相加,即x(mx-x)=x·(mx)+x·(-x)=mx2-x2.
[师]你能用上面的方法计算下面的式子吗?3xy(x2y-2xy+y2),并说明每一步的理由.
[生]3xy(x2y-2xy+y2)
=3xy·(x2y)+3xy·(-2xy)+3xy·y2——乘法分配律
=3x3y2-6x2y2+3xy3——单项式乘法的运算法则
[师]根据上面的分析,你能用语言来描述如何进行单项式与多项式相乘的运算吗?
[生]单项式与多项式相乘,就是根据乘法分配律用单项式去乘多项式的每一项,转化为单项式与单项式的乘法,然后再把所得的积相加.
[生]其实,单项式与多项式相乘,就是利用乘法分配律转化为单项式与单项式相乘,这样新知识就转化成了我们学过的知识.
[师]看来,同学们已领略到了数学的“韵律”?这种“转化”的思想是我们学习数学非常重要的一种思想.我们在处理一些问题时经常用到它,例如新知识学习转化为我们学过的、熟悉的知识;复杂的知识转化为几个简单的知识等.
我们通过画面面积的不同表达方法和乘法分配律,得出了单项式乘以多项式的运算法则:单项式与多项式相乘 ,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加,下面我们来看它的具体运用.
Ⅲ.练一练,明确单项式乘多项式每一步的算理,体会由单项式与多项式相乘向单项式与单项式相乘的转化
出示投影片(§1.6.2 B)
[例1]计算:
(1)2ab(5ab2+3a2b);
(2)(ab2-2ab)·ab;
(3)-6x(x-3y);
(4)-2a2(ab+b2).
解:(1)2ab(5ab2+3a2b)
=2ab·(5ab2)+2ab·(3a2b)——乘法分配律
=10a2b3+6a3b2——单项式与单项式相乘
(2)(ab2-2ab)·ab
=(ab2)·ab+(-2ab)·ab——乘法分配律
=a2b3-a2b2——单项式与单项式相乘
(3)-6x(x-3y)
=(-6x)·x+(-6x)·(-3y)——乘法分配律
=-6x2+18xy——单项式与单项式相乘
(4)-2a2(ab+b2)
=-2a2·(ab)+(-2a2)·b2——乘法分配律
=-a3b-2a2b2——单项式与单项式相乘
[师]通过上面的例题,我们已明白每一步的算理.单项式与多项式相乘根据前面的练习,你认为需注意些什么.
[生]单项式与多项式相乘时注意以下几点:
1.积是一个多项式,其项数与多项式的项数相同.
2.运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.
[例2]计算:6mn2(2-mn4)+(-mn3)2.
分析:在混合运算中,要注意运算顺序,结果有同类项的要合并同类项.
解:原式=6mn2×2+6mn2·(-mn4)+m2n6
=12mn2-2m2n6+m2n6
=12mn2-m2n6
[例3]已知ab2=-6,求-ab(a2b5-ab3-b)的值.
分析:求-ab(a2b5-ab3-b)的值,根据题的已知条件需将ab2的值整体代入.因此需灵活运用幂的运算性质及单项式与多项式的乘法.
解:-ab(a2b5-ab3-b)
=(-ab)·(a2b5)+(-ab)(-ab3)+(-ab)(-b)
=-a3b6+a2b4+ab2
=(-ab2)3+(ab2)2+ab2
当ab2=-6时
原式=(-ab2)3+(ab2)2+ab2
=[-(-6)]3+(-6)2+(-6)
=216+36-6
=246
Ⅳ.课时小结
[师]这节课我们学习了单项式与多项式的乘法,大家一定有不少体会.你能告诉大家吗?
[生]这节课我最大的收获是进一步体验到了转化的思想:单项式与多项式相乘,根据乘方分配律可以转化成单项式与单项式相乘;而上节课我们学习的单项式与单项式相乘,根据乘法交换律和结合律又可转化成同底数幂乘法的运算,……
[师]同学们可回顾一下我们学过的知识,哪些地方也曾用过转化的思想.
[生]我们学习有理数运算的时候,就曾用过,例如有理数乘法法则就是利用同号得正,异号得负确定符号后,再把绝对值相乘,而任何数的绝对值都是非负数,因此有理数的乘法运算就是在确定符号后转化成0和正整数、正分数的运算.
[师]转化思想是我们数学学习中的一种非常重要的数学思想,在将来的学习中,他会成为我们的得力助手.
Ⅴ.课后作业
1.课本P26,习题1.9第1、2题.
2.回顾转化思想在以前数学学习过程中的应用.
●板书设计
§1.6.2 整式的乘法(二)
——单项式与多项式的乘法
一、议一议
1.用不同的方法表示画面的面积.
一方面,画面面积为x(mx-x)米2;
一方面,画面面积为(mx2-x2)米2.
所以x(mx-x)=mx2-x2
2.用乘法分配律等说明上式成立
x(mx-x)
=x·(mx)+x·(-x)——乘法分配律
=mx2-x2——单项式与单项式相乘
综上所述,可得
单项式与多项式相乘单项式与单项式相乘再把积相加
二、练一练
例1.(由师生共同分析完成)
例2.(由师生共同分析完成)
例3.(由师生共同分析完成)
●备课资料
一、参考练习
1.选择题
(1)12(xmy)n-10(xny)m的结果是(其中m、n为正整数)( )
A.2xm-yn B.2xn-ym
C.2xmyn D.12xmnyn-10xmnym
(2)下列计算中正确的是( )
A.3b2·2b3=6b6
B.(2×104)×(-6×102)=-1.2×106
C.5x2y·(-2xy2)2=20x4y5
D.(am+1)2·(-a)2m=-a4m+2(m为正整数)
(3)2x2y·(-3xy+y3)的计算结果是( )
A.2x2y4-6x3y2+x2y
B.-x2y+2x2y4
C.2x2y4+x2y-6x3y2
D.-6x3y2+2x2y4
(4)下列算式中,不正确的是( )
A.(xn-2xn-1+1)·(-2xy)=-2xn+1y+4xny-2xy
B.(xn)n-1=x2n-1
C.xn(xn-2x-y)=x2n-2xn+1-xny
D.当n为任意自然数时,(-a2)2n=a4n
2.计算
(1)(-4xy3)·(-xy)+(-3xy2)2
(2)[2(x+y)3]·[5(x+y)k+2]2·[4(x+y)1-k]2
(3)(2xyz2)2·(-xy2z)+(-xyz)3·(5yz)·(-3z)
(4)(x3y2+x2y3+1)·(-3xy2)2·(-4xy)
(5)(x2+2xy+y2)·(xy)n
(6)-an+1b·(an-1bn-2anbn-1)
3.求证:对于任意自然数n,代数式n(n+7)-n(n-5)+6的值都能被6整除.
答案:1.(1)D (2)C (3)C (4)B
2.(1)13x2y4 (2)800(x+y)9
(3)11x3y4z5
(4)-36x6y7-36x5y8-36x3y5
(5)xn+2yn+2xn+1yn+1+xnyn+2
(6)-a2nbn+1+2a2n+1bn+1+an+1b
3.(略)
第十课时
●课 题
§1.6.3 整式的乘法(三)
●教学目标
(一)教学知识点
1.经历探索多项式与多项式相乘的运算法则的过程,会进行简单的多项式与多项式相乘运算(其中多项式相乘仅限于一次式相乘).
2.理解多项式与多项式相乘运算的算理,体会乘法分配律的作用和转化的思想.
(二)能力训练要求
1.发展有条理的思考及语言表达能力.
2.培养学生转化的数学思想.
(三)情感与价值观要求
在体会乘法分配律和转化思想的过程中,获得成就感,培养学习数学的兴趣和信心.
●教学重点
多项式与多项式相乘的法则及应用.
●教学难点
灵活地进行整式乘法的运算.
●教学方法
活动探究法.
●教具准备
下列形状的纸卡每一种若干张.
图1-18
●教学过程
Ⅰ.创设问题情景,引入新课
[师]利用下面长方形卡片中的任意两个,拼成一个更大的长方形.
图1-19
[生]用上面卡片中的任意两个拼出如下图形:
图1-20
[师]你能用不同的形式表示上面四个图形的面积吗?
[生]图A的面积可以表示为(n+a)m,也可以表示为nm+am;
图B的面积可以表示为n(m+b),也可以表示为nm+nb;
图C的面积可以表示为b(n+a),也可以表示为bn+ab;
图D的面积可以表示为a(m+b),也可以表示为am+ab.
[生]由上面的同一图形不同的面积表示方程可得:
(n+a)m=nm+am;
n(m+b)=nm+nb;
b(n+a)=bn+ab;
a(m+b)=am+ab.
[师]我们观察上面四个式子可以发现,等式的左边是单项式乘以多项式,而它们正是单项式与多项式相乘的一个几何解释.
如果再把A、B、C、D四个图形进一步摆拼,会得到比它们更大的长方形.做一做,试一试,也许你会有更惊人的发现.
Ⅱ.通过拼更大的长方形,对比同一面积的不同表示方式,使学生对多项式与多项式的乘法有一个直观认识,再从代数角度去探索多项式与多项式乘法的运算法则.
[生]利用A和C可以拼出下列长方形:
[生]利用B和D也可以拼出如图1-21所示的长方形.
图1-21
[师]你能用不同的形式表示这个图形的面积吗?并进行比较.
[生]上面的图形可以看成长为(m+b)、宽为(n+a)的长方形,其面积是(m+b)(n+a);
[生]上面的图形还可以看成图A和图C两个图形组成的,其面积是m(n+a)+b(n+a);
[生]还可以看成是四个小长方形的组合,其面积是mn+ma+bn+ba.
[师]比较后,你能发现什么?
[生]这三种方法表示同一图形的面积.因此,它们是相等的,即
(m+b)(n+a)=m(n+a)+b(n+a)=mn+ma+bn+ba.
[师]如果从代数运算的角度解释上面的等式成立吗?
[生]成立.在(m+b)(n+a)中,可以把其中的一个多项式看成一个整体,例如把(n+a)看成
一个整体,利用乘法分配律,得,这时再利用单项式与多项式相乘的运
算法则,就可得到.
[师]这位同学从代数运算的角度解释这个等式,解释的很清楚.我们接着来分析上面的等式.(m+b)(n+a)是多项式与多项式相乘,这正是我们要学习的整式乘法中的最后一个问题.而同学们能借用前面知识将问题转化成单项式与多项式的乘法,说明同学们已能恰当地利用转化的思想,解决当前问题.
实际上,多项式与多项式相乘,可以把其中的一个多项式看成一个整体,再运用单项式与多项式相乘的方法进行运算.
我们前面拼图,然后对同一面积用不同的形式表达所得出的等式可以作为多项式与多项式相乘的几何解释.
结合上面的代数解释和几何解释,你能总结出多项式与多项式相乘的运算法则吗?
[生]多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.
[师]下面我们就来看几个多项式与多项式相乘的整式乘法运算.
出示投影片(§1.6.3 A)
[例1]计算:
(1)(1-x)(0.6-x);(2)(2x+y)(x-y);
(3)(x-y)2;(4)(-2x+3)2;
(5)(x+2)(y+3)-(x+1)(y-2).
分析:在做的过程中,要明白每一步算理.因此,不要求直接利用法则进行运算,而要利用乘法分配律将多项式与多项式相乘转化为单项式与多项式相乘.
解:(1)(1-x)(0.6-x)
=(0.6-x)-x(0.6-x)
=0.6-x-0.6x+x2
=0.6-1.6x+x2
或(1-x)(0.6-x)
=1×0.6-1×x-0.6x+x·x
=0.6-x-0.6x+x2
=0.6-1.6x+x2
(2)(2x+y)(x-y)
=2x(x-y)+y(x-y)
=2x2-2xy+xy-y2
=2x2-xy-y2
或(2x+y)(x-y)
=2x·x-2x·y+xy-y2
=2x2-xy-y2
(3)(x-y)2=(x-y)(x-y)=x(x-y)-y(x-y)
=x2-xy-xy+y2
=x2-2xy+y2
或(x-y)2=(x-y)(x-y)
=x·x-x·y-x·y+y·y
=x2-2xy+y2
(4)(-2x+3)2
=(-2x+3)(-2x+3)
=-2x(-2x+3)+3(-2x+3)
=4x2-6x-6x+9
=4x2-12x+9
或(-2x+3)2
=(-2x+3)(-2x+3)
=(-2x)(-2x)+3(-2x)+3(-2x)+9
=4x2-12x+9
(5)(x+2)(y+3)-(x+1)(y-2)
=(xy+3x+2y+6)-(xy-2x+y-2)
=xy+3x+2y+6-xy+2x-y+2
=5x+y+8
评注:(3)(4)题利用乘方运算的意义化成多项式与多项式的乘法运算.
(5)整式的混合运算,一定要注意运算顺序.
Ⅲ.练一练
出示投影片(§1.6.3 B)